ON SUPERNILPOTENT NONSPECIAL RADICALS

HALINA FRANCE-JACKSON

(Received 17 September 2007)

Abstract

Let ρ be a supernilpotent radical. Let ρ^{*} be the class of all rings A such that either A is a simple ring in ρ or the factor ring A / I is in ρ for every nonzero ideal I of A and every minimal ideal M of A is in ρ. Let $\mathcal{L}\left(\rho^{*}\right)$ be the lower radical determined by ρ^{*} and let ρ_{φ} denote the upper radical determined by the class of all subdirectly irreducible rings with ρ-semisimple hearts. Le Roux and Heyman proved that $\mathcal{L}\left(\rho^{*}\right)$ is a supernilpotent radical with $\rho \subseteq \mathcal{L}\left(\rho^{*}\right) \subseteq \rho_{\varphi}$ and they asked whether $\mathcal{L}\left(\rho^{*}\right)=\rho_{\varphi}$ if ρ is replaced by $\beta, \mathcal{L}, \mathcal{N}$ or \mathcal{J}, where $\beta, \mathcal{L}, \mathcal{N}$ and \mathcal{J} denote the Baer, the Levitzki, the Koethe and the Jacobson radical, respectively. In the present paper we will give a negative answer to this question by showing that if ρ is a supernilpotent radical whose semisimple class contains a nonzero nonsimple $*$-ring without minimal ideals, then $\mathcal{L}\left(\rho^{*}\right)$ is a nonspecial radical and consequently $\mathcal{L}\left(\rho^{*}\right) \neq \rho_{\varphi}$. We recall that a prime ring A is a $*$-ring if A / I is in β for every $0 \neq I \triangleleft A$.

2000 Mathematics subject classification: 16N80.
Keywords and phrases: special radical, supernilpotent radical, weakly special class, special class, prime essential ring, $*$-ring, subdirectly irreducible ring, essential ideal.

1. Introduction

All rings in this paper are associative and all classes of rings contain the one-element ring 0 . All undefined radical theoretic terms and facts can be found in [1] and [4]. An ideal I of a ring A is called essential if $I \cap J \neq 0$ whenever J is a nonzero ideal of A. A class μ of rings is hereditary if μ is closed under ideals. A hereditary class μ of semiprime rings is called weakly special if μ is essentially closed, that is, whenever $I \in \mu$ is an essential ideal of a ring A, then $A \in \mu$ also holds. Throughout this paper, for a class μ of rings, $\mathcal{U}(\mu)$ will denote the class of all rings which have no nonzero homomorphic image in $\mu, \mathcal{L}(\mu)$ will denote the lower radical class determined by μ and $\mathcal{S}(\mu)$ will stand for the class of all rings without nonzero ideals in μ. Moreover, μ^{*} [5] will denote the class of all rings A such that either A is a simple ring in μ or the factor ring A / I is in μ for every nonzero ideal I of A and every minimal ideal M of A is in μ. A supernilpotent radical is a hereditary radical class which contains all nilpotent rings. It is well known [1, 4] that ρ is a supernilpotent radical if and only if
(C) 2008 Australian Mathematical Society 0004-9727/08 \$A2.00 +0.00
$\rho=\mathcal{U}(\mu)$ for some weakly special class μ of rings. Le Roux and Heyman [5] proved that if ρ is a supernilpotent radical, then so is $\mathcal{L}\left(\rho^{*}\right)$ and $\rho \subseteq \mathcal{L}\left(\rho^{*}\right) \subseteq \rho_{\varphi}$, where ρ_{φ} denotes the upper radical determined by the class of all subdirectly irreducible rings with ρ-semisimple hearts. Moreover, $\mathcal{L}\left(\mathcal{G}^{*}\right)=\mathcal{G}_{\varphi}$, where \mathcal{G} is the Brown-McCoy radical. They asked whether $\mathcal{L}\left(\rho^{*}\right)=\rho_{\varphi}$ if ρ is replaced by $\beta, \mathcal{L}, \mathcal{N}$ or \mathcal{J}, where $\beta, \mathcal{L}, \mathcal{N}$ and \mathcal{J} denote the Baer, the Levitzki, the Koethe and the Jacobson radical, respectively. In the present paper we will give a negative answer to this question.

2. Main results

We start with a few preliminary results which are interesting in their own right.
Lemma 1. If ρ is any radical class, then for any $A \in \rho^{*}$, either $A \in \rho$ or $A \in \mathcal{S}(\rho)$.
Proof. Let $A \in \rho^{*}$ and suppose that the ρ-radical $\rho(A)$ of A is nonzero. Then $A / \rho(A) \in \rho$ and, since $\rho(A) \in \rho$ and ρ is closed under extensions, it follows that $A \in \rho$.

COROLLARY 2. If ρ is a supernilpotent radical, then for any $A \in \rho^{*}$, either $A \in \rho$ or A is a prime ring.

