J. Austral. Math. Soc. (Series A) 30 (1980), 50-54

ORTHODOX SEMIRINGS AND RINGS

JOHN ZELEZNIKOW

(Received 3 April 1979)

Communicated by T. E. Hall

Abstract

We show that in a regular ring $(R, +, \cdot)$, with idempotent set E, the following conditions are equivalent: (i) $\forall e, f \in E$, $(e \cdot f = 0 \Rightarrow f \cdot e = 0)$.

(ii) (R, \cdot) is orthodox.

(iii) (R, \cdot) is a semilattice of groups.

These and other conditions are also considered for regular semigroups, and for semirings $(S, +, \cdot)$, in which (S, +) is an inverse semigroup. Examples are given to show that they are not equivalent in these cases.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 16 A 78; secondary 20 M 25.

1. Preliminaries

RESULT 1. (Chaptal (1966), Proposition 1.) For a ring $(R, +, \cdot)$, the following conditions are equivalent.

- (i) (R, \cdot) is a union of groups.
- (ii) (R, \cdot) is an inverse semigroup.
- (iii) (R, \cdot) is a semilattice of groups.

DEFINITION 2. A triple $(S, +, \cdot)$ is a semiring if S is a set, and $+, \cdot$ are binary operations satisfying

- (i) (S, +) is a semigroup,
- (ii) (S, \cdot) is a semigroup,

(iii) $a \cdot (b+c) = a \cdot b + a \cdot c$, $(a+b) \cdot c = a \cdot c + b \cdot c$, for all $a, b, c \in S$.

For any $a, b \in S$, we frequently denote $a \cdot b$ by ab.

DEFINITION 3. An element $a \in S$ is an additive zero if x + a = a + x = x for all $x \in S$. An element $b \in S$ is a multiplicative zero if $x \cdot b = b \cdot x = b$ for all $x \in S$. If $(S, +, \cdot)$ does not have an element which is both an additive and a multiplicative zero, form $S^0 = S \cup \{0\}$, where x + 0 = 0 + x = x, $x \cdot 0 = 0 \cdot x = 0$ for all $x \in S$. We shall henceforth assume $(S, +, \cdot)$ has an element 0 which is both an additive and a multiplicative zero.

DEFINITION 4. In a semiring $(S, +, \cdot)$, we put $E^{[+]} = \{x \in S: x + x = x\}$ and $E^{[\cdot]} = \{e \in S: e \cdot e = e\}$ and for each $x \in S$ we define $V^{[+]}(x) = \{a \in S: x + a + x = x \text{ and } a + x + a = a\}$ and $V^{[\cdot]}(x) = \{b \in S: x \cdot b \cdot x = x \text{ and } b \cdot x \cdot x = b\}$. We denote by x'[respectively x^*] an element chosen from $V^{[+]}(x)$ [respectively $V^{[\cdot]}(x)$], when this set is nonempty.

A semiring $(S, +, \cdot)$ is said to be an *additively inverse semiring* if (S, +) is an inverse semigroup.

DEFINITION 5. A semigroup (S, \cdot) is orthodox if it is regular and $E = \{e \in S: e \cdot e = e\}$ is a subsemigroup of S.

We shall require the following results.

RESULT 6. (Grillet (1970), Lemma 2(i).) For any semiring $(S, +, \cdot)$, the set $E^{[+]}$ is an ideal of (S, \cdot) .

RESULT 7. (Karvellas (1974), Theorem 3(ii) and Theorem 7.) Take any additively inverse semiring $(S, +, \cdot)$.

(i) For all $x, y \in S$, $(x \cdot y)' = x' \cdot y = x \cdot y'$ and $x' \cdot y' = x \cdot y$.

(ii) If $a \in aS \cap Sa$ for all $a \in S$ then S is additively commutative (and hence additively a semilattice of commutative groups).

We use the definitions and notation of Clifford and Preston (1961).

2. Orthodox semirings

LEMMA 8. Take any regular semigroup (S, \cdot) with zero 0 and set of idempotents E. Then the following conditions are equivalent.

(i) $\forall e \in E, \forall x \in S, (e \cdot x = 0 \Rightarrow x \cdot e = 0).$

(ii) $\forall n \in \mathbb{N}, \forall x \in S, (x^n = 0 \Rightarrow x = 0).$

(iii) $\forall x \in S$, $(x^2 = 0 \Rightarrow x = 0)$.

