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Decay of linkage disequilibrium in a finite island model
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Summary

Time-dependent behaviour of linkage disequilibrium when there was initial linkage disequilibrium
is studied in a finite island model assuming neutrality. Explicit expressions for linkage
disequilibrium parameters are obtained. From these expressions, the initial and the ultimate decay
rates of linkage disequilibrium parameters are found to be increased and decreased, respectively,
by finiteness of the population when recombination rate, migration rate and inverse of
subpopulation size are of comparable order. Thus, linkage disequilibrium created in the past may
persist longer in smaller subdivided populations. Also, differentiation of the gametic parameter of
linkage disequilibrium among subpopulations is found to diminish quickly compared to the linkage
disequilibrium in the whole population. Implications of these results for the interpretation of
linkage disequilibria in natural populations are discussed.

1. Introduction

The coefficient of linkage disequilibrium, D, is a
measure of non-random association of alleles at
different loci. This quantity can be measured in
natural populations and sometimes used as a device to
detect selection (e.g. Mukai, Mettler & Chigusa, 1971;
Miyashita & Langely, 1988). Consider two neutral
loci for which the recombination rate between them is
. r. The coeflicient of linkage disequilibrium decays
with a rate of 1—r in an infinite random mating
population. If the population has a finite size, the rate
becomes 1—r—1/(2N) as shown by Wright (1933).
Thus, the finiteness of the population size increases
the rate of decay by 1/(2N).

Nei & Li (1973) showed that the ultimate rate of
decay in a structured population with two infinite
subpopulations is the larger of 1 —r and 1 —m(2 —m),
where m is the migration rate between the two
subpopulations. Thus, if the migration rate is smaller
than the recombination rate, the decay of linkage
disequilibrium is much slower than that in the random
mating case. Later this result was extended to the case
of the stepping stone model (Feldman & Christiansen,
1975).

In the present paper, I investigate the effect of finite
population size on the decay rate of the linkage
disequilibrium in the finite island model. I found that
when r, m and 1/(2N) are of comparable order, the
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ultimate decay rate is decreased by the finiteness of the
population while the initial rate is increased. The
ultimate decay rate determines how quickly linkage
disequilibrium diminishes in the population in a long
run and thus linkage disequilibrium may persist longer
in smaller populations.

2. Model

A finite island model with discrete generations is
assumed. There are n subpopulations each with equal
size¢ N. In each subpopulation, individuals mate
randomly and random union of zygotes (Kimura,
1963; Watterson, 1970) is assumed.

(i) Two-locus gene frequencies and linkage
disequilibrium parameters

I consider two loci and call them the first and the
second locus, respectively. There are two alleles 4, a
and B, b at the first and second loci, respectively. One-
gene frequency p,(p,) defined as probability of a
sampled gamete having the A(B) allele at the first
(second) locus, is constant through time. I define two-
gene frequencies as probabilities of sampled gametes
having the A allele at the first locus and the B allele at
the second locus. First, I consider linkage dis-
equilibrium in the whole population. In the island
model setting, there are three ways in which two genes
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at two loci are located. Two genes are on the same
gamete, on different gametes in the same sub-
population, or on two gametes in different sub-
populations. I designate gene frequencies for the
respective arrangements as P, P, and P,
respectively. Accordingly, two linkage disequilibrium
parameters are defined,

Dy,g=Pp—P,p
DA,B = PA,B_PAIB
In the following, the time-dependent behaviour of
these parameters is investigated when there is initial

linkage disequilibrium. The parameters at generation
t are expressed by adding subscript ¢ to them.

