
Global Astrometr ic Solutions wi th Sparse Matr ix
Techniques

Richard L. Branham, Jr.

Institute Argentino de Nivologia y Glaciologia (IANIGLA), C.C. 330,
5500 Mendoza, Argentina

Abstract. Modern astrometric techniques lead to large, linear systems
solved by the precepts of least-squares. These systems are usually sparse,
and one should take advantage of the sparsity to facilitate their solution.
As long as the matrix A of the equations of condition possesses the weak
Hall property, characteristic of linear systems derived from astrometric
reductions, it is possible to find a sparse Cholesky factor. Before the
equations of condition are accumulated, by use of the fast Givens trans­
formation, a symbolic factorization of A using Tewarson's length of inter­
section technique determines the ordering of the columns of A that result
in low fill-in. The non-null elements are stored in a sparse, dynamic data
structure by use of dynamic hashing. Numerical experimentation shows
that this competes well with alternatives such as nested dissection, and
large, but sparse, linear systems with several thousand unknowns can be
solved in a reasonable amount of time, even on personal computers.

1. Introduction

Modern astrometric techniques lead to large, linear systems solved by the pre­
cepts of least-squares. Examples are global astrolabe reductions, plate overlap
techniques, and radio astrometric reductions. These systems are usually sparse,
and one should take advantage of the sparsity to facilitate their solution. In
fact, a standard technique for symmetric, positive definite matrices, which arise
when the equations of condition are accumulated, and known as "nested dissec­
tion" (George and Liu, 1981), originated over a century ago to solve geodetic
problems (Helmert, 1880). Let A, of size mxn, where m represents the number
of equations and n the number of unknowns, be the matrix of the equations of
condition and b the m-vector of the right-hand-side. If one were to use least-
squares one could form the matrix A • A of the normal equations and then
decompose the normal equations into S T • S, where the Cholesky factor S is
upper triangular. If the normal equations are sparse then processing by use of,
for example, nested dissection produces a sparse Cholesky factor S. If one uses
orthogonal transformations in lieu of normal equations to reduce A to the upper
triangular matrix R, R and S are identical to within roundoff or chopping error
and exhibit the same sparsity structure.

Unfortunately, although A may be sparse A r - A will not in general conserve
sparsity. If the non-null elements of A occur at random locations and A is

127

https://doi.org/10.1017/S0252921100000221 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100000221

128 Branham

lOOd per cent dense (0 < d < 1) a simple probability argument shows that
AT • A fills to a density of mn(l - d2)m. Unless d « 0 the fill-in can approach
100% even for low d. Because the Cholesky factor S is unique and identical
with R, this argument remains germane even if one does not explicitly form
the normal equations but rather uses orthogonal transformations. Fortunately,
with astrometric data the unknowns tend to occur in groups within a row of
A, for example the station coordinates for radio astrometric reductions, and
also with unknowns common to all of the rows, for example the position of a
radiosource observed by all, or nearly all, of the stations. Thus, the matrix A
contains some columns close to 100% dense and other, sparse columns with a
far from random sparsity structure. Such a structure embodies what is referred
to in sparse matrix terminology as the "weak Hall property" (Bjorck, 1996) and
assures that AT • A, although more dense than A, nevertheless remains sparse.
One should therefore take advantage of the sparsity of AT • A to find a sparse
Cholesky factor.

As an example I generated two 30,000x2000 matrices, the first with ele­
ments in positions fulfilling the weak Hall property, the other with elements in
purely random locations, the strong Hall property. Both matrices were 0.85%
dense. The first matrix lead to normal equations that were 8.7% dense and
justify the search for a sparse Cholesky factor, whereas the normal equations for
the second matrix were 65% dense and scarcely merit the computational labor
needed to calculate a sparse Cholesky factor that in fact will not be sparse.

2. A Sparse Cholesky Factor

Although AT • A may be sparse, S will not be unless the columns of A are
permuted in such a way as to minimize the fill-in of the Cholesky factor. There
are many ways to permute the columns of A. Nested dissection (George and
Liu, 1981) was originally developed for just such problems as those that fulfill
the conditions of the geodetic problem. To understand nested dissection one
must delve into graph theory. Tewarson (1973) offers an alternative, "length
of intersection." Although originally designed to reduce the bandwidth of band
matrices, I have found that it works as well, usually better, only infrequently
worse, than nested dissection: on test matrices with sizes from n — 150 up to
n = 2000, length of intersection generated from 6% to 28% less fill-in than nested
dissection.

