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Abstract

The wave motion of magnetohydrodynamic (MHD) systems can be quite complicated. In
order to study the motion of waves in a perfectly conducting fluid under the influence of an
external magnetic field in a stratified medium, we make the simplifying assumption that the
pressure is constant (to first order). This is the simplest form of the equations with variable
coefficients and is not strongly propagative. Alfven waves are still present. The system
is further simplified by assuming that the external field is parallel to the boundary. The
Green's function for the operator is constructed and then the spectral family is constructed
in terms of generalized eigenfunctions, giving four families of propagating waves, including
waves "trapped" in the boundary layer. These trapped waves are interesting, since they are
not the relics of surface waves, which do not exist in this context when the boundary layer
shrinks to zero thickness no matter what (maximal energy preserving) boundary condition
is chosen. We conjecture a similar structure for the full MHD problem.

0. Introduction

This paper continues our study [8] of linearized equations of magnetohydrodynamics
in the setting of a medium filling a half-space with the presence of a slab or layer of
"different" media near the boundary. This is what is meant by a "boundary layer"
in our discussion. This system arises when the interest is in small deviations from
an equilibrium state. The pressure is assumed to be constant to first order; this is
the classical "cold plasma" condition. Many examples of systems behaving as cold
plasmas exist including interstellar clouds and portions of planetary atmospheres. The
type of "two fluid" or stratified media system treated here is a simplified version of
such cases and is important in other applications such as fusion reactors [5, p. 247].
In our study, we consider a stratified or layered medium as the given fixed geometry
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and derive consequences from this assumption. This may be thought of as a local
treatment of a different geometry (spherical, etc.). See [4] to see how the kind of
simple geometry we consider here can be related to much more general situations.

The main result of the paper may be seen as conditions for the existence of trapped
waves in the layer (this happens when the phase speed of the layer is less than
that of the adjoining media—see the text following (2.5) for the definition of phase
speed) with their attendant structure, although no surface waves exist at the boundary.
Theorem 5.14 gives the result that, for initial data which can propagate, the solution is
delivered in orthogonal parts consisting of waves trapped in the layer, magnetosonic
waves and Alfven waves. One interesting result of this analysis is that the explicit
formulation allows us to see in advance how to or not to "launch" waves of a particular
sort by choosing the "right" initial data (see remarks below Lemma 5.5). Such
information can be useful in understanding or maintaining stability. Theorems 5.6
and 5.14 contain the/ technically accurate statements of these results.

The results given here do not stand in isolation. We believe that the techniques
developed here are extendible in a rigorous way to systems of greater complexity. The
next step would be to drop the cold plasma condition. A more elementary treatment
is possible for a system of the type considered here, but this is much less helpful in
determining what happens in the case where the pressure is not assumed constant. For
a system related to our problem see [5, p. 256ffJ.

Our study depends explicitly on the spectral theory of operators in Hilbert space,
but we have tried to keep some of the technical analysis in the background so that
technical requirements do not obscure the treatment. Two appendices contain most
of the proofs of theorems and other technical details. Formulae in Appendix I are
identified with a prefix A as (A 1.1). We acknowledge here the helpful remarks of the
referees.

Part I of this paper [8] established some necessary facts about the system such as
a characterization of data which propagates and it introduced some methods useful
for wave motion problems posed in a stratified medium. The results from part I
which are referenced in this paper will be reviewed very briefly below. In order to
make reference easier for the reader, equations, theorems and definitions, etc. will be
numbered as a continuation of part I. Hence the next section below will be numbered
as Section 4 and formulae having number smaller than (4.1) are from part I and have
the numbering given there to make it simple for the reader to reference part I.

This work is based on [6] where a problem is treated involving one plane boundary.
While it seems to be true that "mixed" problems in exterior domains are relatively
well understood, less seems to be known in cases like the one studied here where the
boundary is unbounded. Again, in the present work, the geometry consists of a plane
boundary with a slab-like layer next to it with a half-space on the other side of the
layer.
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[3] Eigenfunction expansions 197

We will now review as briefly as possible some items of notation and some formulae
from part I which are used in this paper.

The hyperbolic part of the linearized equations of MHD with the assumption of
constant pressure can be written as [6]

3H
ix— = V x (v x Ho),

I «>•»
p — = (V x H) x Ho.

at

The vector quantities v, H and Ho are the fluid velocity, magnetic field, and external
(applied) magnetic field respectively. Normally the condition div(H) = 0 would be
added, but in fact this condition is contained in (0.1) in the sense that data which
propagates essentially satisfies this condition. More details are found in [8] where we
also consider various cases for the external field.

Here our results will focus on the case where Ho is constant and parallel to the
boundary, specifically, Ho will be the vector (ht, h2, /i3) with the choice hx = h3 = 0,
h2 = 1. In this case the choice of boundary conditions which are (maximal) energy
conserving is more limited than in other cases [8].

In the above equations, V = (3/3*1, d/dx2, d/dx3). The fluid is assumed to
fill a half-space written as R3_a = [x G R3 : x3 > —a], 0 < a < 00, where
the boundary {x3 = — a] is energy preserving [8] while the density and magnetic
permeability are given by p, p0 and fi, ix0 in the layer R2 x (—a, 0) and the half space
R^ = {x e R3 : x3 > 0} respectively. To formulate this problem, let Eo and E denote
the 6 x 6 matrices

Eo = diag (pohX], Hohxi) and E = diag (p/3 x 3 , ^3x3) (0.2)

and define E(x) = x+(x})E0 + X-(^2,)E, where x+ a r |d X- are t n e characteristic
functions of R+ = {JC : A- > 0} and (—a, 0) respectively. Let A{D), D-} — —id/dxj,
j = 1, 2, 3 (/ = \/—T), be the 6 x 6 matrix differential operator

Our treatment differs from many formulations since we prefer to write (0.1) in matrix
form rather than in a Lagrangian form. We write (0.1) in terms of the matrices Aj as
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The matrices Aj are given byby
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0
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0
0
0
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0
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0
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0 "
-h
h2

0
0
0

[4]

and (0.4)

(0.5)

As already mentioned, h\ and /z3 are taken to be zero with h2 = 1.
Formulae appearing below are numbered as they appear in Sections 2 and 3 of [8].

The linearized equations of constant pressure magnetohydrodynamics in the layered
half-space may now be written as

id,u(x, t) = E-\x)A{D)u(x, t) = A'(D)u(x, t); (2.1)

where u(x, t) is the six-dimensional (column) vector (v, H), v is the fluid velocity and
H is the magnetic field vector.

We will write A'(D) as

A'(D) = (2.1)

The problem now is to find a solution of (2.1) which is square-summable on Ria for
each t and satisfies the initial and boundary conditions (see [8] for a detailed discussion
of boundary conditions which conserve energy)

(2.3)

u(x,0) =

Q5M(JC,,JC2, - a , t) = 0 ,

<B = [ 0 , 0 , 0 , 0 , 1 , 0 ] ,

for an external field (0, 1,0). It means that the x2 component of the magnetic field
must vanish at the boundary JC3 = —a. Another energy preserving boundary operator
in this case is given by 931 = [0, 0, 1, 0,0, 0], which says that the vertical component
of velocity is zero at the boundary. We refer the reader to Theorems 1.4 and 3.7 of [8].

Let Jff be the space L2(R
3, C6), with the E inner product: (/, g)je = (f, Eg)

((•, •) representing the usual L2 inner product). 5?' will denote the dual of the space
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[5] Eigenfunction expansions 199

y = y(R", C6) of rapidly decreasing smooth functions on R\ with values in C6.
The Fourier transform

<t>nf(p) = (In)""2 I exp(-ip.x)f(x)dx

is an automorphism of y with inverse 4>*/(p) = 4>n/(—p) which extends by
continuity to an automorphism of L2(R

3, C6) and by duality to an automorphism
of y . For any / in JV the quantity A(D)f e y , and an operator with domain

= {/ 6 Jff : A/ € <#?} is selfadjoint with resolvent S(z) = (A - z/)"1 given
by

S(z)f(x)= I S{x,y;z)f(y)dy.
J

Im(z) ^ 0 and S(;c, y; z) = 5(x — y; z) is the fundamental solution

[A(D)-zI]S(x;z) =

where / may be obtained from

= (2TT)-3/2CD*[A(.) -

(2.11)

(2.12)

Here we give some properties of A0 and A. These will be stated for A. The
corresponding properties for A0 may be obtained by just affixing the index ° to all
quantities containing the medium parameters. The transpose of a matrix M is denoted
by 'M and the conjugate transpose by 'M while the adjoint of an operator is denoted
by M*. The matrices E and Eo generate equivalent inner products in C6 by the rule
E(x, y) = Ex oy = 'xEy. In this inner product, the symbol A(p) of A(D) is given
by E~[A(p) with

0 0 0 Pi -p\ 0
0
0

P2

-P\
0

0
0
0
0
0

0
0
0

-Pi

Pi

0
0
0
0
0

0
-Pi

0
0
0

0
Pi
0
0
0

(2-5)

A{p) is symmetric. A(p) has the eigenvalues (p = (pt, p2, p?,) not zero in R3)
ko(p) = 0 with multiplicity two (the stationary speed),
\±x(p) = ±p2/(^Py/JI) (Alfven speeds),
*-±i(p) = ±\p\/(y/Py/fi) (magnetospeeds).