(gamete)
(subpopulation). (1)

(ii) Changes of gene frequencies

Alleles are assumed to be neutral with respect to
selection (Kimura, 1968). Mutation is assumed to be
negligible for the time span considered here. When
zygotes are formed, each gamete is sampled from the
same subpopulation as its parent or the whole
population with a probability 1 —m or m, respectively.
Here, I define migration rate m in such a way that a
migrant is from the same subpopulation with a
probability 1/n in order to simplify later expressions.
Then, transition equations for Ps are,

PABL+1=(1“")PAB¢+’PA,B¢ \
P 1
PA,Bt+1 =(1 _kl m*) [‘leﬁ+(l —?ZTV) PA,B:]
+kymy Py g 2

m,| P 1
PAIB£+1 = 7*[ 2/';;'*'(1 "ﬁ) PA,BL]

m
+ (1 —7*) Py J
where k, = (n—1)/n and m, = m(2—m). From this

expression, the transition of the two linkage dis-
equilibrium parameters, D ,, and D, g, is expressed as

D, = D, 3)
where
D= (DAB’ DA.B)I
and

1—-k,m

Imr——n— k.
T =
1—my 1—m
2N *

I designate a transpose of a matrix or a vector by
attaching a prime.
The eigenvalues of the matrix T are

C,+vC C,—+vC
h=TE =TS @
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where

kymy
2N

_ 1 k,m\t  4k,m,(1—m,)
CQ—(V+2—A—/. my — 2N) AN .

The transition equation (3) can be solved and the
resulting expressions for the linkage disequilibrium
parameters, D, and D, p,, at generation ¢ using the
eigenvalues are

C,=2—r —m, +

"2N

1
D,y = /\—__A_[(dl/\tl_d‘z/\g) D g
1 2
2Nd, dy(A3—AY }
+—F——=D ) . 5
1_m* A, BO )
1 [(=m)X —AL)
DA,B! = )\1_’12[ *ZNI 2 D g
+(d, As—d,2) D, BO] , (6)
where
d,=m,+A,~1.

When the size of the subpopulations approaches
infinity (N->00), the expressions approach those for
infinite populations,

kymJ(1—r)—=(1 —m,)]

Dp=(1=r)D,p+ (m, —1) D, pos
()

Dy p=1—-m) D, g, (3)

since lim,_ 2Nd d,/(1 —m,) = —k m,. Whereas

D, , = 0ifitis initially zero in infinite populations, it
is not zero in finite populations since D, p, includes
the term due to D .

(iii) Rate of decay

Rates of decay of the linkage disequilibrium para-
meters are one minus the eigenvalues of the matrix T,
A,. Since the system has two eigenvalues, there are two
rates of decay, the smaller and the larger. The smaller
one (1 —the largest eigenvalue) is called the ultimate
rate of decay since the linkage disequilibria decay at
this rate in the later phase. I tentatively call the larger
one (1—the smallest eigenvalue) the initial rate of
decay. Note that the initial rate defined here does not
necessarily reflect the initial decay rate because both
eigenvalues contribute to the change of linkage
disequilibria in the initial phase. However, as shown
later, the difference between the two rates is very large
when N is small. In this case, the initial phase is
dominated by the smaller eigenvalue unless the initial
vector is close to the eigenvector corresponding to the
larger eigenvalue and the naming seems relevant.
When the subpopulation size N is large, A, are written
as

1 1
rro[ )t -merolgy) .
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Fig. 1. The ultimate (@) and initial () rates of decay of
linkage disequilibrium as a function of 1/(2N). Other
parameters are m = 0-0005 and » = 10.

When N is infinite, these coincide with those obtained
by Nei & Li (1973).