Tewarson should be consulted for the reasons why length of intersection
works, which can be understood without recourse to graph theory. Its imple­
mentation on the computer is straightforward. Because A is a sparse matrix it
becomes necessary to store only its non-null elements Aij along with their i and
j positions. Assume that these are read from a disk file in the order i,j,Aij.
To find the permutations of AT • A that lead to a sparse Cholesky factor it is
unnecessary to work with a full matrix A, only with the i and j positions of the
non-null elements within A. This permits a considerable savings of memory as
a data structure such as a bitmap (Branham, 1990) may be used: if an element
is present at position i,j set the bit to 1, otherwise to 0. See Branham (1990)
for details of how to implement a bitmap. Languages such as C and C++ are

https://doi.org/10.1017/S0252921100000221 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100000221

Global Astrometric Solutions 129

particularly efficient for managing bitmaps because they offer a data structure,
the bit field, ideal for use with bitmaps.

Once the bitmap of A is formed, that of AT • A may be calculated easily.
Having the bitmap of the latter we can implement length of intersection by
calculating the matrix W = (A • A)2, where W is no longer a bitmap. That
is, although the elements of A T • A are 0 and 1, the elements of W represent
the genuine products calculated from the rows and columns of AT • A. Define a
vector V of dimension n and consisting of one's, V = (l 1-1 1), and vectors e; of
dimension n with all null elements except a unit at position i, et- = (0 0- • • 1 • • -0
0). Now calculate n vectors

vi = e ; - W - V . (1)

Define an n-vector ip of the column permutations of A initialized to ip = (1
2-n). Sort the values of v; in increasing order with the corresponding values of
ip in the same order. Thus, if Vi were the largest value of the v; and v n the
smallest, ip would become (n 2- • -1). ip contains the column permutations of
A that lead to a sparse Cholesky factor. Because Cholesky decomposition is
stable, pivoting, which could change the ordering in ip and hence the sparsity
of S, becomes unnecessary.

3. Dynamic Hashing

The vector ip can be calculated by working only with bitmaps, but to calcu­
late the actual solution we need to read in the matrix elements Aij themselves.
To avoid having to physically move data elements, these may be processed as
^«p(t),ip(j)- One may use normal equations or, to take advantage of the lower
condition number of A, orthogonal transformations applied directly to the latter
without the explicit formation of normal equations. For sparse matrix process­
ing the fast Givens transformations (FGT) possesses the advantage of nearly
the same operation count as the Householder transformation, half that of the
standard Givens transformation, but, seeing as we process A one element at a
time, we can take advantage of the sparsity of A to only operate on the matrix's
non-null elements, unlike the situation with Householder transformations where
at least a part of an entire column of A must be processed. Nor does the FGT
require the calculation of square roots. See Gentleman (1974) for details.

Although the bitmap serves to store the sparsity structure of a matrix, ac­
tual processing of the matrix requires a storage scheme for the elements Aij
themselves. Storage schemes take many forms. Hashing, a way of rapidly en­
countering information in a table, could be used but suffers drawbacks. Usually
the table is nothing more than a 1-dimensional array whose elements are referred
to as "buckets." The information, for our purpose a non-null matrix element
indexed by a single parameter k = j(j - l) /2 + i, is entered in the table by a
transformed key. The original key could be the position of the matrix element
in the array. The key is transformed to occupy a smaller range so that the ta­
ble will not be excessively large. Because of the transformation more than one
element can be slated to occupy the same position in the table, called in hash­
ing terminology a "collision." Standard hashing becomes unwieldy for sparse
matrix processing because fill-in may result in table overflow if linear probing,

https://doi.org/10.1017/S0252921100000221 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100000221

130 Branham

find the first available empty bucket and deposit the element there, is used to
resolve collisions or in inefficient operation if chained scheduling, use a linked
list anchored at the bucket, resolves collisions.