Let us define the phase speed c by (^/p^/JZ) = c~x.
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The nonzero eigenvalues above each have multiplicity one for almost all p. Both
the Alfven speed and the magnetospeed may coincide for some p, hence this system
is not uniformly propagative. We see that it also fails to be strongly propagative
(for definitions of uniformly propagative and strongly propagative see [9, p. 327] and
[10, p. 36]), since k±\ (p) may vanish for non-zero p. There exists a set of Lebesgue
measure zero, fi, such that when p e R3\y3, the eigenvalues ko(p), k±l(p), k±2(p)
do not coincide [6]. We shall generally assume p e R3\j3. Associated with each of
the eigenvalues are mutually orthogonal eigenprojectors P±j (p), Po(p) with respect
to the E inner product. They generate the resolution of the identity for A(p):

/ = Po(p) + P\(p) + P-I(P) + P2(p) + P-2(p), (2.6)

A(p) = kx(p)P{{p) + k_l(p)P.i(p) + k2(p)P2(p) + k_2(p)P_2(p).

The P±j (p) satisfy the identities

'(£?+•) = £/*+-, 8-tPt = P-Pic, A(p)P±(p) = k±(p)P+(p) (2 7)

The functions P will be needed explicitly. It is helpful to write "z" in place of
±kj = k±j as appropriate. Let the notation \p |2 represent p\ +p\+p\ and \p \] stand
for p2 + p\. Then

1
P±2Z(P) =

2/*Kl/>l2

\P\2 o
0 0

0
0

-p.Pi\p\]pz 0 -
.lip\p2p3PZ 0

(2.8)

-fipip2\p\]

-WiPilpll

PiP\ 0
0 0

P1P2P3 0
0

0 0
0

np\z

P\PZ
P1P2

-PlPiPZ
0

p\pz

Po(p) =
\p\2

0

0

0
0
0

•o o

0 \p\2

0 0 0
0 0 0 p2

0 0 0 Pip2

0 0 0

0
0 0

\ip\P3Z 0
P2P\ 0

0 0
P\P2P3 0

0 0 •

0 0
0 0

P\P2 P\P3

np\z
~P\P2P3

0

, (2.9)

p\
P2P3

P2P3

P\

(2.10)
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[7] Eigenfunction expansions 201

[A() — z/]"1 may be determined by the spectral theorem from

z]-1P±kip). (2-13)

To proceed, we need explicit formulae for 5(;z) on hyperplanes orthogonal to
the x3 axis. To get these formulae, write p = (£, rj), £ e R2, and extend X±k{p) to
complex x] by the requirement ±Rek±k(p) > 0 upon replacing p by (f, r) where
T = x] + IK. Then k±k(p) becomes A.±*(£, T) with P±t(£, ?) satisfying

)P±t(£, r) = A±*(£, r)P±*(£, T).

For | not zero define

T±2«,z) = c-1(z2-c2 |§l2)1 / 2 , (2-14)

where ± Imr ± t > 0 in the z-plane with branch cuts (—oo, — c\t-\), (c\%\, oo). Note
that A.±|( ,̂ r) is a constant function ofx. Observe that

r+2(?,z) = -r_2(£,z), r±2 (§, z) = -r±2(f, z). (2.15)

The matrix [A(£, r) - z/]"1 is regular in r except for poles in the upper (lower) half
plane at the zeroes of det[A(£, r) — zl], that is at z+k (r_t), and in a neighborhood of
these poles

;, T) - Z/]- ' = 2_>±*(£- T) - A'' P±kti> r ) - (2-16)

If we now apply <f>2 to both sides of (2.12), we obtain, in 5?', the relation

^>2S(^,xy,y;z) = (2jT)~2e'''y^ I e ' ( ' r n ) [Ag, r) - z/]"1 dr. (2.17)
JR

In order to simplify the notation in the evaluation of this integral, we shall from here
on employ the definitions r = r+, r° = T°. An elementary computation gives

, -a-y;z) = i{2n)-xc~2e'1^^+nhT~xP{S, z, - r ) ,

' V ' * ' 1 , - r ) , - a < y3 < 0, (2.18)

,z, - r ° ) , 0 < y3-

Here />(£, z, r) is given explicitly by (2.8) (with p3 replaced by r). In actual fact, a
trivial delta function term must be added to these functions to acount for the projections
P±i. See (5.29H5.31) below for this term.

, z, T) is a solution of

, r ) . (2.19)
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202 William V. Smith [8]

P°(£, z, T°) is obtained from (2.8) by replacing p and c with p0 and c0 respectively.
It satisfies

£, z, r°) = zP°($, z, T°). (2.20)

The identities

{EP(S,Z,T($,Z))) = EPG,Z,-T(S,Z)) and (2.21)

fcoP°(£, z, r°($, z))) = £0P°(f, z, -r°(£, z)) (2.22)

hold.
The following results, proved in part I, are needed here.

THEOREM 3.7. A' is a selfadjoint operator in J? (X is the space L2(R
3_a, C

6) with
the E inner product).

The interface condition used in this paper is condition (3.6) from part I. It is given

by(z/='</3,/5))

L/ (o ,0 - ) = L/(o,0+), (3.6)

in the sense of H~1/2. Note that this can be seen as a consequence of assuming that
A' is selfadjoint:

0 = (A'/, <t>)jt - {f, A'0)jr = i [{A3/ (o, 0+) - A3f (o, 0 - ) } , 0(o, 0)],

for / € D(A') (the domain of A'), <t> G 3>(S?_a,C
6), and thus A3/(o,0+) =

A-sf (o, 0—) in the sense of Sobolev space H~1/2. If/ also is smooth (say, / e D(A0))
then (3.6) holds pointwise.

PROPOSITION 3.10. A function f = '(fxjijijtjsjbji) in X is orthogonal
in Jf to N(A') (the null space of A') if and only if

f2 = 0 and div (/4, f5, f6) = 0 in L2 (R\, C6) and (3.7)
in L2(R

2 x (-a, 0), C6)

and

(EfUx',0-) = (Ef Mx',0+), (3.8)

(o,- f l ) = 0, (3.9)

This gives us sufficient background to study the resolvent operator for A'.
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4. The resolvent of A'

The purpose of this section is to work out the detailed analytic structure of a certain
Green's matrix. To be more specific, the problem of representing the solution of (2.1),
that is, (2.3), in terms of the various modes of propagation reduces, by the spectral
theorem, to representing the spectral family of A' in terms of these modes. This in turn
reduces to finding a convenient form for the resolvent of A'. The method was used first
in a similar setting by Ikebe [3]. Explicitly, if u(x, t) is the solution of (2.1), that is,
(2.3) with initial value uo(x), then the solution u is delivered by a unitary group U(t)
in X, u(x, t) = U(t)uo(x) (see Theorem 5.14 below). If Fk = F(-oo, X) = F(X)
is the resolution of the identity for A', then (F(X) is taken to be continuous)

= f cxp(-itX)dFk. (4.1)
JR

(. is obtained from G(z) = (A' — zl) ' by Stone's formula:

F{b) + F(b-) F(a) + F(a-) = -!- lim f\
2m no Ja

— G{X-ie)]dX. (4.2)

See Theorem 5.6 for the complete structure in (4.2).
To carry out this program, it is necessary to express the limit of [G(X + is) -

G(X — is)] in terms of the modes of propagation in order to so express u(x, t). As
advertised, this is done by considering an appropriate representation of the resolvent
kernel, G(x, y;z):

G(z)f(x)= G(x,y\z)fiy)dy. (4.3)

This suggests that the columns of G(x,y;z) should satisfy the boundary condition
of (2.3) and also the interface condition (3.6) at JC3 = 0 (that is, we expect G(z)f to
belong to D(A')). Further, since A' is selfadjoint in JC, the identity G(z)* = G(z)
must hold. Hence (G(z)f, g) = (/, G(z)*g) = (/, G(z)g) and therefore

J \j(G(x,y;z)f(y)dy]E(x)g(x)dx=f7f(y)fE(y)G(x,yu)g(x)dxdy.

