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Abstract. Modern astrometric techniques lead to large, linear systems 
solved by the precepts of least-squares. These systems are usually sparse, 
and one should take advantage of the sparsity to facilitate their solution. 
As long as the matrix A of the equations of condition possesses the weak 
Hall property, characteristic of linear systems derived from astrometric 
reductions, it is possible to find a sparse Cholesky factor. Before the 
equations of condition are accumulated, by use of the fast Givens trans­
formation, a symbolic factorization of A using Tewarson's length of inter­
section technique determines the ordering of the columns of A that result 
in low fill-in. The non-null elements are stored in a sparse, dynamic data 
structure by use of dynamic hashing. Numerical experimentation shows 
that this competes well with alternatives such as nested dissection, and 
large, but sparse, linear systems with several thousand unknowns can be 
solved in a reasonable amount of time, even on personal computers. 

1. Introduction 

Modern astrometric techniques lead to large, linear systems solved by the pre­
cepts of least-squares. Examples are global astrolabe reductions, plate overlap 
techniques, and radio astrometric reductions. These systems are usually sparse, 
and one should take advantage of the sparsity to facilitate their solution. In 
fact, a standard technique for symmetric, positive definite matrices, which arise 
when the equations of condition are accumulated, and known as "nested dissec­
tion" (George and Liu, 1981), originated over a century ago to solve geodetic 
problems (Helmert, 1880). Let A, of size mxn, where m represents the number 
of equations and n the number of unknowns, be the matrix of the equations of 
condition and b the m-vector of the right-hand-side. If one were to use least-
squares one could form the matrix A • A of the normal equations and then 
decompose the normal equations into S T • S, where the Cholesky factor S is 
upper triangular. If the normal equations are sparse then processing by use of, 
for example, nested dissection produces a sparse Cholesky factor S. If one uses 
orthogonal transformations in lieu of normal equations to reduce A to the upper 
triangular matrix R, R and S are identical to within roundoff or chopping error 
and exhibit the same sparsity structure. 

Unfortunately, although A may be sparse A r - A will not in general conserve 
sparsity. If the non-null elements of A occur at random locations and A is 
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lOOd per cent dense (0 < d < 1) a simple probability argument shows that 
AT • A fills to a density of mn(l - d2)m. Unless d « 0 the fill-in can approach 
100% even for low d. Because the Cholesky factor S is unique and identical 
with R, this argument remains germane even if one does not explicitly form 
the normal equations but rather uses orthogonal transformations. Fortunately, 
with astrometric data the unknowns tend to occur in groups within a row of 
A, for example the station coordinates for radio astrometric reductions, and 
also with unknowns common to all of the rows, for example the position of a 
radiosource observed by all, or nearly all, of the stations. Thus, the matrix A 
contains some columns close to 100% dense and other, sparse columns with a 
far from random sparsity structure. Such a structure embodies what is referred 
to in sparse matrix terminology as the "weak Hall property" (Bjorck, 1996) and 
assures that AT • A, although more dense than A, nevertheless remains sparse. 
One should therefore take advantage of the sparsity of AT • A to find a sparse 
Cholesky factor. 

As an example I generated two 30,000x2000 matrices, the first with ele­
ments in positions fulfilling the weak Hall property, the other with elements in 
purely random locations, the strong Hall property. Both matrices were 0.85% 
dense. The first matrix lead to normal equations that were 8.7% dense and 
justify the search for a sparse Cholesky factor, whereas the normal equations for 
the second matrix were 65% dense and scarcely merit the computational labor 
needed to calculate a sparse Cholesky factor that in fact will not be sparse. 

2. A Sparse Cholesky Factor 

Although AT • A may be sparse, S will not be unless the columns of A are 
permuted in such a way as to minimize the fill-in of the Cholesky factor. There 
are many ways to permute the columns of A. Nested dissection (George and 
Liu, 1981) was originally developed for just such problems as those that fulfill 
the conditions of the geodetic problem. To understand nested dissection one 
must delve into graph theory. Tewarson (1973) offers an alternative, "length 
of intersection." Although originally designed to reduce the bandwidth of band 
matrices, I have found that it works as well, usually better, only infrequently 
worse, than nested dissection: on test matrices with sizes from n — 150 up to 
n = 2000, length of intersection generated from 6% to 28% less fill-in than nested 
dissection. 

