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ABSTRACT 
Real vehicle usage rarely matches the predictions made during early phases of vehicle development and 
sales processes at commercial road vehicle manufacturers. The automotive industry needs 
multidisciplinary vehicle design methods to predict real-world vehicle operations by considering the 
vehicle level and the transport system level simultaneously, in a more holistic approach. The aim of this 
study was to analyse how realistic vehicle usage of driverless multipurpose vehicles can be modelled in 
Vehicle Routing Problems (VRPs) by conducting a systematic literature review. We found that real 
vehicle usage modelling of driverless multipurpose vehicles in VRPs mainly depended on the following 
elements: VRP variant, energy consumption model, energy consumption rate class, number of vehicle-
specific design variables and transport system-level factors. Furthermore, we identified in the literature 
five classes of energy consumption rate edge behaviour in VRPs. These findings can support decision-
making in the modelling process to select the most suitable combination of elements, and their level of 
detail for the overall modelling aim and purpose. 
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1 INTRODUCTION
Predictions made during early phases of vehicle development and sales processes rarely match real
vehicle usage. Real-world vehicle operations are complex to predict because they involve many factors
at multiple scales, such as on the vehicle level and the transport system level that interact in dynamic
ways. In the initial phases of vehicle development, there is large design freedom but limited product
knowledge, whereas in the end-phases of development the opposite is true (O’Reilly et al., 2016). Dur-
ing the sales processes at commercial road vehicle manufacturers, the vehicle configuration selection
is typically optimised once according to the customer’s overall transport application (Romano et al.,
2022) and a few frequent transport operations. Furthermore, the generic classification system used gives
only a rough understanding of the customer’s real operation and needs (Romano et al., 2022), and it is
simultaneously difficult for the customers to foresee their operational costs (Ghandriz et al., 2021), and
their changing needs. Thus, a large number of vehicles are not optimal for their real use.
One of the most important factors in achieving efficient vehicles and low emission levels (e.g. CO2
and particles) is proper vehicle specification and the capability to reconfigure the specification multi-
ple times throughout the life of the vehicle. In the near future, this may be possible. The technological
trends of electrification, automation and connectivity in combination with sustainable development and
the current urban traffic issues are driving the transformation of the mobility sector, by enabling disrup-
tive technologies and demanding new transport and vehicle solutions.
Driverless multipurpose vehicles (DMVs) are an emerging vehicle type for city transport that is being
explored worldwide (Ulrich et al., 2019). DMVs are disruptive in several ways. Firstly, they can change
their transport application depending on the current demand in the city by transporting either peo-
ple, goods, waste, or be used for other applications. Secondly, they can be built in such a way that
every relevant subsystem can be quickly replaced to modify the vehicle specification for the cus-
tomer’s current transport operations due to their modular and electric system architecture. According to
Hatzenbühler (2022), modular vehicles in urban environments can reduce fleet size, empty vehicle-
kilometres driven and travel times resulting in a more efficient use of resources.
To cope with the transformation of the mobility sector, the automotive industry needs multidisciplinary
vehicle design methods to predict real vehicle usage during early phases of vehicle development and
sales processes. These design methods need to consider the vehicle level and the transport system level
simultaneously, in a more holistic approach. One of the leading methods to enable this in a single prob-
lem formulation is Vehicle Routing Problems (VRPs).
VRPs are combinatorial optimisation problems that have been under intensive research over sixty years
(Vidal et al., 2020). They have both theoretical interests for researchers and practical applications for
industry. Freight transporters using commercial optimisation packages with vehicle routing algorithms
gain advantages in operational planning, because they can determine the routes their vehicle fleets must
drive to minimise costs (Vidal et al., 2020). VRPs are no longer used only for operational decisions, but
also for strategic and tactical decisions, such as fleet sizing, location of charging stations and vehicle
customisation (Vidal et al., 2020; Ghandriz et al., 2021).
In this study, we conduct a systematic literature review to answer the main research question:
how can real vehicle usage of driverless multipurpose vehicles be modelled in VRPs? To model real
vehicle usage with VRPs, it is essential to describe real energy consumption. This is challenging because
VRPs are based on a graph representation with discrete sets of connected nodes and edges. As a result,
the approach to compute the energy consumption rate (ECR) along individual edges and between edges
becomes important. To the best of our knowledge, no review study in the VRP literature has compre-
hensively surveyed how ECR is estimated along and between edges. In this review, we extend the ECR
edge behaviour classification by Xiao et al. (2021). Moreover, the literature lacks reviews that analyses
how to model DMVs in VRPs. Thus, the main contributions of this review paper are twofold: (i) to
analyse the ECR edge behaviour in VRPs, (ii) to evaluate how to model real vehicle usage of DMVs
in VRPs.