It follows that

E(x)G(x, y;z) = 7G(x, y\z)E(y). (4.4)

The interpretation of G(x, y\ z) as the stationary field at point x resulting from a
superposition of unit point sources with coefficients / (y), y in the support of/ (y),
further suggests that G(x, y; z) be written in a form

y;z) (4.5)
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G+{x, y; z) and G-(x, y; z) correspond to this field, respectively above and below the
plane x3 = 0. They each contain a term associated with the P±\ projectors of the form
consisting of kernels generated by *_<!>*(A±(/>) - z)~lP±\(p)Q>X-, X+^&lip) -
z)~' P±i (p)<t>x+- These Alfven wave terms are just delta function terms and the part of
the solution they generate is elementary (see [6]) and is given later (see (5.29)-(5.31)
below). The equation [A(D) — zI]S(x;z) = S(x)I, and elementary physics, suggest
seeking G+(x, y;z) in the special form

(4.6)

y;z) - R°(x,y;z)] + X-(X})T(x,y;z)} ,

where S°(x, y, z) = S°(x, —y; z) is the fundamental solution for A°(D) which may be
pictured as incident radiation from the point source at y, while R°(x, y; z) represents
the field reflected from the interface and T(x, y; z) the field transmitted through the
interface x3 = 0. They should satisfy the equations

[A°(Dx)~zl]R°(x,y;z) = 0, x3 )y3€R+,
[A(Dx)-zl]T(x,y;z) = 0, y3 € R+, x3 € (-a,0),

the boundary condition

<BT(x',-a,y,z)=0 (4.8)

and the interface condition

LS°(x', 0+, y, z) = LR°(x', 0+, y;z) + LT(x\ 0-, y; z). (4.9)

In (4.8) and henceforth, f(x', —a) means f(x', —a + 0). Taking the Fourier
transform on the tangential variables x', conditions (4.7)-(4.9) become

[A0($,Dx,)-zl]<t>2R
0tt,Xi,y\z) = 0, x3,y3eR+, (4.10)

[A(f,D,J)-z/]<D2r(f,jc3,3';z)=0, y3 e R+, x3 € (-a, 0), (4.11)

<B<P2T(!;,-a,y,z)=0, (4.12)

, 0 + , y; z) = L<t>2R°(t;, 0+, y; z) + L<t>2 r (£ , 0 - , y; z). (4.13)

Equations (4.10)-(4.12) are satisfied by

<D2/?°(f ,x3, y;z) = a(£, y, z)e^P°(M• z, T°)C°(? , Z),
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-eiz{x>+a)P(t;, z, r ) Qa}D'(£; z ) , (4.14)

Qa is the matrix diag(l, A, — 1, 1, 1, —1) and a(%,y,z) is a function chosen to
simplify the computations needed later, a(£,y,z) = i(2jr)~lCQ2e~iy^+'z0nzT0~ .
Q(0) is the matrix diag(-5(0), A, c(0), -5(0), -s(<f>), c(0)), with 5(0) = 2z'sin(0),
c(0) = 2cos(0). The matrices C°(£, z) and D'(%;z) will now be chosen to satisfy
(4.13). The matrix Qa has the property (A is arbitrary)

G,P(f ,z , -T) = P(f ,z , r )Q a . (4.15)

This ensures that condition (4.12) is satisfied. It remains to choose the matrices C°
and D' to satisfy condition (4.13). (4.13) now becomes

l , ^ ) D ' ( $ ; z ) . ( 4 . 1 6 )

There are diagonal matrix solutions to this equation of the form

, z) = diag(*,, A, k3, kA, k5, k6) and £>'(§; z) = diag(rf,, A, d3, d4, d5, d6).

Each of the entries ku ... ,k$, d\,... , d& are functions of £ and z; their full form is
given in Appendix II.

At this point, we are mainly interested in the singularities of these matrix functions
since these singularities will determine the important trapped wave modes. The de-
nominators of the matrix entries are essentially the following functions as determined
by elementary linear algebra:

A"(I, z) = IXT cos(ar) (p] + r°2) - i>or° sin(ar) [p] + T2) , (4.17)

7(f. z) = r cos(aT)po (K + p\p\ + t2p? + r°V2 + r°V2
2 + 72

- ip s\n(ar)r° (p* + p]z2 + p\p\ + p\x2 + r°2p2 + r°2r2) .

(J and K should not be confused with the usual Bessel functions.) The zeroes of
these two functions determine the singularities of the matrices. We therefore need
some information about them.

By (2.15),

) , 7(£,z) = -•/(£, z).

In fact, by (2.15),

r+2(£, z) = -r_2(£, z), r±2 (£, z) = -r±2(£, z)
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and so

7C°(S,z) = C°($,z), 7D'(£,z) = £>'(£, z), (4.19)

as can be seen from their formulae given in Appendix II.
In a similar manner,

(4.20)

, y ; z ) - R(x, y ; z ) ] + X+(xi)T*(x, y ; z ) \ ,

where H = I — F is the resolvent kernel for the half-space Ria which satisfies (2.13)
and the boundary condition (3.1), R(x,y;z) is the reflected field in the layer and
T°(x, y; z) is the field transmitted to x3 > 0. They satisfy

[A(Dx)-zl]R(x,y;z)=0, x3, y3 € (-a, 0), (4.21)

[A\Dx)-zl]T°(x,y;z)=0, y3e(-a,0), x,eR+,

the boundary condition

53//(*', -a, v; z) = »/?(JC', - a , y; z) = 0 (4.22)

and the interface condition

LH(x',0,y;z) = LR(x/,0-,y;z) + LT°(x',0+,y;z). (4.23)

Taking the Fourier transform on x',

3,y,z), (4.24)

[A(?, £>,,) - z/]*2/?(f,jc3, y;z) = 0, (4.25)

A°(|,D;t3)-z/]<I>2 7 H ) « , ^ , v ; z ) = 0 , (4.26)

//(£, - a , y; z) = 03<D2/?(£, - a , y; z) = 0, (4.27)

, 0, y; z) = I<D2K($, 0 - , y; z) + L4>2r°(f, 0+, y; z). (4.28)

Employing Ga and Q we have from (2.18), (2.19) and (2.20),

(4.29)

(4.30)

(4.31)

[ , z , - r ) - e ' ^ + a ) I / ' ( ^ z, T)J2«] C(?, y;z)
= P Q(r(y3 + a))Pit, z, - r )C(§ , y; z), (4.32)
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^ ( M s . y ; * ) = ^c2c0-Vr^P0(^Z,r0)D°"(^j;Z), (4.33)

$ = P(x,y;z) = ic-2(2nyl exp(-iy'x + iaT) zr'1. (4.34)

(p* is obviously not the set p" defined after (2.5) and appearing in Theorem 4.1 below.)
Both <$>2H and <t>2R satisfy the boundary condition. The matrices C and D°" are
chosen to satisfy (4.28) which becomes

LP(^z,T)Q(T(y3+a)) = LQ(ar)P^,z,-T)C+c2Co2LPo^,z,T°)D0". (4.35)

Once again, there are diagonal matrices C and D°" which satisfy this equation and
singularities are once again determined by the functions J and K above. The complete
forms are given in Appendix II. We have

, y, z) = D°"($, y, z). (4.36)

As noted in Appendix II,

{ ) )Q{T(y3 + a)) (4.37)

for the matrix C"(£, z) (with singularities determined by J and K) given there. Also
there is a matrix D°'(£, z) (given in Appendix II) satisfying the equations

) yt Z)EQ = G ( T ( y 3 + a))D°'(i;, z)

yi + a)). (4.38)

The two matrices C and D0' satisfy the identities (4.35) (see Appendix II). We are
now able to obtain the facts (the terms corresponding to the projectors P±i are left out
and will be given later, but see (5.29)-(5.31))

E(x)G+(x,y,z) = X+(y3)
7{x+to) [/° - *°] (y,x;z) + X-(x3)T°(y,x;z)} Eo,

E(x)GM,y,z) = X-(yi)7{x-(x3)[H-R)(y,x;z)+x+(X))T(y,x;D}E, (4.39)

or equivalently,

, (4.40)

- /?](£, y3,*;z)
, y3, x; z)} E.

By (2.17), (4.15) and (4.18),

o ] P3,x;z), (4.41)
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7 , y3,x;z)] = E0<t>2H(%, y3tx;z).

From (2.17), (4.15), (4.19), (4.36), (4.37) and Appendix II, we have the following
important relations (called in [2] "paramutation relations"):

,-x)Qa, (4.42)

G, z, r°) = P°(f, z, -z)Qa, (4.43)

, z, - r ° ) = P°(£, z, r°)C°(£, z), (4.44)

, z, - r ° ) = c-2P(M, z, - r ) D ' ( | , z), (4.45)

, z, r) = P(f, z, - r ) C ( £ , z). (4.46)

The zeroes of the functions J and K give the frequencies of the "trapped waves". For
each such zero there corresponds a generalized eigenfunction of A'. Some properties
of these functions are given in the following theorem.

THEOREM 4.1. {Recall that p & f$.) The zeroes of the functions J and K are all
real. In the case coc~l < — 1, these functions have no zeroes for z ^ 0, |£| ^ 0. In the
case n = coc~x > 1, the zeroes of J and K respectively form two sequences {vj (£)}
and [u)j (£)}. They have the following properties:

(1) {vjG)) and [Wjd-)} are defined for |f |>r;=0" + l/2)r0, ro=na-1(n2-l)-^2;
and they are positive, bounded away from zero, and there are exactly j + 1 roots for

(2) for each fixed £, the sequences {u, (f)}, [wj (£)} are finite and strictly increasing
for each fixed £I( £2; they are contained in the interval (c|£ |, co|£ |);

(3) Vj, Wj -> cor,- a«J uy-, wj > cor, /or |^| > ry. 3i;y anrf 3u;y —> c0 «5 |^| —>• r,.
77IMS Uy anrf iu; may fee extended as C1 functions of% to the left ofrj by co|£ |.