Tewarson should be consulted for the reasons why length of intersection 
works, which can be understood without recourse to graph theory. Its imple­
mentation on the computer is straightforward. Because A is a sparse matrix it 
becomes necessary to store only its non-null elements Aij along with their i and 
j positions. Assume that these are read from a disk file in the order i,j,Aij. 
To find the permutations of AT • A that lead to a sparse Cholesky factor it is 
unnecessary to work with a full matrix A, only with the i and j positions of the 
non-null elements within A. This permits a considerable savings of memory as 
a data structure such as a bitmap (Branham, 1990) may be used: if an element 
is present at position i,j set the bit to 1, otherwise to 0. See Branham (1990) 
for details of how to implement a bitmap. Languages such as C and C++ are 
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particularly efficient for managing bitmaps because they offer a data structure, 
the bit field, ideal for use with bitmaps. 

Once the bitmap of A is formed, that of AT • A may be calculated easily. 
Having the bitmap of the latter we can implement length of intersection by 
calculating the matrix W = (A • A)2, where W is no longer a bitmap. That 
is, although the elements of A T • A are 0 and 1, the elements of W represent 
the genuine products calculated from the rows and columns of AT • A. Define a 
vector V of dimension n and consisting of one's, V = ( l 1-1 1), and vectors e; of 
dimension n with all null elements except a unit at position i, et- = (0 0- • • 1 • • -0 
0). Now calculate n vectors 

vi = e ; - W - V . (1) 

Define an n-vector ip of the column permutations of A initialized to ip = (1 
2-n). Sort the values of v; in increasing order with the corresponding values of 
ip in the same order. Thus, if Vi were the largest value of the v; and v n the 
smallest, ip would become (n 2- • -1). ip contains the column permutations of 
A that lead to a sparse Cholesky factor. Because Cholesky decomposition is 
stable, pivoting, which could change the ordering in ip and hence the sparsity 
of S, becomes unnecessary. 

3. Dynamic Hashing 

The vector ip can be calculated by working only with bitmaps, but to calcu­
late the actual solution we need to read in the matrix elements Aij themselves. 
To avoid having to physically move data elements, these may be processed as 
^«p(t),ip(j)- One may use normal equations or, to take advantage of the lower 
condition number of A, orthogonal transformations applied directly to the latter 
without the explicit formation of normal equations. For sparse matrix process­
ing the fast Givens transformations (FGT) possesses the advantage of nearly 
the same operation count as the Householder transformation, half that of the 
standard Givens transformation, but, seeing as we process A one element at a 
time, we can take advantage of the sparsity of A to only operate on the matrix's 
non-null elements, unlike the situation with Householder transformations where 
at least a part of an entire column of A must be processed. Nor does the FGT 
require the calculation of square roots. See Gentleman (1974) for details. 

Although the bitmap serves to store the sparsity structure of a matrix, ac­
tual processing of the matrix requires a storage scheme for the elements Aij 
themselves. Storage schemes take many forms. Hashing, a way of rapidly en­
countering information in a table, could be used but suffers drawbacks. Usually 
the table is nothing more than a 1-dimensional array whose elements are referred 
to as "buckets." The information, for our purpose a non-null matrix element 
indexed by a single parameter k = j(j - l ) /2 + i, is entered in the table by a 
transformed key. The original key could be the position of the matrix element 
in the array. The key is transformed to occupy a smaller range so that the ta­
ble will not be excessively large. Because of the transformation more than one 
element can be slated to occupy the same position in the table, called in hash­
ing terminology a "collision." Standard hashing becomes unwieldy for sparse 
matrix processing because fill-in may result in table overflow if linear probing, 
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find the first available empty bucket and deposit the element there, is used to 
resolve collisions or in inefficient operation if chained scheduling, use a linked 
list anchored at the bucket, resolves collisions. 

