THE WIENER-PITT PHENOMENON ON
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(Received 11th September, 1961)

IT has been well known for many years (2) that if F,(¢) is the Fourier-Stieltjes
transform of a bounded measure p on the real line R, which is bounded away
from zero, it does not follow that [F,,(t)]‘1 is also the Fourier-Stieltjes trans-
form of a measure. It seems of interest (as was remarked, in conversation,
by J. D. Weston) to consider measures on the half-line R* = [0, oo[, instead
of on R. The Fourier-Stieltjes transform is now replaced by the Laplace-
Stieltjes transform

L= f‘” e du(x) (AL20),
0

and the problem is: if g is a bounded measure, and
| LD |2k>0 (2020),

is it true that [L,‘(.f)]‘1 is the Laplace-Stieltjes transform of a measure also?
The answer, as will be shown below, is negative; the Wiener-Pitt phenomenon
occurs. One may of course ask (and to some extent answer) a similar question
in the case of a general semigroup. Some extensions (for example, to the
positive quadrant in R?, and similar situations) are immediate; we do not
attempt to discuss the general problem here.

The occurrence of the phenomenon in the case of R* follows quite easily
from results already known for R. Let M(R) be the Banach algebra of bounded
measures on R, and let 1 € M(R) satisfy

@ [ 24] =15

(ii) the support of 4 is contained in [—1, 1];

(iii) F,(?) is real for all ¢;

(iv) the spectrum of A contains i (i = —1).

It is clear that (i) and (iii) together imply that —1<F,(£)<1 for all ¢. The
existence of such measures has been established in general locally compact
abelian groups (see (1) or (4)). A simple example on the real line may be
obtained (3) by writing A, for the measure with mass 4 at each of +1/n!, and
taking A to be the infinite convolution product A,s43.4,4.... Let u be the
measure 83.(6o—A%), that is, the measure obtained by translating (5,—A%)
through a distance +3 (we write §, for the measure with mass 1 at x). Then
u may be regarded as a measure on either R or R*; its support is contained in

(1, 5.
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Let m be a homomorphism of M(R) on to the complex field such that

m(2?) = —1; let m(6;) = e, and consider the measure
V= 260_e_i9ﬂ.
Then
m(v) =2—e (1 +1) =0,

and so v has no inverse in M(R) and, a fortiori, no inverse in M(R*).

On the other hand, L.({) is bounded away from zero in the right half plane.
Writing { = ¢+in we have in general, for £20,

| L(O)~2]| = l f ” e~ *du(x)
0

5
- U e~ du(x)
1

et el
= 2e”¢,
so that L ({) is bounded away from zero in every half plane £=£,>0. Also,

foré =0,
L(in) = F(n) =2—e™ ®e™"(1— F}(n)).

Since 0< F}(n)<1, it follows that | L,(in) |=1. Finally, L,({) is continuous
in &, uniformly in #, at £ = 0 (and indeed everywhere). Taking £>0 we have

| LGm)—L (& +in)| = r (1—e™*)e” ™dy(x)
(4]

5
j (1 —e e~ ™dv(x)
0

=Pl g, 0=

= 4(1—e"%).
From this, the required result follows immediately.
Since if [L(£)]™' were of the form L({) for some bounded measure o,
it would follow that ¢ = v~1, it is clear that the Wiener-Pitt phenomenon
occurs.
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