(For the proof, see Appendix I.)
The next theorem tells us that we are on the right track. The proof is given in

Appendix I.

THEOREM 4.2. For Im(z) ^ 0 the function G(x, y; z) gives a representation of the
resolvent G(z)for A', that is, if g € JXf and

-L/ ( * ) = / G(x,y,z)g(y)dy,

thenf 6 D(A') and [A' - zl]f = g.

Some important relations are given by the following two results. The proof of the
first is found in Appendix I.
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LEMMA 4.3. For G±(x, y;z) above, and fixed x e R3_a in the sense ofJ7"(R3
y),

{A(Dy)-zl}G+(x,y;z)

= X+(to)[8(y -x) - iS(y3)A°[l°(y',O,x;z) - R°(y',0+,x;z)]}

- iX-(x3)KS(y3)1
<>(y', 0+, x;z), (4.47)

{A(Dy)-zl\G-(x,y,z)

a)[H(y',-a,x;z)-R(y',-a,x;z)]})
',0,x;z) - S(y3+a)T(y', -a,x;z)]. (4.48)

COROLLARY 4.4. In the sense of<¥"(R3
y),

<t>;G+(x,y;z)(p)[A°(p)-zl]

= X+(x3) J - ^ j - 2 + !j±= 7[O2/0(^, 0, x; z) - <t>2R°(t-, 0, x;z)] E0A

+ X-(x3)i(2nrl/2E-l7[<i>2T
0^,0,x;T)] E0A°. (4.49)

Also,

<i>;GM,y,z)(p)[A(p)-zI] (4.50);

{ia* \<t>2H(!;, -a,x;z) - 4>2rt(£, -a,x;z)]

, 0,X;Z) - <D2/?(|, 0, JC;Z)]}) EA3

-{ {eiap \<i>2T^, -a,x;z) ~ * 2 r (£ , 0,x;z)]} EA3.

PROOF. Equation (4.49) is obtained from (4.47) by applying <t>y to (4.47); take the
transposed conjugate and use the relation (4.39). A similar operation gives (4.50).

5. Representation of solutions by generalized eigenfunctions

This section is rather computational in nature. There does not seem to be any way
to avoid these details, but the impatient reader may refer to Theorem 5.14 below for
the punch line.

Observe that the right-hand sides of (4.49) and (4.50) are known explicitly. We
will express the resolvent operator in terms of these using certain density functions.
In order to establish the relation between the resolvent operator and these density
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functions, let V € L2(R
3, C6), \jr± = x±yir and / 6 J^. Then using the Parseval

identity for the Fourier transform (<t> = 4>3) we have

(<t>y,E0<t>x+G(z)f)

= (t/r, E0<t>x+G(z)f) = (Vr+, G(z)f) = (G(zW+, g)

= (G(o, y;zW+(y),f) = («&;G+(o,

Therefore

, £0 [X>) - z]"' r*»(o, p; z)Ef).

/ 3
 r*;°(^, p;

where

*7
0(x,p;z) = <D;G+(x, j ;z)(p) [X°(p) - z] Pf(p)E? (5.2)

and

V]f(p;z)= [ 7*°(x,p;z)E(x)f(x)dx, j=0,±l,±2. (5.3)

In exactly the same way,

E ; [ > r ^ ) , (5.4)
where

*;(*,p;z) = «I>;G-(x,y;z)(p)[^(p)-z]Py(p)£-1 (5.5)

and

%fip\z)= I 7*j(x,p;z)E(x)f(x)dx. (5.6)
•/R3-o
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The functions *?(*, p; z) and 4^ (x, p; z) are the density functions mentioned above.
Now (recall the inner product is defined with conjugation on the first place), for

z = k + ie we have from the resolvent identity and (5.1)—(5.6):

= -lie (G(k T ie)f, G(k T ie)f)

= -2is[(x+ G(kzp is)f, EoX+ G(kT ie)f > + (x~G(k=F ie)f, EX-G(k T ie)f >]

= -2ie[(<t>x+G(\ T ie)f, £0*X+G(X T ie)f)

where | • |£o and | • | £ denote the Eo and E norms in C6. Hence for any finite interval
(see (4.2)) (a, b) c R,

F(b-)]f,f) - ([F(a) + F(a-)]f,f)}

i ) - ' / ([G(A. + ie) - G(X - ie)]f,f)dk
ei0 Ja

= limjr-' ["y I I —. Wf(p;X±is)\2

+ 7 S—2 \*jf(p;k± is)\2
E dp dk

\H>°f(p;k±ie)\)

\Vjf(p;k±ie)\2\dkdp. (5.7)

By (5.1) and (5.4), £,. [k,(p) - z]~l*jf(p\z) and £ , [k°(p) - z]~l^f(j>;z) are
continuous L2-valued functions of z for Im(z) ^ 0. To obtain the desired represen-
tation of the spectral family, it thus remains to pass to the limit under the integral
sign in (5.7). The justification for this is based on explicit formulae for the functions
* ; / (p; k ± iE), tyjf (p;k± is) and their limits obtained by passing to the limit e 4- 0.
Except for the Alfven waves (see (5.29)—(5.31) below), we can write these functions
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as

, (5.8)

e"">J{<t>2H($, -a,x;z) - <D2

-7[<l>2H($,O,x;z)-<l>2R($,O,x;z)]EA3Pj(p)E-1)

{eia"7[<i>2T(^ -a,x;z)]

]} EA3Pj(p)E-1. (5.9)

We need the following lemma which is proved by direct observation of the relevant
quantities.

LEMMA 5.1. With P(f, z, ±r), P°(?, z, ±T°) and P, (p), P/(p) as previously de-
fined {see (2.8)),

, z, ±r)A3P, (p) = (r, T r ) " 1 ^ (p) - z]P(£, z, ±r)P, (p), (5.10)
P°(f, z, ±r°)A°P,°(p) = (i, T r 0 ) - 1 ^ ^ ) - z]P°(?, z, ±to)P,°(p).

Using the forms of H, R, T, etc., (5.8) and (5.9), we now have

Xj ^ ~ Z P°(g, z, -x°)Pf{p)E-\ (5.11)

^ ^ ' ^ ^ ^ ) ^ P(5,z, T)W(p;z)Py(p)£-1, (5.12)
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e->
a* _ e~'ar) e~'ar> — e""

W(p;z) = + Qa.

The plane-wave modes are obtained by passing to the limits z —*• tf2ip) ± iO =
jca\p\ ± JO, Z -+ Xj2(p) ± iO = j c | p | ± /0, y = ±1, in (5.11) and (5.12). In so
doing, it is convenient to observe the following facts:

r ($, kJ2(p) ± iO) = r°( | , \%(p) ± iO) = dy M,

(5.13)

R±;(/?) = ±jr).

From the first and last equalities it follows that

r(£, \j2(p) i /0)XR±; (i) = *? and r (^, kjiip) ±

Hence from (5.12) and (5.13),

[M/>)-z]W(p;z)(Xy2(p)±;O)

so that

=F J sgn n e^e*°M [e'^e^ PJ2(p)XR±i0?)

Now (2(-J?(jr3 + a)) - exp(ir)(xi, + a))/ - exp(-/jj(x3 + «))Ca and QaPj(p)
PjG,-n)Qa. Hence
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= 0.

Hence, no plane-wave modes with the phase speed c of the layer exist. Thus the
functions *, (x, p; z) contribute only to trapped modes of the layer R2 x (—a, 0).

Consideration is now given to the limits ^{x, p;X°(p) ± j'0). We define

= cQc
- 1 co e R3 and \co\ = 1 (recall (5.14)

Let

03 =

-y/l - \9'\2, if n > 1, or n < 1 and w3
2 > (n~2 - l)\o)'\2,

0, if n < 1 and o)\ = (n~2 - l)|o/|2,

-iy/\d'\2- 1, if n< 1 and w2 < (/T2 - \)\co'\2

and x = (XuXi, Xi) = n\p\(8u62, 6>3), so that 1*1 = n\p\. Then

^j X3> if n > 1, or n < 1 and

co2 > (n~2 - \)\a>'\2,

-X3 =-n\p\63

= in\p\\0}\, if n < 1 and a>\ < (n~2 —

The third term on the right of (5.11) gives -XH±j(n)eixpPj(p)Eol i n the limit as
z -*• X°j2(p) ± iO and thus

± iO) = * 7 = ±1- (5-15)

We can use this to compute the reflection and transmission coefficients in (5.11).
We define p = (p\,p2, -P3), then

W°2(x,p;\%(p) ± iO) = *£f (x, p)

\eixpl +

{X+(.x3) [eix"l - P°2(p)
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-^p;2(p-)c°(p)]

o1- (5-16)

These formulae are valid for n > 1 or n < 1. The first formula is based on the
matrices C°(p), £>°(p) and D(p) given in Appendix II and (5.14). The matrices
C°(p), D°(p) and D(p) being derived from C°(£,z), D°'(£, z) and £>'(§, z) also
satisfy the following relations which can be verified directly without difficulty from
the corresponding formulae found in Appendix II:

