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§1. Introductory.

Hermite, in 1864 (Comptes Bendus, vol. 58) introduced into
analysis the polynomials defined by the relation

•-!?— d" / -5

where n is a positive integer. He showed that they satisfied the
differential equation

dx* dx

that they were orthogonal functions, and that an arbitrary
function f{x) could be expanded in the form

Five years later, Weber (Math. Ann., vol. 1) in discussing the
partial differential equation

32u d*u

reduced it to the type

where Z is a quadratic function of z, and showed that the functions
of the parabolic cylinder were solutions of this equation. Various
series which satisfy this equation have been found by Baer in 1883
(Dissertation, Ciistrin), and by Haentzschel in 1888 (Zeitschrift fur
Mathematik, vol. 33). In 1898, Markoff (Bulletin de I'Academie de
St Pitersbourg, vol. 9) discusses the roots of the equation
x> d1
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The next advance was made by E. T. Whittaker in 1902
(Proc. London Math. Soc, vol. 35), who showed that Weber's
functions were the same as Hermite's polynomials, and extended
the latter to the case when n is not an integer. He solved the
equation of the parabolic cylinder by means of a family of definite
integrals, and showed that such previous results as Hermite's
polynomials were but special cases of these. One of these definite
integrals was defined as the standard solution of the equation,

ldt,

S being a contour in the <-plane beginning and ending at infinity
and encircling the origin. When the real part of n is negative,
Dn(a) can be expressed in the form

The general solution of the differential equation of the parabolic
cylinder was shown to be

where a and b are arbitrary constants. Recurrence formulae were
also established, and the asymptotic expansion of Dn(z) for large
real positive values of z determined.

Adamoff, in 1906 (Annales de I'Institut Poly technique de
St.-Pe'tersbourg, vol. 5) discusses expansions of Dn(s) when z is
real and n is a large positive integer. In the following year.
Myller-Lebedeff (Math. Ann., vol. 64), in discussing integral
equations, introduces the partial differential equation

32M du
dtf'Tt ~ '

and determines as solutions a series of polynomials Vn(x, t), which
are homogeneous in x and J t, and which are intimately connected
with the polynomials of Hermite.

In 1910, G. N. Watson (Proc. London Math. Soc, Series 2,
vol. 8) obtains the asymptotic expansion of Dn(z) when n is large
and real and z is complex. He evaluates certain contour-integrals
involving Dn(z), and determines the expansion of an arbitrary
function in a series of the functions DJz).
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Lastly, H. E. J. Curzon, in 1913 (Proc. London Math. Soc.,
Series 2, vol. 12) establishes the connection between the Hermite
functions of the first and second kind, viz. Dn(z) and D_n_,(t2), and
the Legendre functions of the first and second kind. This is done
by means of relations involving integrals analogous to those con-
necting the Bessel and Legendre functions.

§ 2. Contents of Paper.

In the present paper two independent series-solutions of the
differential equation of the parabolic cylinder are expressed as
definite integrals, and DJz) expressed in terms of these by means
of a linear relation of which the values of the constants are deter-
mined. Recurrence formulae connecting these constants are then
established. Next, the solution of the parabolic cylinder equation
is represented as the solution of a homogeneous integral equation. ,
The auto-functions of this integral equation are then shown to be
given by the functions DB(z). Lastly, certain values of Dn(z) are
given, which values were computed by means of the above relation
involving T)n(e) and the series-solutions of the equation; and, in
addition, graphs illustrating Dn(z) for different values of n are
appended.

§ 3. Series-solutions expressed as Definite Integrals.

If we take Weber's differential equation for the parabolic
cylinder, viz.,

where Z is a quadratic function of z, and write it in the form
adopted by Professor Whittaker, viz.,

% ¥)y=o (i)

we get, as he points out, the two independent solutions

2n + l W + k + 7and , _ _ _ , = + _ _ , ._ . . . .

https://doi.org/10.1017/S0013091500034970 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500034970


These two series adopt a more symmetrical form if we make
the substitution

This effected, (1) becomes
d?u du
dl?~Zcfc

and the two series-solutions become
-te?Y, n , n(»-2) . w(n-2)(w-4) .

and

e" i 2 l [*"!rr2 a + ( M "1 )5 (r"3 ) z 5 - ( M"1 ) ( M 7"!3 ) ( n ""5 ) z 7 + -}
which, for convenience, we shall denote by En(a) and O,,(«)
respectively.

Considering En(z) first, we can represent this as a definite
integral by expressing the various coefficients as P-functions.

Now

« ~"u*cos(c« J u) du

- . . . \du

If we compare this with the corresponding expansion in En(z),

readily find th

Hence we get

we readily find that, for equality, c= J -2 and A = - — - 1.

r
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.-. En(z) =

In an exactly similar fashion, by expanding sin(c'z J u ) in the
integral

e~"M*'sin(c'z \fu)du,
J o

and comparing the result with On(z), we find that

On(z) = e~*z2 e-^w-S-'sinh^ 72M)ef«.

§4. Expression of DJz) in terms of En{z) and 0n(z).

Prom the theory of linear differential equations there must be
a linear relation connecting Dn(z)—the standard solution of the
differential equation in Professor Whittaker's paper—and E,(z)
and On(e) above, say,

where an and bn are functions of n, but, of course, do not involve z.
In order to get this relation, we note that

„ , 1

0 . (8 ) - •(2)

where I E = e-uw-?-1cosh(z J2u)du
J 0

Io = e~"u~^~1smh(z J2u)du
Jo
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If in I , and Io we substitute <2 = 2z°u, we get

IB = 2?+'
J

and I0

whence I E - I o = 2? + v[ e~t~i{t*lz2)t-«-1dt
Jo

Using (2) above, we get the relation

r(-i^)
^.(«) - n

V
+1 0 . (8 ) .

