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Abstract

Let ρ be a supernilpotent radical. Let ρ∗ be the class of all rings A such that either A is a simple ring in ρ

or the factor ring A/I is in ρ for every nonzero ideal I of A and every minimal ideal M of A is in ρ. Let
L (ρ∗) be the lower radical determined by ρ∗ and let ρϕ denote the upper radical determined by the class
of all subdirectly irreducible rings with ρ-semisimple hearts. Le Roux and Heyman proved that L (ρ∗)

is a supernilpotent radical with ρ ⊆L (ρ∗) ⊆ ρϕ and they asked whether L (ρ∗) = ρϕ if ρ is replaced by
β, L,N or J , where β, L,N and J denote the Baer, the Levitzki, the Koethe and the Jacobson radical,
respectively. In the present paper we will give a negative answer to this question by showing that if ρ

is a supernilpotent radical whose semisimple class contains a nonzero nonsimple ∗-ring without minimal
ideals, then L (ρ∗) is a nonspecial radical and consequently L (ρ∗) 6= ρϕ . We recall that a prime ring A
is a ∗-ring if A/I is in β for every 0 6= I C A.
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1. Introduction

All rings in this paper are associative and all classes of rings contain the one-element
ring 0. All undefined radical theoretic terms and facts can be found in [1] and [4]. An
ideal I of a ring A is called essential if I ∩ J 6= 0 whenever J is a nonzero ideal of
A. A class µ of rings is hereditary if µ is closed under ideals. A hereditary class µ of
semiprime rings is called weakly special if µ is essentially closed, that is, whenever
I ∈ µ is an essential ideal of a ring A, then A ∈ µ also holds. Throughout this paper,
for a class µ of rings, U (µ) will denote the class of all rings which have no nonzero
homomorphic image in µ, L (µ) will denote the lower radical class determined by µ

and S (µ) will stand for the class of all rings without nonzero ideals in µ. Moreover,
µ∗ [5] will denote the class of all rings A such that either A is a simple ring in µ or
the factor ring A/I is in µ for every nonzero ideal I of A and every minimal ideal M
of A is in µ. A supernilpotent radical is a hereditary radical class which contains all
nilpotent rings. It is well known [1, 4] that ρ is a supernilpotent radical if and only if
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ρ = U (µ) for some weakly special class µ of rings. Le Roux and Heyman [5] proved
that if ρ is a supernilpotent radical, then so is L (ρ∗) and ρ ⊆ L (ρ∗) ⊆ ρϕ , where ρϕ

denotes the upper radical determined by the class of all subdirectly irreducible rings
with ρ-semisimple hearts. Moreover, L (G∗) = Gϕ , where G is the Brown–McCoy
radical. They asked whether L (ρ∗) = ρϕ if ρ is replaced by β, L, N or J , where
β, L, N and J denote the Baer, the Levitzki, the Koethe and the Jacobson radical,
respectively. In the present paper we will give a negative answer to this question.

2. Main results

We start with a few preliminary results which are interesting in their own right.

LEMMA 1. If ρ is any radical class, then for any A ∈ ρ∗, either A ∈ ρ or A ∈ S (ρ).

PROOF. Let A ∈ ρ∗ and suppose that the ρ-radical ρ (A) of A is nonzero. Then
A/ρ (A) ∈ ρ and, since ρ (A) ∈ ρ and ρ is closed under extensions, it follows that
A ∈ ρ. 2

COROLLARY 2. If ρ is a supernilpotent radical, then for any A ∈ ρ∗, either A ∈ ρ or
A is a prime ring.

PROOF. Let A ∈ ρ∗. Then by Lemma 1 either A ∈ ρ or A ∈ S (ρ). If A ∈ ρ, then
we are done. So assume that A ∈ S (ρ). Then, since ρ is a supernilpotent radical,
A is a semiprime ring. We will now show that A is, in fact, a prime ring. Let I
and J be ideals of A and suppose that I J = 0 and I 6= 0. We will show that J = 0.
Since (I ∩ J )2

⊆ I J = 0 and A is a semiprime ring, it follows that I ∩ J = 0 . But
(I + J ) /I is an ideal of A/I and A/I ∈ ρ because I is a nonzero ideal of A and
A ∈ ρ∗. Thus, since ρ being a supernilpotent radical is hereditary, it follows that
(I + J ) /I ∈ ρ. But (I + J ) /I ' J/ (I ∩ J ) ' J since I ∩ J = 0. Thus J ∈ ρ. On
the other hand, since S (ρ) is hereditary and J C A ∈ S (ρ), it follows that J ∈ S (ρ).
Thus J ∈ ρ ∩ S (ρ) = {0} which implies that J = 0. 2

A ring A is prime essential [3] if and only if A is semiprime and no nonzero ideal of
A is a prime ring. In what follows the class of all prime essential rings will be denoted
by E .

Before we prove our main preliminary result, we will need the following
construction.

THEOREM 3 [3]. Let A be a nonzero semiprime ring, let κ > 1 be a cardinal number
greater than the cardinality of A and let W (κ) be the set of all finite words made from
a (well-ordered) alphabet of cardinality κ , lexicographically ordered. Then W (κ) is
a semi-group with multiplication defined by xy = max {x, y} and the following results
hold.
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(1) The semigroup ring A (W (κ)) is a subdirect sum of copies of A.
(2) A (W (κ)) is prime essential.
(3) Every prime homomorphic image A (W (κ)) /Q of A (W (κ)) is isomorphic to

some prime homomorphic image A/P of A.