QaPj2(co) = Pj2(o))Qa, QaP°2(co) = Pf2{u>)Qa, (5.17)

c-2D°(p)P°2(co) = c-2Pj2(9)D(p), (5.19)

L [<?(p) + Q0(aXi)D
0(p)] = L, (5.20)

[p0C°(p) + p Q°(ax3)D°(p)]3J = po, (5.21)

+ M0(W3)£>°(p)]33 = Mo, (5.22)
7C°(p) = C°(p), (5.23)

' ')• (5-24)

7[eO(X3(^3 + a))D{p)] = Q°(xi(x3 + a)) Dip). (5.25)

From (5.16) and the fact (j = ±1)

A(D)e'xx Pj2(9) = n\p\eixxA(9)Pj2(e) = j cn\p\eixx Pj2(9) = k°j2{p)eixx Pj2{9),

we infer that ^2{x, p) satisfies the equation

A'(D)V%(x,p) = A°2*$=(*, p), 0 jt x3 e (-a, 0). (5.26)

From (5.16) and the definition of Q° from Appendix II it is clear that tyf2(x,p)
satisfies the boundary conditions

£ C ' , -a, p) = 0 and also * £ ( * ' , - a , p)6l- = 0. (5.27)

The equations (5.21) and (5.16) further imply that

£ ^(JC', 0+, p). (5.28)

From (5.21) and (5.22) we also see that (3.8) is satisfied. Equation (5.16) also imme-
diately shows that the entries of the last three rows form six divergence-free vectors,
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and furthermore, the second row consists entirely of zeroes. Thus superpositions of
Vf£(x, p) onp which are square integrable satisfy the conditions of Proposition 3.10
for residence in the complement of the null space of A' in J^. Hence these solutions
do propagate.

Up to now, we have not examined the Alfven modes. They arise from consideration
of the speeds A.±1(/>) and the projectors P±i(p). As will be seen, they have a trivial
structure and do not couple with the other modes at the boundary. Note that these
modes must automatically satisfy the boundary condition (!) (see (2.9)).

Since Alfven waves propagate parallel to the layer, there is no reflection from the
boundaries. Therefore we have (j = ±1)

**<*, P) = X-(x3)e
ix"Pjl(p)E-[, (5.29)

*J*<*, P) = X+(x3)eixpPJ>
l(p)U°E-i, (5.30)

*(x,p) = e'xpA(p)Pjl(p)E-i = kj(p)Vf(x, p), (5.31)

where V*(x,p) satisfies the boundary condition. (FI0 is the diagonal matrix
diag(po/p,A,A>/P, l .A. l ) . ) Furthermore, LVf(x',0-,p) = L^(x', 0+,p).
Also, the six columns formed by the last three rows of y>f(x,p) and ^j^Qt, p) are
divergence-free vectors and the second coordinate of each column is zero. From this
we see that superpositions of these functions which are square integrable lie in the
complement of the null space of A' in X.

The case the n < 1 (5.14) and u>2 < (n~2 — l)|a/|2 corresponds to what would
be total reflection at x3 = 0 if there were no boundary at *3 = —a. The first term
of x-(x3)^ff(x, P) m (5.16) corresponds to a transmitted wave and the exponential
factor in xj decays from x-$ = 0 to x3 = -a. Now, however, there is a wave reflected
at x3 = —a corresponding to the second term of x_0c3)*?*(*, p) with exponential
factor which increases from JC3 = 0 to x3 = — a.

We now need the following somewhat startling lemma.

LEMMA 5.2. J (£, *,) = 0 if and only if K (£, z,) = 0. The zeroes of K {and hence
J) are simple.

(Proof given in Appendix I.)
In the case n > 1, further contribution to the limit in (5.7) comes from the singular-

ities of the reflection and transmission coefficients in the density functions (5.11) and
(5.12), that is, from the roots vjk of J and K (Theorem 4.1, Lemma 5.2). Lety ± 1
and let O°(l) and 0(1) be the terms from (5.11) and (5.12) not containing C°, D0',
C and D'. Define the trapped modes as

Z^±x,p-,z) (5.32)
Z
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0>($, z)] c-2P\t-, z, - T ° ) £ 0 -

Y,(x,p;z;vjk) = > xl/e(x,p;z) (5.33)
' A-l — Z

^ + 0(1).

Also define the matrices

, vJk) = (z- vjk)C°(^ z), D^d-, vjk) = (z - vjk)D'tf, z),
0^,z) and C±'^,vjk) = (z-v

, vjk) = ( i r /J- 'E- 'D^d, vJk)E and

<>T-1C±'(!;, Vjk).

Passing to the limit in (4.42)-(4.46) gives important relations for these matrices.
Passing to the limit in (5.32)-(5.33) gives

H0(x,p;vJk±i0) (5.34)

'

(5.35)

, vJk)]
 P^'J2"

k'JT$E° W±(p;vjk)
C \T) + lTk)

and

W±(p; vJk) = W(p;vJk ± iO) = **""* ~'* " i + " " ^ '* Qfl. (5.36)

The term Xr, is the characteristic function on the interval (rk, oo). Note that these
two waves decay exponentially away from the layer. They are true trapped waves and
not surface waves. This agrees with the results of [6] for the more complex system
studied there.
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Let

S°(JC, £; vjk ± IO) = (rj + ix°k)Y\x, p\vJk ± IO) and (5.37)

S~(x,£;z;v7t±iO) = E ^ x . / r . z ; ^ ± /O) [ ^ ( p ; »,*)]"' G(±/)- (5.38)

We note the following relation, useful in verifying the properties of the functions
(5.37H5.38):

A(£ , - r t )G 8 =G f l A( f , r t ) . (5.39)

Using the forms of C ^ , vjk), D * ^ , vJk), C°(£, vjk) and D°(£, t>,*) given in Ap-
pendix II, it is a somewhat tedious but straightforward problem to check the identities

A'(D)i:o(x,$;Vjk±i0)=jvkG)T:0(x,$;vjk±i0) and (5.40)

A'(D)V~(x,S;z;vjk±i0) = jvk($)i:~(x,$;z;vJk±i0). (5.41)

From the definition of Q° (see Appendix II), S~ and E° satisfy the boundary condition.
The continuity and jump conditions (3.6) and (3.8) are satisfied and the last three rows
form divergence-free vectors as columns (x3 ^ 0). Hence superpositions of these
functions on x which are square integrable belong to JT. Observation of the functions
in Appendix II and the proof of Theorem 4.1 (given in Appendix I) shows that,
away from the neighborhood of /J, the denominators of all terms in (5.35)-(5.36),
(5.37)-(5.38) are bounded away from zero.

Now suppose that g e 0 ( R i a ) and set g+ = x+g, ga = X(o,a)(.x3)g(x',x3, -a)
and/? = (£, — rj). Define

(2TT)3/2

E~lD°(p)E j Q\x3 + a)<t>2g(l=,x3) dx3!

{<f3g+(p) - (?(p)<S>3g+{p)

I, -x3) - QaQ3ga(S,x3)]} • (5.42)

LEMMA 5.3. For g e 9 (Rlo), V°2g(p) e X° (X° means L2 with the Eo inner
product).

The proof is a straightforward application of the definitions.
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The following pertains to the case n > 1. See (5.14) for the definition of n. This
is the more interesting case where trapped waves exist; n < 1 is the same except that
the trapped mode terms are absent. For g e @ (Rlfl), j = ± U e Z+, recalling
(5.35M5.41), we define

= f T,0(x,p;vjk)E(x)g(x)dx

T^0(x^;vjk)E(x)g(x)dx and (5.43)

(vjk)g(p)= f 7E±(x,p;vJk)E(x)g(x)dx
JRI

+ r f - t ? , (MS)

= Q(±j)JW±(p;vjk) I 1Y,(x^;vjk)E(x)g(x)dx. (5.44)
JR\

Some routine formulae are required for computations. We state these in the fol-
lowing lemma. The proof is an elementary application of complex function theory.

LEMMA 5.4. With W±(p;vjk) of (5.39),

r°° dr) n

J -a

/ W±(p; vjk)
TW±(p; vjk) dr) = 4an I - QT Qa = 2nyk($) (5.46)

J-co L 2axk J
r°° TW±(p;vjk)

and I 0— dr\ = 0. (5.47)

The next lemma follows from (5.43) and (5.44).

LEMMA 5.5. Ifg e ^ (Ri a ) , then Y,0(vJk)g(p) € X° and ^(vji^gip) e X.

The method of analysis we have used is based on writing the explicit Green's
function in a form which represents the various "parts" (trapped modes, Alfven modes,
etc.) of a solution. The idea is then to write the spectral resolution in terms of these
parts. The following theorem gives this representation and, in addition, gives at least
an abstract method for deciding how to (or how not to) "launch" a particular type of
wave. Recalling (5.7), (5.44), (5.45), (5.30) and (5.31), we obtain the following.