2 METHODOLOGY
We conducted a systematic literature review in line with the approach outlined by Jesson et al. (2011).
Systematic literature reviews provide a standardised, transparent and structured approach for selecting,
synthesising and evaluating literature. This method is particularly useful for reviews that aim to answer
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specific research questions with a narrow focus and that seek to minimise bias and error (Jesson et al.,
2011). Our systematic literature review process was divided into eight steps as illustrated in Figure 1.
We started the process by mapping the field through a scoping review, which includes preparing a
review plan, formulating research questions, developing search strings based on common keywords
in the literature, and selecting potentially relevant work to be included in the review. In the first
identification step, we searched the databases of Scopus, Web of Science and Transport Research Inter-
national Documentation (TRID) to identify relevant studies. These databases were selected because
they are well-established and cover important work published in our area of study. The inclusion
and exclusion criteria evaluated relevant studies based on their titles, abstracts and keywords. We
included studies that addressed VRPs for road transport with more detailed vehicle-level properties,
such as energy/fuel consumption models, emission models, vehicle loading and vehicle customi-
sation processes. We excluded studies that did not focus on vehicle-level properties in VRPs and
studies analysing other types of vehicles and topics, such as drones, inventory management and
wireless technology. Only studies in English published in year 2000 and later were considered.
Studies published in peer-reviewed scientific journals and conferences were prioritised to ensure qual-
ity control. However, the literature search also included a small portion of grey literature, such as
doctoral dissertations, books and conference papers to broaden the search. The search string was struc-
tured to find studies that focus on energy/fuel consumption and emission models in VRPs, because
such studies typically included vehicle-specific properties that were relevant for real vehicle usage
modelling of DMVs. We used the following search string in Scopus and Web of Science: (TITLE-
ABS-KEY(“vehicle routing” OR “green logistics”) AND TITLE-ABS-KEY(“energy consumption” OR
“fuel consumption” OR “emission model*”) AND NOT TITLE-ABS-KEY(“drone*” OR “aerial” OR
“ship*” OR “inventory” OR “waste” OR “airport” OR “sensor*” OR “wireless”)). In TRID, the
following search string was used: “vehicle routing” AND (“energy” OR “fuel” OR “emission*”).

Figure 1. Flow diagram of the systematic literature review process, where REMOVE is the number of

excluded studies in each step, and TOTAL is the remaining studies after removal

The initial search in the three databases combined with the selected work from the scoping review
resulted in a total of 1164 studies. After removing 387 duplicates, 777 studies entered the screening
process. In this process, we skimmed the studies in two steps while implementing the inclusion and
exclusion criteria; as a result, 80 studies advanced to the first eligibility step. These studies were read in
full text and data from each paper were mapped into a matrix with relevant categories, such as VRP vari-
ant, energy consumption model and ECR class. From the papers read in full text, we removed 37 studies
because they did either mainly focus on solution algorithms or lacked vehicle-specific properties in the
problem formulation. In the last eligibility step, non-peer reviewed studies were controlled by forward
and backward citation analysis to ensure quality control. Lastly, the final 43 studies were included in the
analysis step with data extraction, synthesis and writing process, from which seven studies originated
from the initial scoping review process.

3 RESULTS
In the following section, we aim to shed light on essential elements to consider in the modelling process
of real vehicle usage of DMVs in VRPs.
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3.1 Vehicle routing problem variants for modelling driverless multipurpose vehicles

We found that there existed several variants of VRPs that included detailed vehicle-specific properties
and were relevant for modelling real usage of DMVs. The most relevant VRP variant was the Electric
Vehicle Routing Problem (EVRP) since DMVs are envisioned to primarily be built on a battery elec-
tric vehicle architecture platform. The EVRP is similar to the classical VRP formulation but includes
properties related to electric vehicles and their performance, such as range, battery capacity, recharging
strategy and charging locations (Xiao et al., 2021).
Other relevant variants were the Green Vehicle Routing Problem (GVRP) (Macrina et al., 2019b), the
Pollution Routing Problem (PRP) (Bektaş and Laporte, 2011) and variants that included hybrid vehicles,
such as plugin-hybrid and fuel-cell electric vehicles (Bahrami et al., 2020). Although many of these vari-
ants were not directly simulating battery electric vehicles, they tended to include energy/fuel consump-
tion models and environmental aspects in the problem formulation that might be useful in an EVRP.
Hatzenbühler (2022) suggests that the variants: Truck and Trailer Routing Problem (TTRP), Swap Body
Vehicle Routing Problem (SB-VRP) and Dial-a-Ride Problem (DARP) may be useful in the modelling
of modular vehicles that allow for sequential or simultaneous transport of goods and passengers.
The last variants that might be beneficial in the modelling of DMVs were the vehicle customisation-
routing problem (Ghandriz et al., 2021), the packing-routing problem (Krebs and Ehmke, 2021) and
location-routing problem (Dukkanci et al., 2019; Hulagu and Celikoglu, 2022). In these problems,
instead of making two decisions independently which can lead to suboptimal solutions, the vehicle
customisation, the loading and stability of the vehicle or the location of charging stations are integrated
into the routing formulation.