(iv) $\forall x, y \in S$, $(x \cdot y = 0 \Rightarrow y \cdot x = 0)$.

PROOF: (i) \Rightarrow (ii). Take any $x \in S$ with $x^n = 0$ for some n > 1. Take any inverse x^* of x in S. Then $x^* x^n = 0$ and so $(x^* x) x^{n-1} = 0$. But $x^* x \in E$ and thus $x^{n-1}(x^* x) = 0$.

Hence $x^{n-2}(x \cdot x^* \cdot x) = 0$, i.e. $x^{n-1} = 0$; and continuing this process, we have x = 0. (iii) \Rightarrow (iv). Take any $x, y \in S$ with xy = 0. Then $(yx)^2 = y(xy)x = y \cdot 0 \cdot x = 0$ and thus yx = 0. So (i), (ii), (iii), (iv) are equivalent.

THEOREM 9. Let $(S, +, \cdot)$ be any additively inverse semiring in which (S, \cdot) is regular. The the following conditions are equivalent.

(i) $\forall e, f \in E^{[1]}, (e \cdot f = 0 \Rightarrow f \cdot e = 0).$ (ii) $\forall e \in E^{[1]}, \forall x \in S, (e \cdot x = 0 \Rightarrow x \cdot e = 0).$

- (iii) $\forall n \in \mathbb{N}, \forall x \in S, (x^n = 0 \Rightarrow x = 0).$
- (iv) $\forall x \in S$, $(x^2 = 0 \Rightarrow x = 0)$.
- (v) $\forall x, y \in S, (x \cdot y = 0 \Rightarrow y \cdot x = 0).$

Further, each is implied by

(vi) (S, \cdot) is orthodox.

PROOF: (i) \Rightarrow (ii). Take $e \in E^{[1]}$, $x \in S$, with $e \cdot x = 0$. Then

$$(e + (xe)')^{2} = e(e + (xe)') + (xe)'(e + (xe)')$$

= $e \cdot e + (exe)' + (xee)' + xexe$
= $e + 0' + (xe)' + 0$
= $e + (xe)'.$

Thus $e + (xe)' \in E^{[1]}$. Now $(e + (xe)')(xx^*) = exx^* + (xexx^*)' = 0 + 0' = 0$. But e + (xe)', $xx^* \in E^{[1]}$, so $(xx^*)(e + (xe)') = 0$ and thus $xx^*e + (xx^*xe)' = 0$. Hence $xx^*e + (xe)' = 0$; and so $xx'*e + (xe)' + xx^*e = xx^*e$, and $(xe)' + xx^*e + (xe)' = (xe)'$. Since (S, +) is inverse, $xx^*e = xe$. Now $exx^* = 0$ and thus $xe = xx^*e = 0$. Hence by Lemma 8, we have that (i), (ii), (iii), (iv), (v) are equivalent.

(vi) \Rightarrow (i). Take $e, f \in E^{[1]}$ with $e \cdot f = 0$. Since $f \cdot e \in E^{[1]}$.

$$(fe) = (fe)^2 = f(ef)e = f \cdot 0 \cdot e = 0.$$

EXAMPLE 10. In an arbitrary regular semigroup (S, \cdot) , condition (i) of Theorem 9 does not imply condition (ii), and (S, \cdot) being orthodox does not imply condition (ii). To see this, we may take any Brandt semigroup $S = \mathcal{M}^0(G, I, I, \Delta)$ in which $|I| \ge 2$.

EXAMPLE 11. Let $(S, +, \cdot)$ be a regular ring in which (S, \cdot) is not orthodox. Put $T = S \cup \{a\}$, where $a \notin S$ and define s + a = a + s = s, a + a = a, $s \cdot a = a \cdot s = a = a \cdot a$, for all $s \in S$. Then $(T, +, \cdot)$ is a semiring in which (T, +) is inverse, (T, \cdot) is regular, and a is the additive and multiplicative zero of T. Hence $(T, +, \cdot)$ satisfies condition (i) of Theorem 9, but is not orthodox.

