## COLOURED GRAPHS: A CORREGTION AND EXTENSION

R. C. READ AND E. M. WRIGHT

Let $M_{n}=M_{n}(k)$ be the number of graphs on $n$ labelled nodes, each node being coloured with one of $k$ colours. Every pair of nodes of different colour can be joined or not joined by an edge; no pair of nodes of the same colour can be so joined. We write $F_{n}=F_{n}(k)$ for the number of these graphs in which all $k$ colours are used and $f_{n}=f_{n}(k)$ for the number of these latter graphs which are connected.

If $r_{n}$ is the number of those connected graphs on $n$ labelled nodes which have some property P and if $R_{n}$ is the number of graphs on $n$ labelled nodes each of whose connected components has property P , we have

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} \frac{R_{n} X^{n}}{n!}=\exp \left(\sum_{n=1}^{\infty} \frac{r_{n} X^{n}}{n!}\right) \tag{1}
\end{equation*}
$$

by [1]. Hence, if we write $m_{n}$ for the number of connected graphs on $n$ labelled nodes, each node being coloured with one of $k$ colours, we have

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} \frac{M_{n} X^{n}}{n!}=\exp \left(\sum_{n=1}^{\infty} \frac{m_{n} X^{n}}{n!}\right) \tag{2}
\end{equation*}
$$

But (1) is not true with $r_{n}=f_{n}, R_{n}=F_{n}$, that is, we cannot equate the two expressions

$$
1+\sum_{n=1}^{\infty} \frac{F_{n} X^{n}}{n!}, \quad \exp \left(\sum_{n=1}^{\infty} \frac{f_{n} X^{n}}{n!}\right)
$$

as we erroneously assumed in $[3 ; 4]$. For a graph may use all $k$ colours although some of its connected components use fewer than $k$ (consider, for example, a graph with $k$ nodes, each coloured differently, and no edges). Hence [3, (8) and (9)] do not hold, nor does [4, (1.3)].

We can however easily find a method of calculating $f_{n}$. We have, obviously,

$$
m_{n}(k)=\sum_{s=1}^{k}\binom{k}{s} f_{n}(s)
$$

since we may choose $s$ colours out of $k$ in $\binom{k}{s}$ ways and $m_{n}(k)$ enumerates connected graphs using all of every possible set of $s$ colours for all $s$ such that $1 \leqq s \leqq k$. From this we can deduce that

$$
\begin{aligned}
\sum_{s=1}^{k}(-1)^{k-s}\binom{k}{s} m_{n}(s) & =\sum_{s=1}^{k}(-1)^{k-s}\binom{k}{s} \sum_{t=1}^{s}\binom{s}{t} f_{n}(t) \\
& =\sum_{t=1}^{k} A_{k t} f_{n}(t),
\end{aligned}
$$

[^0]where
$$
A_{k t}=\sum_{s=t}^{k}(-1)^{k-s}\binom{k}{s}\binom{s}{t}=\binom{k}{t} \sum_{s=t}^{k}(-1)^{k-s}\binom{k-t}{s-t},
$$
so that $A_{k k}=1$ and
$$
A_{k t}=\binom{k}{t}(1-1)^{k-t}=0 \quad \text { if } t<k
$$

We then have

$$
\begin{equation*}
f_{n}(k)=\sum_{s=1}^{k}(-1)^{k-s}\binom{k}{s} m_{n}(s) . \tag{3}
\end{equation*}
$$

This could also be found by the Exclusion Theorem [2, Theorem 260].
From (2) we can deduce that

$$
\begin{equation*}
M_{n}=m_{n}+\sum_{s=1}^{n-1}\binom{n-1}{s-1} m_{s} M_{n-s} \tag{4}
\end{equation*}
$$

From this we can calculate $m_{n}(k)$ from $M_{s}(k)(1 \leqq s \leqq n)$ and then, by (3), $f_{n}(k)$ from $m_{n}(s)(1 \leqq s \leqq k)$.

We have thus corrected $[3, \S 4]$, the only section of that paper in error, and have shown how to calculate $f_{n}(k)$ and, incidentally, the newly introduced $m_{n}(k)$.

We now turn to correct [4]. The proof in that paper, that

$$
\begin{equation*}
F_{n}=M_{n}\left\{1-O\left(e^{-A n^{2}}\right)\right\} \tag{5}
\end{equation*}
$$

as $n \rightarrow \infty$ is still valid, since it does not involve [4, (1.3)]. Again, from (4) of the present paper, we can deduce that

$$
\begin{equation*}
m_{n}=M_{n}\left\{1-O\left(e^{-A n}\right)\right\} \tag{6}
\end{equation*}
$$

just as we deduced a similar result for $f_{n}, F_{n}$ from the erroneous equation [4, (1.3)].

