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Rational Function Operators from Poisson
Integrals

Xu Xu and Laiyi Zhu

Abstract. In this paper, we construct two classes of rational function operators using the Poisson
integrals of the function on the whole real axis. The convergence rates of the uniform and mean
approximation of such rational function operators on the whole real axis are studied.

1 Introduction

Let R be the whole real axis. The collection of all continuous functions on R is denoted
by C(R). Let C.(R) consist of all f € C(R) whose support is compact. We denote by
C*(R) the space consisting of all functions f € C(R) with finite limit lim,_, o f(x)
and norm | f| c(ry = sup,.g |f(x)|, and we denote by Cy(R) the space that consist of
all functions f € C*(R) withlim,_,+ f(x) = 0.If0 < p < +o0 and f(x) is measurable
on R, let L?(R) consist of all f(x) for which

Il = { [ 1rcorrax)”,

is finite, and call | f|, the norm of f € LP(R) (although | f|, = 0 only implies that
f = 0 almost everywhere, not that f = 0).
For f € C*(R), we define the modulus of continuity of f(x) as

o(fin)= swp [f(x) - ("),

|x"—x""|<t
x',x"eR

and for f € LP(R) (1< p < +00), we define the integral modulus of continuity of f(x)
as

w(f,t)p=|§1u£{fRf(x+h)—f(x)|de}‘l’.

It follows from the uniform continuity of f € C*(R) that the modulus of continuity
of f(x) has the following properties (see[1, p. 41]):

(@) limo+ w(f,t) = w(f,0) = 0;
(b) w(f,t) is non-negative and non-decreasing on [0, +00);
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(©)
w(f, 1 +t)<w(f.t)+w(f, ), f1, b € [0, +00),

A o(f M) < (1+ Va(f, 1), At e0,+00);

(d) w(f,t) is continuous on [0, +co0).
By Riesz’s theorem, if f € LP(R) (1 < p < +00), then w(f, t),, the integral modulus
of continuity of f(x), also has the properties (1.1).

In this paper we consider problems about uniform and mean rational approxima-
tion of functions on R. A complete survey of results on rational approximation can be
found in [3-5]. As far as we know, there has been little discussion of rational approx-
imation on the whole real axis.

In [4], there are the following two theorems (see [4, Theorem 1.6.1, p. 11 and Theo-
rem 1.9.1, p. 20]).

Theorem 1.1  Assume R, (x) € C*(R) is a sequence of rational functions
_ P,(x) _ Yhoo apxk
Qu(x)  Xioo bixk’
where ay, by are real numbers, k = 0,1,...,n, and b, # 0, Q,(x) has no real zeros.

If this sequence converges uniformly on R, then the limit function is in C*(R), and for
any f(x) € C*(R), there exists a sequence of the rational functions (1.2) such that

lim |f(x) = Ru(x) ey = 0.

(12) R,(x)

Theorem 1.2 If0 < p < +oo, then the class L? (R) consists of those functions and only
those that are the limits of sequences, convergent in mean, of the rational functions (1.2)
in LP(R), i.e., sequence of rational functions such that

fR |[Rm(x) = Ry(x)|Pdx -0 (m,n— o),

HRn HLP(R) < +00.

Furthermore, the ideas used in the proofs of Theorem 1.1 and Theorem 1.2 resemble
those of Lebesgue. Thus it is natural to construct a class of rational function operators
approximating well the functions on R. Motivated by the convergence properties of
the Poisson integral of the functions on R (see [2, Theorem 3.1, p. 15]), we construct
the following two classes of rational function operators.

For fixed y > 0 and positive integer n, we define the rational function operators
R, (f,y;x)and R;(f, y;x) as follows:

13) R,,(f,y;x)z% S f(h), for f(x) € Co(R),

kemer i3 (X = tr,i)? + y?