Proof. Let $A \in \rho^{*}$. Then by Lemma 1 either $A \in \rho$ or $A \in \mathcal{S}(\rho)$. If $A \in \rho$, then we are done. So assume that $A \in \mathcal{S}(\rho)$. Then, since ρ is a supernilpotent radical, A is a semiprime ring. We will now show that A is, in fact, a prime ring. Let I and J be ideals of A and suppose that $I J=0$ and $I \neq 0$. We will show that $J=0$. Since $(I \cap J)^{2} \subseteq I J=0$ and A is a semiprime ring, it follows that $I \cap J=0$. But $(I+J) / I$ is an ideal of A / I and $A / I \in \rho$ because I is a nonzero ideal of A and $A \in \rho^{*}$. Thus, since ρ being a supernilpotent radical is hereditary, it follows that $(I+J) / I \in \rho$. But $(I+J) / I \simeq J /(I \cap J) \simeq J$ since $I \cap J=0$. Thus $J \in \rho$. On the other hand, since $\mathcal{S}(\rho)$ is hereditary and $J \triangleleft A \in \mathcal{S}(\rho)$, it follows that $J \in \mathcal{S}(\rho)$. Thus $J \in \rho \cap \mathcal{S}(\rho)=\{0\}$ which implies that $J=0$.

A ring A is prime essential [3] if and only if A is semiprime and no nonzero ideal of A is a prime ring. In what follows the class of all prime essential rings will be denoted by \mathcal{E}.

Before we prove our main preliminary result, we will need the following construction.

THEOREM 3 [3]. Let A be a nonzero semiprime ring, let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $W(\kappa)$ be the set of all finite words made from a (well-ordered) alphabet of cardinality κ, lexicographically ordered. Then $W(\kappa)$ is a semi-group with multiplication defined by $x y=\max \{x, y\}$ and the following results hold.
(1) The semigroup ring $A(W(\kappa))$ is a subdirect sum of copies of A.
(2) $\quad A(W(\kappa))$ is prime essential.
(3) Every prime homomorphic image $A(W(\kappa)) / Q$ of $A(W(\kappa))$ is isomorphic to some prime homomorphic image A / P of A.
We recall that a prime ring A is called a $*$-ring [2] if $A / I \in \beta$ for every $0 \neq I \triangleleft A$. Also, a special radical is an upper radical class $\mathcal{U}(\mu)$ determined by a special class μ of rings, that is, a hereditary and essentially closed class μ of prime rings.

THEOREM 4 [3]. A supernilpotent radical ρ is a special radical if and only if every prime essential ρ-semisimple ring is a subdirect sum of prime ρ-semisimple rings.

THEOREM 5. If ρ is a supernilpotent radical whose semisimple class \mathcal{S} (ρ) contains a nonzero nonsimple $*$-ring without minimal ideals, then $\mathcal{L}\left(\rho^{*}\right)$ is a nonspecial radical and consequently $\mathcal{L}\left(\rho^{*}\right) \neq \rho_{\varphi}$.
Proof. Let ρ be a supernilpotent radical and let a nonzero nonsimple $*$-ring A without minimal ideals be in $\mathcal{S}(\rho)$. Then $A \in \rho^{*} \cap \mathcal{S}(\rho)$.

Let $\kappa>1$ be a cardinal number greater than the cardinality of A and let $A(W(\kappa))$ be the semigroup ring constructed in Theorem 3. Then, by Theorem 3, $A(W(\kappa))$ is prime essential and $A(W(\kappa))$ is a subdirect sum of copies of A. But, since $A \in \mathcal{S}(\rho)$, it follows that $A(W(\kappa)) \in \mathcal{S}(\rho)$ because $\mathcal{S}(\rho)$ is closed under subdirect sums. Thus $A(W(\kappa)) \in \mathcal{S}(\rho) \cap \mathcal{E}$. We will now show that $A(W(\kappa)) \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$.

It follows from [5, Theorem 2] that $\mathcal{L}\left(\rho^{*}\right)=\mathcal{U}(\sigma)$, where σ is the class of all rings without nonzero ideals in ρ^{*}. Since ρ is a supernilpotent radical, it follows from [5, Lemma 3] that ρ^{*} is hereditary and contains all the nilpotent rings. Then it follows from [5, Theorem 1] that σ is a weakly special class. Thus $\sigma \subseteq \mathcal{S}(\mathcal{U}(\sigma))$. It therefore suffices to show that $A(W(\kappa))$ has no nonzero ideals in ρ^{*}. Suppose that $0 \neq I \triangleleft A(W(\kappa))$ and $I \in \rho^{*}$. Then it follows from Corollary 2 that either $I \in \rho$ or I is a prime ring. But neither of the two cases can occur because $0 \neq$ $I \triangleleft A(W(\kappa))$ and $A(W(\kappa)) \in \mathcal{S}(\rho) \cap \mathcal{E}$. Thus $A(W(\kappa)) \in \sigma$ and consequently $A(W(\kappa)) \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right) \cap \mathcal{E}$.

