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ABSTRACT 

The relationship between the r.m.s. photometric accuracy on the 
data points of a stellar spectrum and the final accuracy on abundances 
and physical parameters derived from these data is discussed. 

1. INTRODUCTION 

Modern detectors allow to achieve nominal signal/noise ratio of 
several hundreds in stellar spectroscopy. However, the final accuracy on 
the physical parameters in which we are interested does depend not only 
upon the photometric accuracy of the spectra, but of what is happening 
during several steps of reduction, involving most of the time 
substantial losses in accuracy.This make, in practice, the accuracy on 
abundances, for example, only 15% good, even if one starts with spectra 
obtained with a signal to noise ratio of 200. 

It is not our intention to treat the whole subject in a few pages, 
so we shall focus on just a few critical points. The first one has to do 
with the accuracy reachable on the equivalent width of weak lines with a 
given signal/noise ratio in the continuum. The second point is the 
accuracy obtainable from the analysis of Balmer lines on temperature 
differences between two stars.Because the equivalent width of weak 
neutral lines are very unsensitive to gravity, for F, G and Κ stars, the 
accuracy on equivalent widths, plus the accuracy on temperature 
determination largely control the accuracy obtainable on abundance 
ratios between two stars belongings to these spectral classes. 
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2. FROM THE FLUX DATA POINTS TO THE LINE PARAMETERS 

Assuming that instrumental effects have been properly corrected 
for, by dark exposures subtraction and flat-fielding (not forgetting 
that these operations degrade the row signal/noise ratio by an 
appreciable amount) the data consist of a set of ordinates s$ running 
from one to the number of pixels of the detector, n- 1872 for most 
reticons in use). We assume that we know the statistical mean error on 
each s$ and, for simplicity, we consider first the academic case where 
we can found a spectrum subinterval in which the spectrum can be 
described by a continuum of constant level and a single absorption line 
of gaussian profile : 

(1) S (χ) - Sc - Sc u.exp J - j j2 J 

We also assume, which is even more academic, that Sc is known, from 
unperturbed regions of the spectrum. 

Then the characteristics (v wave-length of the line center,w 
standard width, u central depth of the line) of the line must be derived 
from the usually over-determined system (solved by least square) 

Si 
(2) r i - 1.0 - — - u .exp 

Where i w i n is the data point of smallest wave-length and imaxthe 
data point of the largest wave-length used in the least-square 
procedure. Of course - ) must be at least equal to 2 (three 

points) and preferably larger. This immediately poses the problem of the 
pixel size : 

(3) Sx - x i + i -χ 

with respect to w. The common sense requests that the data point must be 
influenced by the presence of the line at a level larger than the noise. 
So if € is the r.m.s. relative photometric accuracy on the flux : 
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(3) € — < S S2 < Sr2 >* 

one should have 

The factor 1.5 holds because the most central data point is, at the 
most, at a distance of half a pixel to the real center of the line. 

This gives for u - 0.1 and € - 0.01 

Sx < 1.43v 

or : 

Sx < 0.6 x FWHM 

as a function of the full width at half maximum, FWHM 
However this condition, which is necessary to find the center and 

the width of the line is not necessary if one is only interested in its 
equivalent width, as we shall see later. 

Landman, Roussel-Dupré and Tanigawa (1982) have solved the problem 
of finding the accuracy on u, ν and w for a given photometric accuracy 
€. The result is : 

(3) <6J > * - ( f ) * (^)*€ 

2 7Γ w 

(4) < Sv2 >4 - ^ (v.<5x) 1 / 2 -

„ 1 / 4 u 

(5) < Sw >4=<Sv 2> ^ (w.Sx)4 -

7 r 1 / 4 U 

provided &x < FWHM. (In practice is it enough that Sx < w ) . 
An interesting consequence stems from these formulae : if the 

observation is photon noise limited, € ~ Sx'^ and the errors are all 
independent of the pixel size. 