2?+T( - TO) 2 ~ r ( - n)

Putting » = - — in the identity
2

we get the simpler form

which gives us the desired relation.

§ 5. Recurrence formulae connecting an and bn.

aK and bn are not independent, for if we substitute

for DJz) in the recurrence formula
DJLz) -zD^x(z) + (n - 1 ) D ^ « ) - 0

we get
awE,(a) - *6_10_1(s) + (n - l J a ^ E ^ * )

and
6,0.(8!) - . ^ . B ^ W + (n - l)6^2O_2(a)

each equal to 0, the former being an even function of z and the
latter an odd.
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Substituting in these equations the values of E„(«) and OJz), 
and equating the several coefficients to zero, we have these relations 
connecting a„ and bn, 

a„ + ( n - l)a„_, = 0 
bn + nb^ = 0 
«» + V-i = o. 

§ 6. Expression of the solution of the parabolic-cylinder equation 
as the solution of a homogeneous integral equation. 

Reverting to the original form of the equation 

£g + ( n + i _ i* . ) y = o (i) 

if we assume 

y=J« 
where <f> is a function of t, we have 

le^t^t. 

Now 

ty^ je^ztydt 

dt 

Since the functions inside the square brackets can be made to 
vanish by suitable choice of limits, we have finally 

z=y= - J 

Substituting in (1), we get for that equation 

whence <f> must satisfy the differential equation 

or, * being substituted for 2t, <f> must satisfy 

which is obviously our initial equation (1). 
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If we call the solution of this last equation <f> = yjs), then we
get as the solution of (1)

"Ja
Limits of integration that satisfy the conditions are obviously
- » and + oo, so that we have

y«(*) = K\ «2 y»(*)ds.
J — oo

§ 7. Determination of A.n in the integral equation by means of
Fourier's Double-Integral Theorem.

From the equation

y»(«) = * J e° y«(<*)ds

we get

e~yn(u)du
_»

due*iz+u)yn(u)

1 rfsl dwcos 2
 7yn(M)

Now the former of these integrals is equal to

2 d%\ du cos—-—-yn(u)> since cos( - ^) =
J o J —® w

r" r" g
= 4 <& dit cos s(« + tt)2/n(M), on replacing — by

J o J —» 2
Similarly the latter of the integrals vanishes, since

sin( - 6) = - sin#.
Hence

i r" r"
r i y»(z) = 4 ds\ du cos s{z + u)yn(u).

An J 0 J —<o

If we put - z for z, this becomes

r" r"i r" r"

J ds\ du cos «(«-«)y»(u)

r efe I d« coss(z - t*)y,(w).
2 Vol. 32

https://doi.org/10.1017/S0013091500034970 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500034970


10

Now from Fourier's Double-Integral Theorem,

r/(x) - J^ dp J"+" f(p) cos,*(/3 - *)dft

we get ds\ ducoa s(z - u)yn(u) = iryn(z).
Jo J -«

Hence TT2/»( ~ *) = 4""S'»(2;)-

But, as shown in the next paragraph, yn(z) is always either an
odd or an even function of z and is of the form e~$zifjz) where
fjz) is of degree n in z. Therefore

Hence -r-r

so that the homogeneous integral equation may be written in the
form

1 f" Ja.

§8. Identity of Dn(z) and yjz).

We next show that for integral values of n, Dn(«) represents
the auto-functions of the homogeneous integral equation

Consider the case where n is even and positive. Then since
Dn(«) = onEn(z) + 6nOn(z) (see §4), and in this case bn vanishes,
since F(-£>) = «, it will be necessary and sufficient to show that

Now

J _» " J -=o L 2! 4! " j

where 2x = s - iz.
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If we take as the general term zr, where r of course is even, this
will appear in the expansions of (2x + iz)r, (2x + iz)r+i, ... (2x+iz)n.
The terms involving zr therefore are

r\

c

Using the identity

fJ /

we find that the above is equal to

2
v\ v!

r ! 2 !

2 ) !

If we put 2p = n and 2^ = r, the expansion inside the brackets
becomes

which is obviously the expansion of (1 - 2)p~») i.e. ( - 1)~T"
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-4"- - 3 -Z -I
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Hence we finally get

J -<o
1 1 n

But this is equal to — E^z), since y = 2 J ir( - I)1, and

2
r-0,2, . .*

j n(w-2)...(n-r+2)
r!

Parity of reasoning establishes the case when n is odd, and also
when n is negative. Hence for integral values of n, the auto-
functions of the integral equation are given by Dn(z).

j 9. Values of Dn{z) when n

z

-3.0
-2.5
-2.0
-1.5
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0

- 1. 767855
-1.241135
- 0 . 904956
- 0. 577806
- 0 . 195001
-0". 112590
-0.029289
0. 054253
0. 137314
0.219123
0.298877
0.375762
0.448977
0.517752
0.581368

2

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0. 9
1 .0
1.5
2.0
2.5
3.0

D-(«)

0.639178
0.690620
0. 735234
0.772672
0. 802702
0.825217
0.840232
0. 847884
0. 848423
0.842203
0. 727895
0.534014
0.337318
0. 184882
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