Now, if $\mathcal{L}\left(\rho^{*}\right)$ were a special radical, then by Theorem $4, A(W(\kappa))$ would contain a family $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ of ideals I_{λ} such that $\bigcap_{\lambda \in \Lambda} I_{\lambda}=0$ and $A(W(\kappa)) / I_{\lambda} \in$ $\mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right) \cap \pi$, where π denotes the class of all prime rings. Consequently, $A(W(\kappa)) / I_{\lambda}$ would be a nonzero prime homomorphic image of $A(W(\kappa))$ for at least one I_{λ}. Then it follows from the third part of Theorem 3 that $A(W(\kappa)) / I_{\lambda} \simeq$ A / P for some ideal P of A. Thus $0 \neq A / P \in \pi$ and, as A is a nonzero $*$-ring, it follows that $P=0$. Thus $A(W(\kappa)) / I_{\lambda} \simeq A$ and consequently $A \in \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)$. On the other hand, $A \in \rho^{*} \subseteq \mathcal{L}\left(\rho^{*}\right)$. Thus $0 \neq A \in \mathcal{L}\left(\rho^{*}\right) \cap \mathcal{S}\left(\mathcal{L}\left(\rho^{*}\right)\right)=\{0\}$ and we have a contradiction. Thus $\mathcal{L}\left(\rho^{*}\right)$ is a nonspecial radical.

Now, since ρ_{φ} is a special radical [1], it follows that $\mathcal{L}\left(\rho^{*}\right) \neq \rho_{\varphi}$, which concludes the proof.

We are now ready to answer the question of Le Roux and Heyman. To do so we need the following result.

Example 6 [1, Example 13, pp. 113-115]. Let F be a field of characteristic 0 which has an automorphism S such that no integral power of S is the identity automorphism. For example, F might be a field generated by the real numbers and an infinite number of independent variables labelled $\ldots x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots$ and S the automorphism which leaves the real numbers alone and which sends x_{i} into x_{i+1} for every i. Let R be the set of all polynomials in an indeterminate z of the form $a_{0}+z a_{1}+z^{2} a_{2}+\cdots+z^{n} a_{n}$, where the coefficients a_{i} belong to F. Addition and multiplication of such polynomials are defined in the usual way except that z does not commute with the coefficients a. We define $a z=z S(a)$, where $S(a)$ is the image of a under the automorphism S. Then $a z^{m}=z S^{m}(a)$ for any positive integer m. Then this definition, together with the distributive law, makes R into a ring denoted by $F[z, S]$. Then $F[z, S]$ is a noncommutative integral domain and its every ideal I is of the form $I=z^{k} R=R z^{k}$ for some positive integer k. Moreover, $F[z, S]$ is a primitive ring whose subring $T=z R$ does not contain simple prime ideals and every proper homomorphic image of T is a nilpotent ring.

Corollary 7. If ρ is replaced by β, \mathcal{L}, \mathcal{N} or \mathcal{J}, then $\rho \varsubsetneqq \mathcal{L}\left(\rho^{*}\right) \varsubsetneqq \rho_{\varphi}$.
Proof. It is well known [1, 4] that $\beta, \mathcal{L}, \mathcal{N}$ and \mathcal{J} are special radicals and $\beta \subseteq \mathcal{L}$ $\subseteq \mathcal{N} \subseteq \mathcal{J}$. Let T be the ring of Example 6. Clearly, T is a nonzero nonsimple *-ring without minimal ideals. Moreover, since T is an ideal of the primitive ring $F[z, S]$ and the class of all primitive rings is hereditary, it follows that T is primitive and so $T \in \mathcal{S}(\mathcal{J}) \subseteq \mathcal{S}(\mathcal{N}) \subseteq \mathcal{S}(\mathcal{L}) \subseteq \mathcal{S}(\beta)$. Now the result follows directly from Theorem 5.

References

[1] N. Divinsky, Rings and Radicals (Allen \& Unwin, London, 1965).
[2] H. France-Jackson, '*-rings and their radicals', Quaest. Math. 8(3) (1985), 231-239.
[3] B. J. Gardner and P. N. Stewart, 'Prime essential rings', Proc. Edinb. Math. Soc. 34 (1991), 241250.
[4] B. J. Gardner and R. Wiegandt, Radical Theory of Rings (Marcel Dekker, New York, 2004).
[5] H. J. Le Roux and G. A. P. Heyman, 'A question on the characterization of certain upper radical classes', Boll. Unione Mat. Ital. Sez. A 17(5) (1980), 67-72.

HALINA FRANCE-JACKSON, Department of Mathematics and Applied
Mathematics, Nelson Mandela Metropolitan University,
Summerstrand Campus (South), PO Box 77000, Port Elizabeth 6031, South Africa
e-mail: cbf@easterncape.co.uk