Dynamic hashing, allowing the table to grow or shrink according to the
density, avoids this difficulty. For a summary of dynamic hashing see Enbody
and Du (1988) or Larson (1988). To briefly summarize dynamic hashing let a
be the load factor, defined as the ratio of the number of elements in the matrix
to the size of the hash table. For dynamic hashing with chained scheduling the
hash table will be an array of pointers to the first element in a linked list of
collided matrix elements with the same key. With a load factor of three there
will typically be three elements in the list. Thus, we will be able to find a given
element with an average of 1.5 searches. As fill-in occurs the load factor will
increase. The hash table will be expanded dynamically, one bucket at a time,
so that the average load factor remains reasonable. With dynamic hashing the
entire table need not be reorganized, only a portion of it. To assure a good
distribution of the keys I follow Knuth's (1973) suggestion that the original key
should be transformed modulo 4/+3, where / is a prime number. / should be
selected initially as the prime closest to the size of the hash table divided by the
load factor.

Let us look at the space requirements. AT • A is symmetric and S (or
equivalently R) upper triangular and may be stored as a vector of n(n + l) /2
elements indexed by the mapping function k = j(j - 1) / 2 + i. If double-precision
is used the vector needs 8n(n + l) /2 bytes plus 8n bytes for the right-hand-
side. For dynamic hashing let d be the initial density, / the fill-in, and take
a = 3 for the load factor. The right-hand-side needs 8n bytes. The hash table
itself is an array of pointers. Pointers usually occupy four bytes. We thus need
2(d + f)n(n + l) /3 bytes for the hash table. Each bucket of the hash table
points to a list of matrix elements, each one of which needs sixteen bytes (eight
for the element itself, four for k and four for a pointer to the next element in the
list), for a total of 8n(n + l)(d + /) for the matrix elements. Dynamic hashing
requirements are thus 26n(n + l)(d + /) / 3 + 8n. Let F be a figure of merit given
by the ratio of the size of the matrix needed by dynamic hashing to that needed
by a vector; leave the right-hand-side out of consideration. Then

f = 1 3 (d + /) / 6 (2)

Thus, for dynamic hashing to represent less memory the ratio F should be less
than unity and from Eq. (2) (d + /) should be less than 40.15%. Fortunately,
the exigencies of the geodetic problem frequently comply with this requirement.

4. Calculating the Solution

Having S, the least-squares solution follows upon solution of the linear system

S x = Q T b , (3)

where Q r represents the accumulated FGT applied to b. To calculate the co-
variance matrix one would have to compute (A • A) - = S - 1 • S . The inverse
of a sparse matrix, unfortunately, is usually not sparse. To avoid catastrophic

https://doi.org/10.1017/S0252921100000221 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100000221

Global Astrometric Solutions 131

fill-in one may instead generate the covariance matrix one column at a time by
calculating the solutions of n linear systems. We need an auxiliary n-vector y :

The n-vectors st- are the columns of the covariance matrix.
As an example I solved a test problem of size 30,000x2000 with A 0.84%

dense in 2.5 hours on a 300Mhz Pentium machine with 32 MB of memory using
the algorithm outlined here whereas the problem could not be solved at all (the
"out of memory" message) when I used a least-squares algorithm.

5. Conclusions

When the requirements of the problem comply with the assumption of A's being
a sparse matrix fulfilling the weak Hall property, the algorithm presented in this
paper uses less memory than usual least-squares algorithms. This means that a
solution, along with its covariance matrix, may be possible that would otherwise
be impossible or that it may be computed more efficiently. As the density of
A increases, however, the efficiency of the algorithm decreases. The density
of the Cholesky factor S should never be greater than 40.15% and for efficient
operation considerably less.

References

Bjorck, A., 1996, Numerical Methods for Least Squares Problems, Philadelphia:
SIAM, 162-163.

Branham, Jr., R.L., 1990, Scientific Data Analysis, New York: Springer, Sec.
3.3.1.

Enbody, R.J. & Du, H.C., 1988, A CM Computing Surveys, 20, 85.
Gentleman, W.M., 1974, App. Stat, 23, 448.
George, A. h Liu, J.W., 1981, Computer Solution of Large Sparse Positive Def­

inite Systems, Englewood Cliffs, New Jersey: Prentice-Hall.
Helmert, F.R., 1880, Die Mathematischen und Physikalishen Teorien der hoheren

Geodasie, 1 Teil, Leipzig: Teubner.
Knuth, D., 1973, The Art of Computer Programming, Vol. 3, Sorting and Search­

ing, Reading, Mass.: Addison Wesley, Sec. 6.4, 5.2.1.
Larson, P.A., 1988, Comm. ACM, 31 , 446.
Tewarson, R.P., 1973, Sparse Matrices, New York: Academic, Sec. 2.5, 3.2.

https://doi.org/10.1017/S0252921100000221 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100000221