THEOREM 5.6. Let F() denote the (right continuous) spectral measure for A' and
let g e l@(R3_a). Then for any finite interval (a, b) € R\{0},

E lf |2 f 2

I / l^n^OOL dp + I l^^iK/')! dp
j = ± l [J\jco\p\e(a.b)} ° J{jc0P26(a,(>)| °
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\*fg(P)\\dp (5.48)
U cp2€(a,b))

Launching a trapped mode (only), for example, depends on selecting an initial state
in the subspace defined by the projector in the last term of (5.48). If no Alfven waves
are wanted, we can avoid generating them by choosing data in the complement of the
subspace generated by the projector in the second term of (5.48), etc.

The next result is obtained by polarization from (A 1.12) and (5.48).

COROLLARY 5.7. Let Po denote the projection onto the null space of A' in J f and
set JV = (/ — Po)J^. Then for any f, g e J(f and any interval A c R ,

\f ;V j2 (5.49)
y _ ± 1 l / 1 / C l p l e A )

f 1^f

+ TX±(vjk)f(p)Ei:±(Vjk)g(p))dp\ and

<f>g) = E I (*yV. *jz8)jr. + (*y7. *U)^ + (*>/.
l;=±1

keZ

In order to define eigenprojectors associated with A', we need the adjoints of the
generalized transforms in (5.49).

PROPOSITION 5.8. Suppose f e L2(R
3, C6) has compact support. Thenforj = ± 1 ,

k > 0, we define

^j2*f = f *??(*, P)Eof(p) dp, *°*/ = f y°±(x,p)Eof(p)dp,

*; ' / = f Vfi.x,p)Ef(p)dp, X°(vjk)*f = f Ho(x,p,vjk)Eof(p)dp,

VHvjrff = I r^±(x,p;vjk)Ef(p)dp. (5.51)
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If f € J(f and {JN} C /^(R3, C6) is a sequence of compactly supported functions
converging to f in J&** and 3^, then, in the topology of J(f,

*? 7 = lim *,°2
±7w- * ? 7 = lim VI/,0±7A/,

* N—*oo * •* N-+00 •*

%• 7 = la^ V**fN, S°(u;t)7 = Jirr^ V°(vjt)*fN, (5.52)

Furthermore, the ranges ofW°2*, W°*, %*, E°(ty*)* anrf E±(uJ/.)* are contained in
•W / / p \

LEMMA 5.9. For each } = ±1, k € Z+, the operators

n(vJk) = X°(vJk)*?:0(vjk) + tfivjtfvHvjk) (5-53)

are orthogonal orthoprojectors in JXf.

The assertion can be proved in an entirely analogous way to that found in [2,
pp. 165-166]. We omit the details in the interest of space.

LEMMA 5.10. Let A denote the part of A' in ~X. Then for f e D(K),

*"2A/ (P) = J c°\P\*j2f (P). 7 = ±1 • (5-54)

LEMMA5.11. Let A denote the part of A' in ~X. Then for f € D(K),

*?Af(p)=jco\p\*°f(p), y = ± l , (5.55)

j=±l. (5.56)

PROOF. The proof is similar to that of Lemma 4.9.

The projection operators in the resolution of the identity are computed in terms of
the generalized eigenfunctions. This is the content of the following lemma.

LEMMA 5.12. Define the bounded operators in Jf? by

n ° / = %°*%0/ and (5.58)

" , / = * ; * ; / • (5-59)

Then

) = o, jj' = ±i, (5.60)
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nfUJ2 = 0, (5.61)
n 2 n _ 2 = 0 and (5.62)

n^n^o, (5.63)

where nj2 and IT, are projections in X, j = ±1. Further, for any f e X, there is
the Parseval identity

/ = £ n,/ + n°/ + nJ2f + £ n («,*)/
j=±\ L *eZ+

(5.64)

the components all being mutually orthogonal and the sum converging absolutely in
the norm of X.

COROLLARY 5.13. For f e X the operators &>r, &>a defined by

(5.65)

are mutually orthogonal orthoprojectors in X such that

& = &r + &a , (5.66)

where & is the projection in X onto X. The space X thus decomposes into the
E -orthogonal direct sum

~X = &>^X 0 &a~3r (5.67)

= [n2x + n.2~x + nyX + n_,jr] 0 [
tZ

all component subspaces being mutually E-orthogonal.

PROOF. (5.65) and (A1.7) show that for/ e ~X, \&>af \<\f\, and hence &>a is
continuous. It now follows that ^ = &„ and ^ * = &„. The rest follows from the
preceding results.

Finally, the main result concerns the make up of solutions to our problem. The
previous two results with this theorem tell us among other things how to launch the
various types of waves. This is given rigorously by the following theorem.

THEOREM 5.14. Solutions to (0.1) with the prescribed horizontal external field and
the prescribed boundary condition, are delivered by a unitary group of operators. The
solution is made up of orthogonal parts consisting of Alfven waves, trapped waves
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and "normal" waves. More formally, the orthogonal direct sum decomposition (5.64)
reduces the part U(t) of the unitary group U(t) = exp(—it A') in <tf which has the
representation

= J2\U(t)f (JC) = J2\ ^ W n j 2 / CO + ViOYljf (x) + J2 U(t)Tl(Vjk)f CO

L
(5.68)

with

V(t)nJ2f (x) = nj2U(t)f (JC) = *°2exp(-i//col • |)*°2/CO (5.69)

and similar formulae for the other Tl. The waves {U(t)Tlj2f}, [U(t)Y\jf\ and
{ U(t)n(Vjic)f } are pairwise orthogonal in J(f'.

Further, f e D(X) if and only if jco\p\V?2f (p) e JP°. jcop2^f(p) 6
Jtf°, jcP2%f (p) € Jf?,jvk(S;)X0(vjk)f(p) e L2(R

3, C6), jvk{$)V±{vjk)f {p) e
L2(R

3, C6) and for such f (using an abusive but convenient notation)

(5.70)

]
• the series converges absolutely in the sense of\%'. For f € D(X), the solution

of the problem (2.1)—(2.3) is given by (5.68) (A denotes the part of A in X).

Conclusion

The structure of the solution (0.1) is rather simple, but considerable analysis is
required to get to this conclusion. Considering the complexity of this work, it is likely
that for the MHD system with non-constant pressure, much greater computational
difficulties will arise. For instance, the propagation speeds involve nested roots and,
therefore, the functions r are more complicated, requiring more complex branch cuts.
In addition, the expressions describing the reflection and transmission terms will be
of considerably greater complexity. The present problem, while interesting in its own
right, is extremely useful as a guide in working with the non-constant pressure case.
It would also be interesting to study the case of internal layers in a fluid of the type
studied here as well as for the case of a liquid semiconductor [7]. In the case of a liquid
semiconductor, it is possible to formulate the problem of two half-spaces, one having
nonzero conductivity. This is also an interesting challenge since the propagation
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speeds in the conducting half-space would be described by certain irreducible quintic
and cubic polynomials and hence it is difficult or impossible to gain direct access to
the propagation speeds themselves. We hope to examine these problems elsewhere.
We conjecture at this point though that the solution of the layer problem for the full
MHD system will display a structure very much like that seen here.

Appendix I. Proofs

Proofs, and in some cases, outlines of proofs for a number of the theorems follow.

Proof of Theorem 4.1. We show first that the roots of J and K are real. Suppose
that K<£, zO = 0 with Im(zi) £ 0. Then since r, = c~\z] - c2!?!2)1'2 and rf =
CQ\Z2 — <%\H I2)1/2 are real only on the branch cuts, we have Im(ri) > 0 and Im(r,°) > 0.
We may form the functions

+ X-(*3)G(r,(jc3 +a)) (|£|2 + T2) P6(£, zu -

and

F(x;zi) =

Here P6 indicates the 6th column of P. Then F(o, z,) e L2(R
3_a, C6), <&F{x', -a;

z,) = 0 and LF(x', 0-; zi) = LF(x',0+;zi) since K(!=, zi) =0. Further, [A0(D) -
Zi]F(x;zi) = 0 for x3 > 0 and [A(D) - Zi]F(x;zi) = 0 for x3 e (-a,0). Set
G+ = AF(x),x3 > 0, G- = AF(x),X) e (-a,0) and G = x+G+ + X-G-\ then
G € L 2 ( R i a , C6) and, for rfr e ^(R3_a, C6),

= f TF(x)Aijf(x)dx+ f 1F{x)Air{x)dx.
JR\ JR2x(-a,0)

= {G,x(r) + i f 1{A3[F(x',0+;zl)-F(x',0-;zi)]}t(x',0)dx'

- f t

Therefore Af = G € L2(Ria, C6) and so F e D(A'). The same computation gives
[A' — zi]F = 0 which implies that z\ € CT(A'); this is impossible sinse CT(A') C R.
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If it is supposed that J(£, Z\) = 0 and Imfo) ^ 0, then the argument is the same but
with

It is clear that J and K can vanish for z € R only if n > 1 and Re(z) = k e
(-0,1*1, -c|*|) U (c|*|, 0)1*1), where r°(*, *) = ic^'|c2|f |2 - *2|' /2 = ic^\z°\ and

i i 1II

r(*, JfciiO) = ±c~'|fc2 — c2!^ |2| = ± | T | . The case of k in either interval is covered
by considering the intersection ofthebranchesof(notethat/?2-|r°|2 = k1c^1—p\ ^ 0
since p & ft)

|T°| _ /x|T|cot(aT)

for K = 0, and

2—nn^— = /• 2 . . i7\ (AI .2 )

for y = 0 in the first quadrant of R2 with the ellipse

The jth roots ±Vj and ±u>y of J and # respectively, determined by the points of
intersection (rfv, xjv) and (rfw, xjw) of (A1.3) with the (j + l)st branch of (A1.2) and
(A 1.1) (J = 0, 1, . . . ) , are found by computing

and

at the points of intersection.
It is clear that vj and uiy are increasing functions of £i and £2 and (4.1) is geometri-

cally obvious. Note that c~2vj(wj) = | | | 2 ( l + (^fv(jw))/\^\2) and Tjv(Jw) is bounded
as |f | -> oo. This completes the proof.