53

3. Orthodox rings

DEFINITION 12. A semigroup (S, \cdot) is a *ring-semigroup* if there exists a binary operation + on S such that $(S, +, \cdot)$ is a ring.

THEOREM 13. In a regular ring-semigroup (S, \cdot) , the following are equivalent.

- (i) (S, \cdot) is orthodox.
- (ii) $\forall e, f \in E, (e \cdot f = 0 \Rightarrow f \cdot e = 0).$
- (iii) $\forall e \in E, \forall x \in S, (e \cdot x = 0 \Rightarrow x \cdot e = 0).$
- (iv) $\forall n \in \mathbb{N}, \forall x \in S, (x^n = 0 \Rightarrow x = 0).$
- (v) $\forall x \in S, (x^2 = 0 \Rightarrow x = 0).$
- (vi) $\forall x, y \in S, (x \cdot y = 0 \Rightarrow y \cdot x = 0).$
- (vii) (S, \cdot) is inverse.

PROOF. (vi) \Rightarrow (vii). Take any $e, f \in E$. Then e(f - ef) = 0 and (f - fe)e = 0. So (f - ef)e = 0 and e(f - fe) = 0. Thus fe = efe = ef. Since any inverse semigroup is orthodox, the theorem now follows from Theorem 9.

The above theorem does not hold if $(S, +, \cdot)$ is a semiring in which (S, +) is inverse [orthodox] and (S, \cdot) is orthodox [inverse], as is shown by the following examples.

EXAMPLE 14. (i) Let (S, +) be a semilattice with $|S| \ge 2$ and define $x \cdot y = x$ for all $x, y \in S$. Then $x \cdot (y+z) = x$ and $x \cdot y + x \cdot z = x + x = x$. Also $(x+y) \cdot z = x + y$ and $x \cdot z + y \cdot z = x + y$. So $(S, +, \cdot)$ is a semiring in which (S, +) is inverse and (S, \cdot) is othodox (in fact a left zero band) but not inverse.

(ii) Let $(S \setminus \{0\}, \cdot)$ be a group and define x + y = x for all $x, y \in S$. Then $x \cdot (y+z) = x \cdot y$ and $x \cdot y + x \cdot z = x \cdot y$. Also $(x+y) \cdot z = x \cdot z$ and $x \cdot z + y \cdot z = x \cdot z$. Hence $(S, +, \cdot)$ is a semiring in which this time (S, \cdot) is inverse and (S, +) is orthodox (in fact a left zero band) but not inverse.

REMARK 15. From Result 1 and Theorem 13, the following are equivalent for a regular ring-semigroup.

- (i) $\forall e, f \in E, (e \cdot f = 0 \Rightarrow f \cdot e = 0).$
- (ii) (S, \cdot) is orthodox.
- (iii) (S, \cdot) is inverse.
- (iv) (S, \cdot) is a semilattice of groups.

Since any ring $(S, +, \cdot)$ satisfying (iv) is regular and has no nonzero nilpotent elements, by Kovacs (1956), Theorem 2, the conditions (i)–(iv) are also equivalent to the condition

(v) R is a subdirect sum of division rings.

From Result 1, for any ring $(R, +, \cdot)$, if (R, \cdot) is a union of groups then (R, \cdot) is a semilattice of groups. In Example 14(i), the semiring $(S, +, \cdot)$ has (S, +) a semilattice,

and (S, \cdot) both orthodox and a union of groups. However, (S, \cdot) is not a semilattice of groups.

References

N. Chaptal (1966), 'Anneaux dont le demi-groupe multiplicatif est inverse', C. R. Acad. Sci. Paris Sér. A-B 262, 274–277.

A. H. Clifford and G. B. Preston (1961), The algebraic theory of semigroups, Vol. I (American Mathematical Society. Mathematical Surveys 7).

M. O. P. Grillet (1970), 'Subdivision rings of a semiring', Fund Math. 67, 67-74.

P. H. Karvellas (1974), 'Inversive semirings', J. Austral. Math. Soc. 18, 277-287.

L. Kovacs (1956), 'A note on regular rings', Publ. Math. Debrecen 4, 465-468.

Department of Mathematics Monash University Clayton, Victoria 3168 Australia

Author's current address: Department of Mathematical Sciences Northern Illinois University De Kalb, Illinois 60115 U.S.A.