Interesting cases are found when the three para-
meters, m,, 1/(2N) and r, are comparable and much
smaller than one. Note that the diffusion approxi-
mation is valid in this range and the following results
can be extended to cases with the same relative values
among m, 1/(2N) and r by an appropriate time
scaling (Crow & Kimura, 1970). The ultimate rate of
decay of linkage disequilibrium as a function of N is
shown in Fig. 14 for several values of m,, r and n. As
the subpopulation size decreases, the ultimate decay
rate becomes smaller especially when 1/(2N) becomes
larger than m/10 or r/10. In other words, the ultimate
decay of linkage disequilibrium becomes slower. For
example, when N = 50, r = 0-001, n = 10 and m, =
0-0005, the ultimate decay rate is 0-000169 while it is
0-001 when N is infinite. Thus, the ultimate rate of
decay is decreased six-folds in the finite population in
this example. The initial rate of decay (1 —the smaller
eigenvalue) of linkage disequilibrium is shown in Fig.
15. The initial rate starts to increase from that in the
infinite populations when 1/(2N) becomes larger than
0-01 in this example. If m and r are much smaller than
1/(2N), the rate is approximately 1/(2N). Until
1/(2N) becomes much larger than m and r, the rate
does not change much as 1/(2N) increases. This
contrasts with the situation in the ultimate rate. Also
the effect of changing r on the initial rate is small.
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(iv) Two-gene frequencies

Two-gene frequencies are computed from the linkage
disequilibrium parameters since the following sum is
constant through time:

C = P,y +2NrP, ,+2Nr(n—1) P 5. (10)

Using this constant and linkage disequilibrium para-
meters, the two-gene frequencies are

2Nr
Pip, =m[nDABt+(n—l)DA,Bt+C]’ (11)
1
PA.BL =M{DABL+2Nr[(n_1)DA,Bt+C]}’ (12)
1
PAIB! = M[DA&—(ZNI‘+1)DA‘B,+2NrC]. (13)

In the equilibrium state, the population becomes
monomorphic and the final two-gene frequencies are
all equal.

_p 2NrC

ABo I Npn+1

A.Bx

P

4B (14
This is the fixation probability of the AB gametes
when the initial condition is given by P, o, P, 5o, Paso
(Kimura, 1963).

(v) Linkage disequilibria in each subpopulation

Only the whole population was considered thus far.
However, sometimes the frequencies in each sub-
population are of interest. Let p!, (py) be the
probability that a gamete sampled from the ith
subpopulation has the allele 4 (B) at the first (second)
locus. Since neutrality of alleles is assumed, the
average, p, = Z,p',/n, does not change through time.
The change of p', is described by

piu = (1 _m)p;t'*'mpm (15)
whose solution is
Pl = =—m)(plo—p)+pa (16)

For two genes at different loci there are again three
types of gene arrangement, i.e. two genes on the same
gamete, on different gametes in the same sub-
population and on different gametes in different
subpopulations, but now the two-gene frequencies
have superscripts to indicate from which sub-
populations the two genes are sampled. Thus, P, and
P!, g are the probabilities that two genes on the same
gamete, and two genes on different gametes from the
subpopulation i are 4 and B, respectively. PY, is the
probability that a gene at the first locus sampled from
subpopulation i and another gene at the second locus
sampled from subpopulation j (i ) are 4 and B,
respectively. Define P, as

1
Plus = 2n—1)

2 (Plp+ Plp)- an

si
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Let P! be a vector form of these gene frequencies.
Pi = (P;Bn PiA,Bt’ PiﬂBt),' (18)

The transition equation can be expressed in a vector
form as

P, =M, P;+QP, 19)
where
(1-)
(1_(n—2)m)_l__
M, =(1-m) n 2N
(n—2)m
2Nn(n—1)
r 0
(1_(n—2)m)(1_i> 2(n—1)ym
n 2N n
w(l_i) 1 2m @0
n(n—1) 2N Tn
and
m(l—r) mr
m? m"’(l 1
Q= 2Nn n _fv)
m (1 m) m (1 m (1 1
n—1\" n) 2N(n-1) —?) _fv)
0
n—1)m?
" 1)

=

If P is subtracted from both sides of (19), the
transition equation is

(P:+1 - Pt+1) = Mi(P: - Pz-) (22)

Since the Ps are already known [see (11)—(13)], I can
compute Pis from this transition equation. Although
it is possible to write down the solution explicitly, here
I just show eigenvalues #, (i = 0, 1, 2) of the matrix M,,

e =1—m,

1—m 1—-m
n=—gEAVE). =STERVE) (9
where

1 )
= 2—~2—A—[—m—r +k,am,
1 k,m\® 4k, m(1—-m)
Fz—(ﬁ+r—m— 2N) + N (24)

n—2

=12 |

7, 1s the largest among #s. Pis are represented by a
linear combination of #is and Als. 5, determines the
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rate at which the gene frequency in each subpopulation
approaches that of the whole population.