Outline of the proof of Theorem 4.2. Let g G X; set

G(z)g(x) = G+(z)g(x) + GM)g(x)

= I G+(x,y;z)g(y)dy+ f G.(x,y\z)g(y)dy.
JRl JR2x(-a.O)
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Writing out the expressions for G±(z)g from (4.6), (4.14), (4,29)-(4.33) and using
Appendix II and noting that, for fixed z and large |£|, T(£, Z) and r°(f, z) are equal to
i|£| + o(l), it is possible to estimate each term with the result that

\G(z)g\ < IIm(z)|-2|£|2 + C'(z) [ \<&2g(o,y3)\2
L2dy3 = C(z)\g\2,

J —a

and hence G(z) is a bounded operator on Jf. We must now show that G(z)g is in
the domain of A'. Choose functions <p and \jr e ^ (R i a , C6), so that <t>20(°, V3) is
rapidly decreasing in |f|; then, setting 0± =

i f dx'Jf(x',0) f A3[[S(x',0,y,z)

- R°(x', 0+, y; z) + T(x', 0-, y; z)]0(j)} dy

by (4.13). Similarly, (Ay/r, G.(z)4>) = (^. W-- + zG
Therefore, AG(z)/ = £[</> + zG(z)</>] e L2(Ria> C6) and <8G(z)0(*', - a ) = 0

by (4.8) and (4.27). That is, G(z)^> G D(A') and [A' - zI]G(z)4> = (j>. Applying
G(z) to both sides of this equation we have G(z)4> = G{z)<t>. Thus G{z) and G(z)
agree on a dense set, are both continuous, and therefore coincide everywhere. This
completes the proof.

Proof of Lemma 5.2. First note that

, z) = r cos(ar)p0 (p\ + p\p\ + r2p] + r°2p2 + x°2p2
2 + r2r°2)

- ip sin(ar)r° (p\ + p\x2 + p\p\ + p2
2r2 + x°2p2 + x°2x2)

= x cos(ax)p0 (p] + r°2) (p2 + p\ + x2)

- ip sin(ax)r0 (p2 + x2) (p] + p\ + r°2)

(p] + T2)j

KQ.z), (A1.5)

the second to last equation resulting from the definitions of r, r°, Co and c.
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We have

dzK = p ^ (2/ZT2 + c2
0n (p] + r°2) - Uclanor0 [p] + r2)) cos(ar) (A1.6)

'*?!** (p2 + r2) - /c2MOr°2) sin(ar)

at z = Vjk, dzK = 0 implies that (p2 — r° ) sin(ar) = 0, which is impossible, since
p g p and K(£, vjk) = 0. Hence, the zeroes of K and J are simple. This completes
the proof.

Suggestion of the proof of Theorem 5.6. Note that the inner sum is actually finite
because (a, b) is bounded.

First, consider the first integral in (5.7)

| ° | 2 dkdp

= it~l f dp+7T-{ I
jR3n{|»)l>i) yR3n(h|<«)

dp. (A 1.7)

We want to take the limit under the integral sign. The first integral is not difficult. The
problem arises in the second integral where \r)\ < 8 and |£| is near rk. In this region,
the singularities of the integrand coalesce. For \r)\ < <$andco|£|, co\p\, vk(%) e (a, b),
a typical integral is now of the form

I n | 2 | , n | 2 i , . , . , |2 ' \ • J[
where a (§ , k ± is) is an element of \z - vk\

2 7C°C° or \z - vk\
2 TD°'D0'. Suppose

for example, that ar(£, k ± is) = a(%, z) = \z — vk\
2\C^\ (see Appendix II) in a

neighborhood of k = vk(%).
Then

a ( £ , z) = isin(ar)n,0T:0 (p2 + ?2) + H?cos(av) (p2 + z° ) \ \K\~2\z — vk\
2.

For z near vk, we have

a(£, z) = \K'\-24fx2
0Tf \p] + r2 | 2 \s(ark)\

2 + o(l) . (A1.9)

Further, it is easily seen (Theorem 4.1) that ifK"' is bounded away from zero for |£|
near rk, so this together with (5.56) gives, for the critical portion of the interval {a, b),
a term proportional to

vk+6 elr0!2

dk- L J . (Al.10)
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Since, with generic constant K, for r] small both |r° |2 < K\CQ1Z — |?l| and \r}± r°|2 >
/crlc^'z — |£||, this integral is bounded by

/

•vk

dk- -<n. (Al.ll)

Similarly, for other possible or it is found that the critical portion of the integral can
always be reduced to one of the following forms:

<7T, / ^e/r|Z-C0|| | |2l <7T
z=k±ie Ja ' L1 ' Jz=k±ie

uniformly in p in a neighborhood of r) = 0 and e e (0, e0]- It remains to evaluate the
integral from the well-known formula

a (^ - V)2 + S2

(</>(A.) is continuous). This results in the terms involving Y,°(vjk)g(p),
*I>?2g(p), Vfg(p) and tyjg(p). We may obtain E±(u;t)g(p) from the second term in
(5.7) recalling that Vj2(x, p;Xj2(p) ± /0) = 0. This completes the proof.

REMARK Al. If now / e J ^ is any compactly supported function and {/„} c
^ ( R l a ) converges t o / in J^, then (5.48) also holds for / . Let Po = F(G) - F(O-)
be the projection onto the null space N(A') of A' in Jt. Then for any compactly
supported/ € Jf',

i=±\

The sum now is infinite but converges since the left side is finite; the double bars denote
the norms in ̂ ° and 3V. If XM is the characteristic function of the ball [x : \x\ < M],
M = 1, 2, 3 , . . . and/ € Jf, then, by (5.48), *»2xM/, ^XM/ , % XM/ , £ > * ) W
and £±(ut)xM/ are Cauchy sequences in Jif ° and J f as appropriate. The maps

*°2 , * ° , * . , E°(^) and

defined by (5.35), (5.36), (5.30) and (5.31) on smooth compactly supported functions
in JC are bounded by one and thus extend by continuity to all of Jf. The extended
mappings we again denote by the same symbols. They are still bounded by one.
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Outline of proof of Proposition 5.8. Let / € L2(R
3, C6) have compact support

which misses fi by a positive distance. Suppose also that h e @(R3__a). Then, for
example,

= I j / J
h(x)E(x)V£(x,p)dx\Eof(p)dp.

The function ' h(x) E (x)ty°f (x, p) is absolutely integrable with respect to x with L,
norm depending in a bounded way on p e supp/. The order of integration may thus
be interchanged. This shows (A 1.12) is correct. The others are handled similarly.
The fact that the operators *°2 , *I>°, *,-, £°(u*) and E±(wt) are bounded gives the
statement following (A 1.12). The last statement follows from (5.48): if/ € P0J(f,
then

;=±i

and hence * ° 2 / = * 9 / = * y / = T,°(vk)f = E^u*) / = 0. Thus, for example,
if h € JV° and / € PQJXT, then (/, *£/i) = (*;°2/, /z>^o = 0 and so the range of
*°2 is in (/ - PQ)X\ similarly for the other maps. Notice that it follows from (5.48)
that if J : Jt? —> Jff° is the identification map Jf = f, then the range of E°(u;t) is
orthogonal to the range of JE±(uyt). This completes the proof.