We recall that a prime ring A is called a ∗-ring [2] if A/I ∈ β for every 0 6= I C A.
Also, a special radical is an upper radical class U (µ) determined by a special class µ

of rings, that is, a hereditary and essentially closed class µ of prime rings.

THEOREM 4 [3]. A supernilpotent radical ρ is a special radical if and only if every
prime essential ρ-semisimple ring is a subdirect sum of prime ρ-semisimple rings.

THEOREM 5. If ρ is a supernilpotent radical whose semisimple class S (ρ) contains a
nonzero nonsimple ∗ -ring without minimal ideals, then L (ρ∗) is a nonspecial radical
and consequently L (ρ∗) 6= ρϕ .

PROOF. Let ρ be a supernilpotent radical and let a nonzero nonsimple ∗-ring A
without minimal ideals be in S (ρ). Then A ∈ ρ∗

∩ S (ρ).
Let κ > 1 be a cardinal number greater than the cardinality of A and let A (W (κ))

be the semigroup ring constructed in Theorem 3. Then, by Theorem 3, A (W (κ)) is
prime essential and A (W (κ)) is a subdirect sum of copies of A. But, since A ∈ S (ρ),
it follows that A (W (κ)) ∈ S (ρ) because S (ρ) is closed under subdirect sums. Thus
A (W (κ)) ∈ S (ρ) ∩ E . We will now show that A (W (κ)) ∈ S (L (ρ∗)).

It follows from [5, Theorem 2] that L (ρ∗) = U (σ ), where σ is the class of all
rings without nonzero ideals in ρ∗. Since ρ is a supernilpotent radical, it follows
from [5, Lemma 3] that ρ∗ is hereditary and contains all the nilpotent rings. Then it
follows from [5, Theorem 1] that σ is a weakly special class. Thus σ ⊆ S (U (σ )).
It therefore suffices to show that A (W (κ)) has no nonzero ideals in ρ∗. Suppose
that 0 6= I C A (W (κ)) and I ∈ ρ∗. Then it follows from Corollary 2 that either
I ∈ ρ or I is a prime ring. But neither of the two cases can occur because 0 6=

I C A (W (κ)) and A (W (κ)) ∈ S (ρ) ∩ E . Thus A (W (κ)) ∈ σ and consequently
A (W (κ)) ∈ S (L (ρ∗)) ∩ E .

Now, if L (ρ∗) were a special radical, then by Theorem 4, A (W (κ)) would
contain a family {Iλ}λ∈3 of ideals Iλ such that

⋂
λ∈3 Iλ = 0 and A (W (κ)) /Iλ ∈

S (L (ρ∗)) ∩ π , where π denotes the class of all prime rings. Consequently,
A (W (κ)) /Iλ would be a nonzero prime homomorphic image of A (W (κ)) for at
least one Iλ. Then it follows from the third part of Theorem 3 that A (W (κ)) /Iλ '

A/P for some ideal P of A. Thus 0 6= A/P ∈ π and, as A is a nonzero ∗-ring, it
follows that P = 0. Thus A (W (κ)) /Iλ ' A and consequently A ∈ S (L (ρ∗)). On
the other hand, A ∈ ρ∗

⊆ L (ρ∗). Thus 0 6= A ∈ L (ρ∗) ∩ S (L (ρ∗)) = {0} and we
have a contradiction. Thus L (ρ∗) is a nonspecial radical.

Now, since ρϕ is a special radical [1], it follows that L (ρ∗) 6= ρϕ , which concludes
the proof. 2

We are now ready to answer the question of Le Roux and Heyman. To do so we
need the following result.
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EXAMPLE 6 [1, Example 13, pp. 113–115]. Let F be a field of characteristic 0 which
has an automorphism S such that no integral power of S is the identity automorphism.
For example, F might be a field generated by the real numbers and an infinite
number of independent variables labelled . . . x−2, x−1, x0, x1, x2, . . . and S the
automorphism which leaves the real numbers alone and which sends xi into xi+1
for every i . Let R be the set of all polynomials in an indeterminate z of the form
a0 + za1 + z2a2 + · · · + znan , where the coefficients ai belong to F . Addition and
multiplication of such polynomials are defined in the usual way except that z does not
commute with the coefficients a. We define az = zS (a), where S (a) is the image of a
under the automorphism S. Then azm

= zSm (a) for any positive integer m. Then this
definition, together with the distributive law, makes R into a ring denoted by F [z, S].
Then F [z, S] is a noncommutative integral domain and its every ideal I is of the
form I = zk R = Rzk for some positive integer k. Moreover, F [z, S] is a primitive
ring whose subring T = z R does not contain simple prime ideals and every proper
homomorphic image of T is a nilpotent ring.

COROLLARY 7. If ρ is replaced by β, L, N or J , then ρ  L (ρ∗) ρϕ .

PROOF. It is well known [1, 4] that β, L, N and J are special radicals and β ⊆ L
⊆ N ⊆ J . Let T be the ring of Example 6. Clearly, T is a nonzero nonsimple
∗-ring without minimal ideals. Moreover, since T is an ideal of the primitive ring
F [z, S] and the class of all primitive rings is hereditary, it follows that T is primitive
and so T ∈ S (J ) ⊆ S (N ) ⊆ S (L) ⊆ S (β). Now the result follows directly from
Theorem 5. 2
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