Landmann and al. (1982) have not given the error on the equivalent 
width. As &u and &w are correlated it is not possible to compute the 
error on the product uw using the above formulae. The exact computation 
gives : 
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( 6 ) < SW2 >* -
VÎ37T 

(w6x)*e 

or 

( 6 ' ) <SW2 >* * 2 . 3 (w.Sx)* € — 1 . 5 (FWHM.Sx) * € 

A s i m i l a r formula can be o b t a i n e d i n a much s i m p l e r way. The 

e q u i v a l e n t width i s by d e f i n i t i o n : 

the sum Σ b e i n g extended t o a l l p i x e l s p o t e n t i a l l y a f f e c t e d by the 
l i n e . For a g a u s s i a n p r o f i l e i t i s f a i r l y s a f e t o sum over a width equal 
t o 6 t imes the s tandard d e v i a t i o n , and the e r r o r on w comes as : 

So whatever i s the method f o r g e t t i n g the e q u i v a l e n t width , the 
r o o t mean square e r r o r on i t i s the product a numerica l f a c t o r c l o s e 
t o 1 . 5 , by the g e o m e t r i c a l mean between the p i x e l s i z e and the FWHM, and 
by the r e l a t i v e r . m . s . the photometr ic accuracy i n the continuum. 

I f one a p p l i e s t h i s formule to c o n d i t i o n s f r e q u e n t l y met a t the CAT 
r e t i c o n spec trograph a t ESO one g e t s : 

( 7 ) < SW 2> * -
6w 6xe k - 2 . 4 5 (wax)* e 

1 . 6 (wSx)* € 

FWHM - 0 . 1 Â Sx - 0 . 0 3 5 À 

and wi th 
€ - 1 / 2 0 0 

<6W2 0 . 4 m Â 
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3.FÜRTHER PHYSICAL LIMITATIONS ON THE ACCURACY OF SMALL EQUIVALENT 
WIDTHS. 

Repeated measurements of equivalent widths on several spectra of 
the same star show that formulae (6) or (7) are too optimistic. The 
scatter on such measurements is more frequently of the order of 1 to 2 
mÀ rather than 0.4 mÂ. The principal source of additional error is the 
fact that the continuum is not known exactly, and worse, not even 
definable with an accuracy of 0.5 %. One is easily convinced of that by 
taking a look at a segment of the "Solar flux Atlas from 296 to 1300 nm 
by Kurucz et al. 1984 (see fig.l). In the numerical example at the end 
of section 2, if we assume an error of 0.5 % in the location at the 
continuum this induces an error of 6w χ .005 in the equivalent width (no 
more square root cancellation !) or : 1.3 mÂ on W, three times larger 
than the statistical photometric error. 

In order to minimize this error we found that is better to 
requestion in the least square fit the exact position of the continuum 
i.e. to have Scas unknown as will as a, w and v. We also found that ν is 
usually not to be taken as unknown for weak lines, the wave-lengths 
differences being known with high accuracy from tables and not 
"negotiable". 

In pratical cases it is found that the line under scrutinity is 
always more of least "blend" with other lines. It is easy to generalize 
the least square fit to η lines : 

Wi - \f27r.UiW 

Then the value of w become much more critical : if two consecutive 
lines are too close in wave-length, the least-square procedure collapse, 
or, if well handled allow only to determine the sum of the equivalent 
widths of the two nearby lines but not how much is ascribable to each of 
them. 

So it may be necessary to increase the resolution mainly for 
separating the line from its nearest neighbours. 
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Fig.l- Structure of the "continuum" in the solar spectrum,from Kurucz et 
al. 1984.The wave-length scale is in nanometers. The thin line has an 
ordinate scale enlarged by a factor of 10 (left scale).One clearly sees 
that there is no well defined continuum at the 1% level. 

Fig.2-Ratio of stellar ( HD 115043) to moon spectra in the Ha region. 
Comparison with theoretical ratios for effective temperatures 5830 Κ and 
5830± 100 K. The precision of the determination is clearly better than 
50K. The central (-2,+2 A) portion is strongly affected by chromospheric 
activity in HD 115043 (UMa stream) and of no use for temperature 
determination. 
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4. TRADE-OFF BETWEEN NOISE LEVEL AND SATURATION EFFECTS. 

Taking now 1.5 mÂ as a reasonable r.m.s. error on equivalent widths 
(independent of W) what equivalent widths are most useful for abundance 
work ? 

The relative error decreases when W increases ,but soon saturation 
effects become dominant and the error due to the uncertainty on the 
"microturbulence" takes over. A 15 mÂ equivalent width suffers a 10 % 
uncertainty and at this point an error by 0.1 dex on the Doppler width 
contributes by only 3 %. The balance between the two sources of error 
occurs at about 20 mÂ and we consider that this is a kind of optimal 
compromise between the need of keeping the saturation effects small and 
having good relative accuracy on the Ws.The relative accuracy is then 
only of the order of 10 % even if we started from a nominal S/N ratio 
200 in the continuum. This example shows how difficult it is to take 
full advantage of very high S/N ratio of 500 or more. My conclusion is 
indeed very close to the one given by D. Gray : before making meaningful 
use of high photometric S/N noise one hits difficulties as undefinable 
physical continuum, slight residual instrumental effects due to a 
different collimation of stellar and flat-field or calibration beams in 
the spectrograph, etc . . . The effort should then go as well towards 
mastering these effects (as exemplified by the HF cell for accurate wave 
length measurements) as to still improve the purely photometric 
accuracy, any-how unimprovable above the limit set by the granular 
nature of light. 