Proof of Lemma 5.10. The multiplication operator M, in Jff°, Mjf (p) = j co\p\
x / (p), with domain D(Mj) = [f G Jf?° : \p\f (p) e Jf?0}, is selfadjoint and hence
closed. Let b(x) € ^(R3) be a radial function b(x) = b(\x\), such that b(x) = 1
for \x\ < R and &(x) = 0 for |*| > R + 1. Le t / e D(A). Then the following
integration by parts is justified:

f 7V°±(x,p)E(x)b(x)A(D)f(x)dx

I JV°f(x, p)E(x)b(x)A(D)f (x) dx
JRl

+ f 7*£(J
JR2x(-a.O)

THf%(x',-a,p)A3b(x',-a)f(.x',-a)dx'
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7 [A°¥°f &c, p)] Eob(x)f (x) dx

+ f '• [A*j*(*. />)] Eob(x)f (x) dx
JR2x(-a.O)

+ i f T^(x,p)A(x/\x\) b'(x)A(D)f (x) dx

= j co\p I j ^ T*°}(x, p)E(x)b(x)MD)f (x) dx

+ i f T^(x,p)A(x/\x\) b'(x)A(D)f (x) dx

where gR(x) = A(x/\x\) b'(x)f (x). Since as R -*• oo the functions gR(x) ->• 0,
bUf -+ A / in JXT and *?2 is bounded, it follows that V?2gR -» 0, *?2fcA/ ~^
*92 A / in Jt?° and hence, in the topology of Jt?°,

V?2Af (p) = limj co\p \V°2bf (p). (A1.14)

Now Vj2bf -> VfJ in jff° and this together with (5.50) and the fact that Af, is
closed implies that ^J € D(Mj) and

V°2Af (p) = j cQ\p\V°2f (p) (A1.15)

fo r / e D(A). If now / is any element of D(A), let {/„} c £>(A) as in Proposi-
tion 3.12 of [8] which converges t o / in graph norm. We then have

< || A J - A,/n||^o + | |/

as n -> c» and so by (5.66) we have, in the sense

*j»2A/(p) = Mm *?2Af.(p) = Jim J

since the graph of M, is closed. The proof of the lemma is complete.

Proof of Lemma 5.12. We write ~X ioxJV V\N (A')x. Let / € ^ satisfy (3.14)-
(3.15). From (5.67), (5.35), (5.36) and the fact that \vjk\ < co|£|, it follows that
U(vJk)f € D(K). Also from (5.35) and (5.36),

<D2An(i/yt)/ « , JC3) = j vjkG)<l>2mvjt)f (?, JC3);
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hence by (5.43)

vl>;2An(v,*)/ (p) = j vjkG)*°2n(vjk)f (p).

Now the right-hand sides of both the above equations vanish for |£| < rk and vk(£) <
co|£| for |£| > rk; subtracting the two equations thus gives *°,2n («,-*)/ — 0. Since
the set of such / is dense in Jff and this product of operators is continuous, this
establishes half of (5.48). The other half is entirely similar. Equiations (5.57)-(5.59)
are established in the same manner as well. By (A1.12) for/, g € Jff,

Taking / = g and using (A1.14), (A1.15) and (5.55) and the fact that the n are
selfadjoint, we see that

Hence from (5.62)-(5.63), the idempotent property of the Fl follows. This com-
pletes the proof.

Suggestion of the proof of Theorem 5.14. We use (5.60) to obtain the Radon-
Nikodym derivative of F. This gives the result from the abstract function calcu-
lus for selfadjoint operators (see [1]) together with the lemmas above (especially
Lemma 5.10):

if, F,g) - if, Fbg) = E { / . 7*;V (p)EoVj2giP) dp (A1.17)
j=±i

f
J\J

f 7*?

keZ+

1
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Note that the last sum is finite. The first term can be written as (m v 0 means the max
of m and 0)

f
JU

f ° f 7^
" f T^0.

f(\p\co)E0V°g(\p\a>)\p\2da)d\p\

with a similar expression for the second terms. It is permissible to make the change
of variable |£| -> u*(§) in the last terms of (5.51). Let «*(£) denote the C inverse
of u*(£) where the latter is assumed to be extended to the left of rk by co|£|. Set
a)' = (cos0, sin0) € S1. Then (note that ^°(Vjk)g(p) and E±(u;t)^(p) depend on
p-i in a trivial way by (5.38)-(5.39) and we may integrate this out)

]T f r-z°
=±lJUvte(b,).))

uk{\)

/ 7£(

JS<

T'Z±(vk)f(\t;\co')Ei:±{vk)g(\t;\a>')d4>d\t;\

By Fubini's theorem the absolutely continuous function (/, Fkg) — (/, Fbg) has the
derivative d(f, Fkg)/dk. The Radon-Nikodym theorem allows the expression of
functions of A in the usual way. The formulae (5.68)-(5.70) now follow.

Appendix II. Singularities of matrices

I. First, the matrices C°, D', D°" and C are given.

-, z) = diag(d,, A, d3, d4, d5, d6) and D'(^u) = diag(fclt A, k3, k4, k5, k6);

por cos(ar) (p2 + r°2) (|^|2 + r2) + ipsin(aT)T° (p2 + r2) (|?|2 + T°2)

i sin(aT)/x0T° {p\ + T2) + fir cos(ar) (p2 + r
J 4 = K
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d3 — —d\, d5 = d4, d(, = —d4;

rVo(p 2 + r2)p2( |^ | 2 + r2) r°
ki = —— -, k3 = —kx,

/xpJ x

II. The limits of the foregoing matrices as z —> k®2(p) ± iO are:

± JO) = ±7 [pote)cos(aX3) (p

± iO) = i

TJVXi (p? + hl2)cos(ax3),

, k°2(p) ± iO) = C°(p) = diag(di,A,d3, d4, d5, d6), where

= Tj (Pote) cosCa^) (p2 + hi2) (l?|2 + X3
2)

±j ipsin(aXi)\r,\ {p\

(p2 + X3
2) sin(ax3) T7MX3 (p2 + hi2

Also D'(t , A.92(p) ± JO) = diagOfc,, A, Jt3, it4> it5, *6) , where

+ X32) , h i

,. _ P o ( l ^ l + x 3 ) ^ ( p + X 3 ) ( ± y h l ) , _ , ,. ... h i ,,
* ( m 2 + hl2) ' 5 " " 6 ~ ± ( T ) "

The matrix D°(p) of the text is now given by Q'D°'(t-, X°2(p) ± i'O) (compare
D'(§, A«2(p) ± iO)) and D(p) is given by QD'{l-, \%{p) ± iO), with g' = Q(±j) =
diag(±j, A, 1, ±7, ±7, 1) if n > 1 or / if n < 1. The matrix Q°((p) of the text is
given by diag(s(0), A, c(0), 5(0),

III. The matrices D°"(%,y,z) = diag(/i,, A, h3, h4, h5, h6) and C($,y,z) =

' o 2 ) (p 2 + r°2)sin(r(a-T
gl= —

V-0P0J

I2 + r°2) (pi + T°2) cos(r(a + y3))«"lor

^ 3 = :
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2fi2pr ( | | | 2 + r°2) sin(r(a + y3)) (p2 + r°2) e>"

Mo"

55 = ~
r ° ) sin(T(a + y3)) {p\

2M
2pr2 (|£|2 + T° 2 ) cos(r(a + y3)) (p\ + r°2) ( - e-'«)

86 = MOPOT°(|||2 + T2)A- '

/ii = i sin(r(a + y3)) F/J, ft3 = cos(r(a + y3)) F/J, where

F = - r V (p2 + r2) (p2 + p\ + r°2) + por (p\ + r°2) (p2 + p\ + r 2 ) ,

/i4 = i sin(r(a + y3)) G/K, hs = h4, h6 = cos(r(a + >>3)) G/K, where

IV. The matrices D°'(£, z) and C'(^, z) of (4.35M4.36) are now easily written down.
They are diagonal matrices of the form diag(/i',, A, h'3, h'4, h'5, h'6) and diag(g',, A, g'3,
g'4,g's, «i). respectively;

h\ = -eiaxpQr0F/(2Jpt), ti3 = -h\, where

F = - r«p (p? + r2) (p 2 + p2
2 + r°2) + por (p] + r°2) (p2 + p2

2 + r2) ,

h'4 = -eiaTfx0T
0G/(2Knr), ti5 = h'4, h'6 = -h'4, where

Also

/Li2pr (|^|2 +

MoPo

2/ 7P°

Mo

(III2

Po^

!)<
^oP

)(.
+

r 2

1

t 2 ) A:

86 =

Referring to (2.15) we see that the required identities (4.34) are satisfied.
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V. The limits of the matrices as z -» vjk at vjk ± /0 are:

, «;t) = lim(z - vj4)C°(£, z), D±3(£, w>t) = lim(z - u7*)D'(£, z),

D°(£, v,*) = lim(z - i)j,)D*(f, z), C^tf, vJk) = lim(z - u,t)C($, z).

In the paper, the matrices D±(^, vjk) and C*^, vjk) are defined as

Here J' and K' represent dzJ and dzK (evaluated at z = vjk ± iO). We have used
the abusive but convenient notation of writing xfk for |r°t | and xJk for ±j xJk.

We have

d, - - 2 p sin (axJk) rfk [p] + xjk) (|?|2 - r»t
2) /J\ d, = -du

d4 = -2 sin (axjk) nor°k {p\ + r?t) /K', d5 = d4, d6 = -<U,

AC) — , AC3 = —I AC),

fxpj' xjk

iP0tiT?k{\tf + Ttk)tf + T}k) X?
K4 — ~. — , /C5 — {/C4,

( ? 2 )
X?

h\ = -ie'a^poxJkF/ (2J'pzJk), h'3 = -h\, where

F = -ix«kP [p\ + xjk) (|f I' - r^2) + p0Tjk (pi - # ) (I? I2 + r/t) ,

p2 - r2,) - nxjk (p\ - xfk

xfk) -

0 4
AT'

The identities | | | 2 + xjk = c~2vjk and |§|2 — xfk = Cg2vjk are useful in simplifying
computations with these matrices.
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