3.2 Factors affecting real vehicle usage and energy consumption

Real vehicle usage may be defined as the real-world behaviour of a vehicle during its use. Many different
factors from various scales and categories affect vehicle operations. A vehicle’s energy consumption is
closely related to its usage since most of the factors affecting energy consumption also affect real vehicle
usage. As a result, we used these terms almost interchangeably. The main difference is that energy sup-
ply infrastructure, such as charging stations, does not directly affect energy consumption of individual
vehicles. However, it is often necessary to include energy supply infrastructure to model real vehicle
usage of electric vehicles.
Several studies categorised factors that affect fuel and energy consumption into various combinations of
the following aspects: driver, vehicle, road, traffic, environment, weather and operations (Demir et al.,
2014; Romano et al., 2022). We organised the factors that affect real vehicle usage of electric vehicles
into three main categories: driver related, vehicle related and transport system-level related as shown in
Figure 2. The transport system level was divided into five subcategories: mission, road, traffic, weather
and supply. The supply category referred mainly to aspects related to energy and service supply, such
as charging stations and service depots for DMVs. The vehicle category was divided into the subcat-
egories of properties and performance. We did not focus on the driver-related aspects because DMVs

Figure 2. Factors affecting real vehicle usage, where charging stations (CS), recharging (RC)
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are envisioned to be self-driven at level-5 autonomy or similar. It is well established in the VRP litera-
ture that energy consumption of electric vehicles mainly depends on the factors: total vehicle mass
(vehicle mass, payload mass), speed, acceleration/braking, aerodynamics (drag coefficient, vehicle
frontal area, air density), efficiencies (e.g. driveline, motor), road properties (rolling coefficient, road
grade) (Demir et al., 2014; Goeke and Schneider, 2015; Basso et al., 2019). Additional influential fac-
tors are: rotational inertia (Abousleiman et al., 2017), ambient temperature (Rastani et al., 2019), vehicle
auxiliary power (e.g. air conditioning, heating system) (Basso et al., 2019), congestion (Figliozzi, 2010;
Franceschetti et al., 2013), regenerative braking (Abousleiman et al., 2017), battery characteristics
(e.g. battery depreciation) (Zang et al., 2022).

3.3 Energy consumption models

A large portion of the VRP literature included emission, fuel and energy consumption models. Even
though fuel consumption and emission models were mostly related to internal combustion engine pow-
ered vehicles, parts of their formulations could often be used in energy consumption estimates. In the
literature, the models were frequently organised into the categories of factor, macroscopic, mesoscopic
and microscopic models (Demir et al., 2014; Behnke and Kirschstein, 2017; Basso et al., 2019).
Factor models are the simplest models that only use conversion factors (e.g. kWh/km), which are mul-
tiplied with the amount of activity (Basso et al., 2019). These models are closely related to macroscopic
approaches. Macroscopic models focus on the scale of networks or fleets and use aggregate network
parameters, such as average speed to estimate emissions and other parameters (Demir et al., 2014).
Microscopic models also called instantaneous or modal models in the literature are more complex.
They estimate the instantaneous (i.e. second-by-second) energy/fuel consumption and emission rates
at a more detailed level (Demir et al., 2014). A common microscopic model used in VRPs is called
Comprehensive Modal Emission Model (CMEM) (Demir et al., 2011). In contrast to macroscopic and
microscopic models, we found that mesoscopic models were less clearly defined in the literature, but
they are expected to lie between the two other model approaches.

3.4 Classi�cation of energy consumption rate edge behaviour

VRPs are described mathematically by graphs consisting of connected nodes and edges. Consequently,
the way properties are specified along and between edges becomes crucial. The ECR edge behaviour
is a key property to consider in order to model real-world vehicle operations of DMVs in VRPs. In the
review by Xiao et al. (2021), they divide the ECR edge behaviour into three classes. In this paper we
extended their classification by analysing a larger body of literature and divided the ECR edge behaviour
into five classes as presented in Figure 3. Our ECR classification divided studies into classes based on
the approach they used to determine the ECR edge values. Note that for all classes the final ECR value
is constant along an individual edge during the vehicle routing solution process.