1 n n y bk,i
14) R(f,yx)=— VIR ) t)dt,
(1.4) n(f>y5x) nkg,;m; (x - t5i)2 + 2 fak,i f()

for f(x) € L?(R), p € [1, +00),
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where

i—1 i 2i—1
ak),':k—1+7 bk’i:k—l-l—*, tk),‘Zk—1+ 5
n n 2n

i=1,2,....,n k=-n+1,...,-1,0,1,2,...,n.

Our main results are as follows.

Theorem 1.3 If f(x) € C*(R) with lim,_c f(x) = ¢, then for any decreasing se-
quence {8, } with lim,_,o 8, = 0, there is an increasing positive integer sequence

1.5) N, = max{ [6,°]1+1,[X,]+ 1} ,

where [ x] denotes the greatest integer < x, and

(L6) X = inf{Xo > 0|[f(x) - c| < w(f, ), as |x| > Xo}
such that

|RNn(f— c,éfl;x) - f(x)+ c| < C[én +w(f, 8n)]
holds for every x € R and some C > 0 that is independent of n.

Theorem 1.4 If f(x) € LP(R), p € [1, +00), then for any positive integer n, we have
” R,(f,n™%5x) _f(x)H Lr(R) S CP[‘S“)P +o(f, 6ﬂ,P)P] >
where
- -3 pax)?
(1.7) On,p —max{ ns, (len |f ()] dx) },
and C,, is a positive constant depending on p, independent of n.

2 The Proof of Theorem 1.3

Let

1y
P(t):;t2+y2

be the Poisson kernel for the upper half plane, where y > 0, t € R. The Poisson kernel
P,(t) > 0 and satisfies (see [2, p. 11])

2.1) fRPy(t)dt -1

If f(x) € C*(R), we define its Poisson integral as

(22) JRCEDNOE l[:" %f(t)dt.

m —1)2 + y?
Proof of Theorem 1.3 If f(x) € C*(R) and F(x) := f(x) — ¢ € Co(R), then
w(F,t) =w(f,t)
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Without loss of generality, we can assume that f(x) € Co(R). It follows from (1.3)
and (2.2) that for fixed y > 0,

(2.3)

| Ry, (f> y3%) = ()]

1 N, N, Tn , k d
<= B A o
nk=zN:,,+1,Z=;fjvnl (x - )2+y Sf (i) - = —k+1—t)2+y2f( N )‘

1
ﬂ/|r|zwnW|f(t)ldt+—/m
=81+ 8, + Ss.

From the definitions (1.5) and (1.6), if |t| > N, then |f(#)| < w(f, 8,). Therefore,
using (2.1), we have

(2.4) S5 < w(f, 8n).
We shall estimate S3. Setting M = sup,. ., | f(x)], by (2.1), we have
1
2.5 S =*f t t)|dt
(25) : |tl>ft2+y|f(x+) f®)]
1
+7A|<f o S| f(x+ 1) - f(1)]dt
4M
< —( = -arctan — ,
p- (2 arcanﬂ) +w(f,\/7)
4M
< —Vrra(fiVy).
To estimate S, we write
B S— k-1+t¢
’(x—t i)+ f(k) (x—k+1- t)2+yf( +)‘

: (x—k+1y t)2+y2|f(k_1+t)_f (ti,1)|

t+k-1-til|(x—k+1—-1t)+ (x—tg,;
£ () |)’| zk € ) (2 k )|
ki) + Y7 ][(x —k+1-1)>+y?]
Since t € [’N;:, Nin], tei=k an’We have
1 J
I ; < y ——
k’l_w(f 2N,,>(x—k+1—t)2+y2
+My [(x—k+1-1t)+ (x—tr;)]
2N, [(x =t )2+ Y2 ][(x =k +1-1)2 + y2]’
Noting that for any ¢ € [N I\}]
—k+1-t )| 2dx—tigl+ |t k1t
(2.6) |(x =k + );L(x2 ki)l 2 k,|+|k,2 2+ |
(x—tri)?+y (x—tri)*+y
1 1
Sfﬁ_ia
¥y 2N,y?
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we obtain
1 2N,y +1 J
Ik,iS[w(f,m)+ 2N2y2 M](x k+1-1)2+y
Therefore,
1 2N,y +1 l i NfN*
2.7) Sls[w(f, n) 4N2y2 ﬂ EN: Z:; 2 (x- k+1 t)%+ yzdt
] L 2Naye 1/N :
(o) ol L Ghrt
2N,,y+1
Sw(f’ ) ANZy?