5. EFFECTIVE TEMPERATURE DETERMINATION FROM BALMER LINE WINGS. 

For abundance work it is as important, to derive an accurate 
effective temperature as to have accurate equivalent widths of weak 
lines. High-signal to noise spectra have allowed to use the wings of the 
Balmer lines, and more specifically of Ha which is located in a region 
where the spectrum is clean and the efficiency of reticons high. Fig.2 
show the comparison between the ratio of a stellar spectrum to moon 
light in the Hot region, compared to the predicted ratio computed from 
Gustafsson's models. 

The theoretical ratios are computed with Teff-5770 Κ for the solar 
(full disk) spectrum. 

One sees from the figure that a temperature difference is easily 
detectable, even if as small as 50 K. This is just about what is needed 
if the error or the Bolzmann population factor for a neutral lines lying 
5 ev below the ionization level is to be kept below 10 % at 6000K. 
Recent work on the broadening theory of Balmer lines (Stehlé et al. 
1983) shows that the Vidal, Cooper and Smith (1973) prescription is 
valid at a few angstroms from line center for Hot. Because the population 
of H " and of neutral lines are both proportional to the electronic 
pressure, the equivalent width ratio of a weak neutral line in a star 
and in the sun does depend only on the abundance ratio and on the 
temperature difference. The abundance ratio may in principle be 
determined from on line with 0.1 dex accuracy, and if more lines of the 
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same element are available. some gain may be achieved, this is 
particularly true for iron. 

6. CONCLUSION 

Simple formulae are given to obtain the rms errors on line 
position, line width, line depth, and line equivalent width for a given 
r.m.s. noise at continuum level. 

One conclusion is that 1) the pixel size is not at all a critical 
parameter. 2) increasing the spectral resolution decreases the r.m.s. 
error on equivalent widths (as the square root of the line width) as 
long as the line width follows the spectral resolution. Once the 
intrinsic width of the line is reached no more gain is obtainable by 
further increasing the spectral resolution. 

At signal/noise ratio above 200 the final accuracy obtainable on 
equivalent widths of weak lines is more set by the difficulty of 
defining a continuum than by the photometric error on the signal. It is 
recommendable to use a very local determination of the continuum by 
including the continuum position in the least-square fitting. 

Differences in effective temperatures as small as 50K can easily 
be detected from the strength of the wings of Hot in late F to mid-G 
dwarf star with high S/N ratio spectra. 

Abundance ratios between stars of similar spectral types can be 
determined with an accuracy of 0.1 dex, from a single line ,from spectra 
with a S/N ratio of 200. 

REFERENCES 

-KURUCZ R.L., FURENLID I., BRAULT J., TESTERMAN L., 1984, Solar 
Flux Atlas from 296 to 1300 ran. National Solar Observatory, 
Sunspot New-Mexico USA 

- LANDMAN D.A., ROUSSEL-DUPRE R., TANIGAWA G., 1982, Astrophys. J. 
261, 732. 

- STEHLE C , MAZUREA., NOLLEZ G. , FEAUTRIER Ν. , 1983, Astron. 
Astrophys. 127, 263. 

VIDAL CR., COOPER J., SMITH, 1973, Astrophys. J. Suppl. 
25, 37. 

https://doi.org/10.1017/S0074180900035269 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900035269


353 

DISCUSSION 

SODERBLOM I would lixe to ask Ingemar Furenlid to remind us 
how the continuum level was established for the solar flux atlas, since 
Dr. Cayrel pointed out the lock of true continuum windows. 

FURENLID Trie continuum of the Solar Flux Atlas (Kurucz et al., 
1984) is determined by a global fit to high points over wavelength ranges 
of a couple of thousand angstroms. It should thus be emphasized that it 
is strictly speaking a pseudo-continuum. 

WAIJCER How do you correct for scattered light ? What kind of 
error does it introduce ? 

R. CAYREL The correction is simple : if there is 5% straylight 
the equivalent widths are decreased by this amount. 

G. CAYREL We have not applied the correction because our 
analyses were differential : the corrections cancel out. 
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