Figure 3. Classification of energy consumption rate edge behaviour

ICED23 389

https://doi.org/10.1017/pds.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.39


In class A, the ECR is assumed to be a fixed value for all edges in the graph. This is identical to say that
the energy consumption is proportional only to the distance travelled.
In class B, the ECR is computed for each edge depending on the changing design variables dur-
ing the vehicle routing solution process, resulting in different ECR values for all edges in the graph.
Additionally, in this class, problems that involve more complexity such as time-dependent problems
(Franceschetti et al., 2013) and speed optimisation (Demir et al., 2012) may be included, as long as they
do not compute several ECR values along an edge.
In class C, the ECR is estimated based on an approach that divides each individual edge into a few
segments, often two to five segments with a corresponding simple driving cycle. This approach allows
the ECR to vary along each edge in a linear/non-linear manner. It is common that this approach occurs
as a pre-processing step before the actual vehicle routing solution process. Additionally, the ECR edge
values are also influenced by the changing design variables during the solution process as in class B.
In class D, the ECR is determined similarly to either class B or C but is extended to be stochastic. Several
of the factors influencing energy consumption are uncertain. This class therefore includes probabilistic
energy consumption estimations and may involve machine learning techniques.
In class E, the ECR is computed similarly to class C; however, in this case each edge is divided into
small segments. As a pre-processing step, the ECR is determined for every second for each edge based
on the corresponding real-world driving cycle. This approach shares similarities with longitudinal vehi-
cle dynamics models that use driving cycles to estimate energy consumption and vehicle performance.
Tables 1 and 2 present together the summary of the ECR classes, VRP variants, energy consumption
models, vehicle-specific design variables and transport system-level factors used in the reviewed lit-
erature. The distribution of ECR classes ranged as follows: B-52%, A-21%, C-14%, D-10%, E-3.0%.
The ECR class B was frequently implemented in combination with a microscopic energy consumption
model. Almost 70% of the EVRP studies used a microscopic model. Approximately half of the studies
considered the design variables payload mass (L) and speed (S) in their problem formulations. In addi-
tion, nearly all EVRP variants included road and supply transport system-level factors, while only one
EVRP study took weather effects into account.

Table 1. Review of the literature with focus on the variants: GVRP, PRP, ELRP and GLRP

Reference Class Variant Model Variable

Yu et al. 2021 B GVRP Micro L, G

Macrina et al. 2019b C GVRP Micro L, S, A, E, VT

Macrina et al. 2019a A GVRP Factor -

Kancharla and Ramadurai 2018b E GVRP Micro L

Erdoğan and Miller-Hooks 2012 A GVRP Factor -

Figliozzi 2010 B GVRP Macro S

Kara et al. 2007 B GVRP Factor L

Koç et al. 2014 B PRP Micro L, S, VT

Franceschetti et al. 2013 B PRP Micro L, S*

Demir et al. 2012 B PRP Micro L, S, G

Bektaş and Laporte 2011 B PRP Micro L, S, G

Hulagu and Celikoglu 2022 C ELRP Micro L, S, G

Dukkanci et al. 2019 B GLRP Micro L, S

ECR class (Class), VRP variant (Variant), Energy consumption model (Model), Vehicle-specific design variables (Variable):
Payload mass (L), Speed (S), Acceleration (A), Grade (G), Efficiency (E), Vehicle type (VT), Time-dependent speed (S*),
Stochastic variable (SV).
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Table 2. Review of the literature with focus on EVRPs including transport system-level

factors

Reference RO TR WE SU Class Variant Model Variable

Basso et al. 2022 • • D EVRP Micro L, S, A, G, E

Zang et al. 2022 • A EVRP Factor -

Ding et al. 2022 • • C EVRP Micro L

Basso et al. 2021 • • • D EVRP Micro L, S, A, G, E

Rastani and Çatay 2021 • • B EVRP Micro L

Rastani et al. 2019 • • A EVRP Factor -

Pelletier et al. 2019 • D EVRP Micro L,S,A,G,E,SV

Basso et al. 2019 • • • C EVRP Micro L, S, A, G, E

Kopfer and Vornhusen 2019 • B EVRP Macro L, VT

Zhang et al. 2018 • • B EVRP Micro L, S

Kancharla and Ramadurai 2018a • • B EVRP Micro L

Montoya et al. 2017 • A EVRP Factor -

Murakami 2017 • • B EVRP Micro L, S, A, G, E

Basso et al. 2016 • • • B EVRP Micro L, S*, G, E

Goeke and Schneider 2015 • • B EVRP Micro L, S, G

Conrad and Figliozzi 2011 • A EVRP Factor -

Transport system-level factors: Road category (RO), Traffic category (TR), Weather category (WE), Supply category (SU).
All EVRP studies included the Mission category.

