THE WIENER-PITT PHENOMENON ON THE HALF-LINE

by J. H. WILLIAMSON (Received 11th September, 1961)

It has been well known for many years (2) that if $F_{\mu}(t)$ is the Fourier-Stieltjes transform of a bounded measure μ on the real line R, which is bounded away from zero, it does *not* follow that $[F_{\mu}(t)]^{-1}$ is also the Fourier-Stieltjes transform of a measure. It seems of interest (as was remarked, in conversation, by J. D. Weston) to consider measures on the half-line $R^+ = [0, \infty]$, instead of on R. The Fourier-Stieltjes transform is now replaced by the Laplace-Stieltjes transform

$$L_{\mu}(\zeta) = \int_{0}^{\infty} e^{-x\zeta} d\mu(x) \quad (\mathscr{R}\zeta \ge 0),$$

and the problem is: if μ is a bounded measure, and

$$|L_{\mu}(\zeta)| \geq k > 0 \quad (\mathscr{R}\zeta \geq 0),$$

is it true that $[L_{\mu}(\xi)]^{-1}$ is the Laplace-Stieltjes transform of a measure also? The answer, as will be shown below, is negative; the Wiener-Pitt phenomenon occurs. One may of course ask (and to some extent answer) a similar question in the case of a general semigroup. Some extensions (for example, to the positive quadrant in R^2 , and similar situations) are immediate; we do not attempt to discuss the general problem here.

The occurrence of the phenomenon in the case of R^+ follows quite easily from results already known for R. Let M(R) be the Banach algebra of bounded measures on R, and let $\lambda \in M(R)$ satisfy

- (i) $\|\lambda\| = 1;$
- (ii) the support of λ is contained in [-1, 1];
- (iii) $F_{\lambda}(t)$ is real for all t;
- (iv) the spectrum of λ contains $i(i^2 = -1)$.

It is clear that (i) and (iii) together imply that $-1 \le F_{\lambda}(t) \le 1$ for all t. The existence of such measures has been established in general locally compact abelian groups (see (1) or (4)). A simple example on the real line may be obtained (3) by writing λ_n for the measure with mass $\frac{1}{2}$ at each of $\pm 1/n!$, and taking λ to be the infinite convolution product $\lambda_{2*}\lambda_{3*}\lambda_{4}$ Let μ be the measure $\delta_{3*}(\delta_0 - \lambda^2)$, that is, the measure obtained by translating ($\delta_0 - \lambda^2$) through a distance +3 (we write δ_x for the measure with mass 1 at x). Then μ may be regarded as a measure on either R or R^+ ; its support is contained in (1, 5).

Let *m* be a homomorphism of M(R) on to the complex field such that $m(\lambda^2) = -1$; let $m(\delta_3) = e^{i\theta}$, and consider the measure

$$v = 2\delta_0 - e^{-i\theta}\mu.$$

$$m(v) = 2 - e^{-i\theta} e^{i\theta} (1+1) = 0,$$

and so v has no inverse in M(R) and, a fortiori, no inverse in $M(R^+)$.

On the other hand, $L_{\nu}(\zeta)$ is bounded away from zero in the right half plane. Writing $\zeta = \xi + i\eta$ we have in general, for $\xi \ge 0$,

$$|L_{\nu}(\zeta) - 2| = \left| \int_{0}^{\infty} e^{-x\zeta} d\mu(x) \right|$$
$$= \left| \int_{1}^{5} e^{-x\zeta} d\mu(x) \right|$$
$$\leq |e^{-\zeta}| \|\mu\|$$
$$= 2e^{-\zeta},$$

so that $L_{\nu}(\zeta)$ is bounded away from zero in every half plane $\xi \ge \xi_0 > 0$. Also, for $\xi = 0$,

$$L_{\nu}(i\eta) = F_{\nu}(\eta) = 2 - e^{-i\theta} e^{-3i\eta} (1 - F_{\lambda}^{2}(\eta)).$$

Since $0 \le F_{\lambda}^2(\eta) \le 1$, it follows that $|L_{\nu}(i\eta)| \ge 1$. Finally, $L_{\nu}(\zeta)$ is continuous in ξ , uniformly in η , at $\xi = 0$ (and indeed everywhere). Taking $\xi > 0$ we have

$$|L_{\nu}(i\eta) - L_{\nu}(\xi + i\eta)| = \left| \int_{0}^{\infty} (1 - e^{-x\xi})e^{-ix\eta}d\nu(x) \right|$$
$$= \left| \int_{0}^{5} (1 - e^{-x\xi})e^{-ix\eta}d\nu(x) \right|$$
$$\leq ||v|| \sup_{\substack{0 \le x \le 5 \\ 0 \le x \le 5}} (1 - e^{-x\xi})$$
$$= 4(1 - e^{-5\xi}).$$

From this, the required result follows immediately.

Since if $[L_{\nu}(\zeta)]^{-1}$ were of the form $L_{\sigma}(\zeta)$ for some bounded measure σ , it would follow that $\sigma = \nu^{-1}$, it is clear that the Wiener-Pitt phenomenon occurs.

REFERENCES

(1) W. RUDIN, Bull. American Math. Soc., 65 (1959), 227-247.

(2) N. WIENER and H. R. PITT, Duke Math. J., 4 (1938), 420-436.

(3) J. H. WILLIAMSON, Communication at International Congress of Mathematicians (Edinburgh, 1958).

(4) J. H. WILLIAMSON, Proc. Edin. Math. Soc., 11 (1959), 195-206.

KING'S COLLEGE CAMBRIDGE