The inequalities (2.4)-(2.7) when used in (2.3) yield

IR, (5 = £ gy = 00 80) + 0 53)
W(f.VF)+ T
Finally, we take y = 6%, and obtain, using (1.5),
| R, (f 035) = F()]| ¢y < CLOw + (£, 80) ],
where C > 0 is independent of n.
This completes the proof of Theorem 1.3. ]

Remark 2.1 For fo(x) = %IXI € Co(R), we have w(fo, t) < f, and taking &, = 1,
we obtain N,, = #® + 1in (1.5), and
C

S )
CR) n

[0 o) -]

where C > 0 is independent of n.

Remark 2.2 If f(x) € C.(R), for example the support of f(x) is [a, b], we have
X, < max{|a|,|b|} in (1.6), and taking 8, = n”3, we obtain N,, = n + 1 in (L5), for
large n and

2

| R (fomEsx) = £ < CIn75 + ()],

C(R)

where C > 0 is independent of n.
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The Proof of Theorem 1.4

Proof of Theorem 1.4 If f(x) € LP(R), p € [1,+0c0), it follows from (1.4) that for
fixed y > 0,

01 850:50)-10)
D B e e eI O))

ﬂk——n+lz 1 = Ik )2+)/ (x
1
+= lt‘an|f(t)|dt+‘f(x) fm f()at]

. * *
= Sp1 + sz + Sp3

For every x € R,

1
62 8,= [ #mm

4

1 )
= — ¢ dt _1 /
T A+x\>n 2ty 2|f( x)| . 2

where E = {(x,t) € R?| |t + x| > n} and yg(x, t) is the characteristic function of the
set E.
Noting that for every t € R,

[ £+ (0O gy = [ UG+ DI Die ()

- [ ords [ il

Thus, from the Minkowski inequality for integrals, by (2.1), (1.7), and (3.2), we find

1
(3.3) 1S5, Lo ax)y < /R e ”f(x+ Hxe(xt)| Lo(dx) dt < 8y p.

Next, the Minkowski inequality for integrals and (2.1) yield

00 ISl ={ f| 2 [ 22Ut-0 - s ax)’

t2+y

<f[ [ 2= -] }%

1 Rt2+y f|f 1) )|de] dt
nfRyw(f 1Dy 4, g/0+°° yolfstyp o

2+ y? T 12+ y?

VY >t too b
:gf 7 yw(f )deg/ yolfstyp o

m Jo t2 + y? nJdyy t2+y?

<ol Lflurco( 5 ~arcan =)

<w(fo/7)p + %Hfllu(R)\/?-
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It is similar to (2.6) that

L 1,1 141

1/1 1 1
= — t)|dt.
Zn(y 2ny) ./Rl‘z+y|f(x+ )

Therefore, (2.1), (3.5), and the Minkowski 1nequahty for integrals yield

3.6 S5 <
(3.6) 1850 ra0 < (5, + 0 —=) Il

The inequalities (3.3), (3.4), and (3.6) when used in (3.1) imply

[R50 = F O iy < (5,

oy e L

+ ;Hf”LP(R)\/y+ On,p+ @(f5/7)p-
Finally, we take y = n™ 3, and obtain, using (1.7),
| Ry (fn™55x) = f(x)] (R) S CplOnp + @(f8np)p)s

where C,, is a positive constant depending on p, independent of n.
This completes the proof of Theorem 1.4. ]
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