4 DISCUSSION AND CONCLUSION
The purpose of this review paper was to analyse how real vehicle usage of DMVs can be modelled in
VRPs. We identified in the literature five classes of ECR edge behaviour along and between individ-
ual edges, as shown in Figure 3. Additionally, we found that real vehicle usage modelling of DMVs
in VRPs mainly depended on the following elements: VRP variant, energy consumption model, ECR
class, number of vehicle-specific design variables and transport system-level factors.
The EVRP is the most suitable VRP variant to describe DMVs since it includes vehicle and transport
level properties that characterise real usage of DMVs, such as vehicle battery capacity and charging
infrastructure. However, using an EVRP will not automatically describe modular vehicles because they
require additional details in the VRP. Moreover, there exist several modularity concepts of DMVs; thus,
the EVRP must be customised to describe a specific modularity concept. For example, Hatzenbühler
(2022) illustrates this customisation process by combining parts of the variants TTRP and SB-VRP to
describe modular vehicles that consist of a platform module with an exchangeable top module.
In real life, the energy consumption for a moving vehicle changes on a second-by-second basis. As a
result, microscopic models, so-called second-by-second models are the most appropriate energy con-
sumption model to describe real usage of DMVs; additionally, they incorporate more vehicle-specific
properties than factor and macroscopic models. However, as pointed out by Behnke and Kirschstein
(2017), most of the microscopic models used in VRPs are actually simplified microscopic models
(i.e. mesoscopic models) since integrating instantaneous information directly into combinatorial opti-
misation problems tends to be too complex.
In the literature, there are no defined number of vehicle-specific design variables that must be included
in the problem to make realistic energy estimations. Nevertheless, some authors argue that including
vehicle payload mass, speed, acceleration and road grade are essential for a realistic energy consump-
tion model (Kancharla and Ramadurai, 2018b; Macrina et al., 2019b). Less than one fifth of the EVRP
studies considered these design variables together in their formulations as shown in Table 2.
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Selecting the right class of ECR edge behaviour for a specific modelling purpose is essential because it
affects model complexity and accuracy. In the studied literature, it is most common to use ECR classes
A and B, as presented in Tables 1 and 2. In recent years, more elaborate classes have been developed
(C, D, E). These classes provide in general more realistic energy estimations than the classes (A, B)
since they use multiple values of ECR along individual edges to approximate the energy consumption.
Hulagu and Celikoglu (2022) underline that the complexity to estimate realistic energy consumption
stems from the fact that various factors, such as traffic, road and environment must be evaluated together.
In other words, to model real vehicle usage it is important to integrate many of the relevant transport
system-level factors into the model simultaneously. Nearly all EVRP studies in Table 2, include mis-
sion, road and supply transport system-level factors. At most, the studies by Basso et al. (2016, 2019,
2021) include four out of five factors in the problem. On the other hand, real-world vehicle usage mod-
elling does not only depend on the number of transport system-level factors included but also on how
they are implemented into the problem. In general, good models tend to balance simplicity, validity and
robustness, which needs to be considered when selecting factors and other modelling aspects.
Finally, we give an example on how to think more holistically about the findings from this study.
If the purpose is to make the most accurate energy consumption predictions of DMVs with VRPs,
then we recommend to select ECR class (C, D, E) along with a microscopic model with multiple
design variables (L, S, A, G, E) and to include several transport system-level categories, similar to
the approaches in the studies Pelletier et al. (2019); Basso et al. (2021). If the purpose is to integrate
the vehicle-specification process and routing, similar to the vehicle customisation-routing problem by
Ghandriz et al. (2021), then we recommend to use a lower ECR class (A, B, C) that can give a sufficient
energy consumption accuracy, coupled with a microscopic model that include two design variables
(L, S) and two or three transport system-level factors. Integrated problems tend to be more complex
than classical VRPs since they consider two domains in one formulation, hence a lower ECR class,
fewer design variables and transport system-level factors may be feasible.
The findings from this study can support decision-making in the modelling process to select the most
suitable combination of elements, and their level of detail for the overall modelling aim and purpose.
The main limitation is that the systematic literature review was performed by one person, despite the
recommended procedure to be more than one to reduce bias and error. A further study may develop a
vehicle customisation-routing problem based on an EVRP variant tailored for DMVs characteristics, so
that the next generation of vehicles may become more properly specified for their real use.
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