Dynamic hashing, allowing the table to grow or shrink according to the 
density, avoids this difficulty. For a summary of dynamic hashing see Enbody 
and Du (1988) or Larson (1988). To briefly summarize dynamic hashing let a 
be the load factor, defined as the ratio of the number of elements in the matrix 
to the size of the hash table. For dynamic hashing with chained scheduling the 
hash table will be an array of pointers to the first element in a linked list of 
collided matrix elements with the same key. With a load factor of three there 
will typically be three elements in the list. Thus, we will be able to find a given 
element with an average of 1.5 searches. As fill-in occurs the load factor will 
increase. The hash table will be expanded dynamically, one bucket at a time, 
so that the average load factor remains reasonable. With dynamic hashing the 
entire table need not be reorganized, only a portion of it. To assure a good 
distribution of the keys I follow Knuth's (1973) suggestion that the original key 
should be transformed modulo 4/+3, where / is a prime number. / should be 
selected initially as the prime closest to the size of the hash table divided by the 
load factor. 

Let us look at the space requirements. AT • A is symmetric and S (or 
equivalently R) upper triangular and may be stored as a vector of n(n + l ) /2 
elements indexed by the mapping function k = j(j - 1 ) / 2 + i. If double-precision 
is used the vector needs 8n(n + l) /2 bytes plus 8n bytes for the right-hand-
side. For dynamic hashing let d be the initial density, / the fill-in, and take 
a = 3 for the load factor. The right-hand-side needs 8n bytes. The hash table 
itself is an array of pointers. Pointers usually occupy four bytes. We thus need 
2(d + f)n(n + l ) /3 bytes for the hash table. Each bucket of the hash table 
points to a list of matrix elements, each one of which needs sixteen bytes (eight 
for the element itself, four for k and four for a pointer to the next element in the 
list), for a total of 8n(n + l)(d + / ) for the matrix elements. Dynamic hashing 
requirements are thus 26n(n + l)(d + / ) / 3 + 8n. Let F be a figure of merit given 
by the ratio of the size of the matrix needed by dynamic hashing to that needed 
by a vector; leave the right-hand-side out of consideration. Then 

f = 1 3 ( d + / ) / 6 (2) 

Thus, for dynamic hashing to represent less memory the ratio F should be less 
than unity and from Eq. (2) (d + / ) should be less than 40.15%. Fortunately, 
the exigencies of the geodetic problem frequently comply with this requirement. 

4. Calculating the Solution 

Having S, the least-squares solution follows upon solution of the linear system 

S x = Q T b , (3) 

where Q r represents the accumulated FGT applied to b. To calculate the co-
variance matrix one would have to compute (A • A ) - = S - 1 • S . The inverse 
of a sparse matrix, unfortunately, is usually not sparse. To avoid catastrophic 
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fill-in one may instead generate the covariance matrix one column at a time by 
calculating the solutions of n linear systems. We need an auxiliary n-vector y : 

The n-vectors st- are the columns of the covariance matrix. 
As an example I solved a test problem of size 30,000x2000 with A 0.84% 

dense in 2.5 hours on a 300Mhz Pentium machine with 32 MB of memory using 
the algorithm outlined here whereas the problem could not be solved at all (the 
"out of memory" message) when I used a least-squares algorithm. 

5. Conclusions 

When the requirements of the problem comply with the assumption of A's being 
a sparse matrix fulfilling the weak Hall property, the algorithm presented in this 
paper uses less memory than usual least-squares algorithms. This means that a 
solution, along with its covariance matrix, may be possible that would otherwise 
be impossible or that it may be computed more efficiently. As the density of 
A increases, however, the efficiency of the algorithm decreases. The density 
of the Cholesky factor S should never be greater than 40.15% and for efficient 
operation considerably less. 
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