Next we remark that $M_{n}-m_{n}$ is the number of disconnected coloured graphs on $n$ labelled nodes and $F_{n}-f_{n}$ is the number of these graphs which use all $k$ colours. Hence

$$
0 \leqq F_{n}-f_{n} \leqq M_{n}-m_{n}
$$

and so

$$
\begin{array}{r}
0 \leqq M_{n}-f_{n}=M_{n}-F_{n}+F_{n}-f_{n} \\
\leqq\left(M_{n}-F_{n}\right)+\left(M_{n}-m_{n}\right)=M_{n} O\left(e^{-A n}\right)
\end{array}
$$

by (5) and (6). From all this and the results of [4] we can deduce the following theorem.

Theorem. $M_{n}, m_{n}, F_{n}$, and $f_{n}$ each have the same asymptotic expansion, viz.

$$
\begin{equation*}
\left(\frac{k}{n \log 2}\right)^{(k-1) / 2} k^{n} T\left(K n^{2}\right)\left\{\sum_{n=0}^{H-1} C_{h} n^{-h}+O\left(n^{-H}\right)\right\}, \tag{7}
\end{equation*}
$$

where $T(\theta)=2^{\theta}$ and $C_{h}=C_{h}(k, a)$ depends on $k, h$, and the residue $a$ of $n(\bmod k)$, but not otherwise on $n$.

We have thus restored (and indeed added to) the results of [4]. If we allow any two nodes of different colours to be "joined" in $j$ different ways as in [5], i.e. we may not join them, we may join them by a red edge, by a blue edge, and so on, then $M_{n}, m_{n}, F_{n}$, and $f_{n}$ still have the same asymptotic expansion, viz. that given in [5, Theorem 2], that is (7) above with $\log j$ replacing $\log 2$ and $T(\theta)=j^{\theta}$.

We add tables of $m_{n}(k)$ and $f_{n}(k)$.
Values of $m_{n}(k)$

| n | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| k |  |  |  |  | 0 | 0 |  |
| 1 | 1 | 0 | 0 | 0 | 0 | 6062 | 134526 |
| 2 | 2 | 2 | 6 | 38 | 390 | 668526 | 43558242 |
| 3 | 3 | 6 | 42 | 618 | 15990 | 10015092 | 1199364852 |
| 4 | 4 | 12 | 132 | 3156 | 13698 |  |  |
| 5 | 5 | 20 | 300 | 9980 | 616260 | 65814020 | 11878194300 |
| 6 | 6 | 30 | 570 | 24330 | 1956810 | 277164210 | 67774951650 |
| 7 | 7 | 42 | 966 | 50358 | 4999050 | 885312162 | 274844567886 |
| 8 | 8 | 56 | 1512 | 93128 | 11008200 | 2343695816 | 884716732812 |
| 9 | 9 | 72 | 2232 | 158616 | 21761640 | 5417215272 | 2411955530712 |

Values of $f_{n}(k)$

| n | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| k |  |  |  |  |  |  |  |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 2 | 6 | 38 | 390 | 6062 | 134526 |
| 3 | 0 | 0 | 24 | 504 | 14820 | 650340 | 43154664 |
| 4 | 0 | 0 | 0 | 912 | 75360 | 7377360 | 1025939040 |
| 5 | 0 | 0 | 0 | 0 | 87360 | 22363200 | 6315607200 |
| 6 | 0 | 0 | 0 | 0 | 0 | 19226880 | 13627111680 |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 9405930240 |

## References

1. E. N. Gilbert, Enumeration of labelled graphs, Can. J. Math. 8 (1956), 405-411.
2. G. H. Hardy and E. M. Wright, Introduction to the theory of numbers, 4th ed. (Oxford Univ. Press, Oxford, 1960).
3. R. C. Read, The number of $k$-coloured graphs on labelled nodes, Can. J. Math. 12 (1960), 410-414.
4. E. M. Wright, Counting coloured graphs, Can. J. Math. 13 (1961), 683-693.
5. -Counting coloured graphs. II, Can. J. Math. 16 (1964), 128-135.

Computing Centre,
University of the West Indies,
Kingston, Jamaica;
University of Aberdeen, Aberdeen, Scotland


[^0]:    Received March 26, 1969. The research of the second author was sponsored by the United States Government.