Define the gametic parameter of linkage dis-
equilibrium, D', ;, within a subpopulation as,

Diy=Ps—P, p (25)
Define a function of gene frequencies,

: 2(n—1
Shu=Prw— D p,, 26)

Let T, be a matrix defined as

1—k,m
2N k,m
1—m 1

27

1—r—

T,=(1-m)

Then, the transition equation for D} = (D, S, ;) is
expressed as

(D;,,—D},) = T(D;{—D}), (28)
where

2(n—1
Sip= PA,B—(n—_z—)PAIB, D*=(D,,;, S, (29

Eigenvalues of T, are %, and 7,. D', is obtained
explicitly from this equation as a linear combination
of 7, 73 and D ,p,,

1—m) E,S
Di — ( E D _ 2 %0 ¢
o /E R/ { ! [ *a(l _m)] ?h

B )b,
where
E = ﬁ—‘m—l +m, Dyo = Dipo—Dapos

and Sy, = S%po— Suso- 1)

A, is shown to be larger than 4, when m, r, 1/(2N) are
much smaller than one. Thus, the linkage dis-
equilibrium, D, within a subpopulation i first
approaches D, and then approaches zero at the rate
1—A,. The solution (31) shows that the terms due to
7% and 7, represent the differentiation of gametic
linkage disequilibrium within a subpopulation from
its population mean. Since #s are smaller than As for
small m, r, 1/(2N), the differentiation of gametic
linkage disequilibrium generally decays faster than D
does.

(vi) Differentiation of two-gene frequencies

The two-gene frequencies, P, P, 5 P, differ
among subpopulations. Define differentiation of these
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Example P,go P, g P,4|Bo Py P;,Bo Pf-ﬂBo

1(1<i<g5) 05 05 2/9 1 1 4/9
6<i<10) — — — 0 0 0

2(1<ig?h) 3/4 249974000 5/9 1 1 13/18
6<ig10) — — — 1/2 499/2000 7/18

two-gene frequencies from those in the whole popu-
lation as

FLB = P;B—PAB’ (32)
F/it,B = PL,B_PA.B’ (33)
Fjﬂg = P;lB—PA,B. (34)

F,p and F, ; represent the gametic and sub-
populational differentiations and correspond to %
and ,%, respectively, of Tachida & Cockerham (1986).
Furthermore, the sums of squares of F,; and F} ,
over subpopulations correspond approximately to
D and Dg,, respectively, in Ohta (19824). In-
cidentally, the sum of squares of D%, and the square
of D, correspond approximately to D, and Dy,
respectively, in Ohta (1982a).

The transition equations for Fs are given in (22) and
thus the largest eigenvalue for F is 1 —m. Therefore,
the magnitudes of F relative to those of D in the later
stage depend on the relative values of t —m to A,, the
largest eigenvalue for D. As shown in Fig. 1, if r is
smaller than m/2 or if N is small, 1 —m is smaller than
A,. In these cases, F parameters decay faster than D
parameters and the Fs are expected to be smaller than
the Ds in the later stage.

(vii) Examples

A few examples will illustrate the behaviour of the
gametic parameter of linkage disequilibrium and the
differentiation of two-gene frequencies. In the fol-
lowing examples, parameters assumed are n = 10, N
= 500, m = 0001, r = 0-001. Thus, the eigenvalues
are

A, = 0999341, A, =0996661, 7, = 0998525
and 7, = 0996479

In the first example, the frequencies of the AB
gametes are one in the first five subpopulations and
zero in the remaining five subpopulations initially.
The initial frequencies are shown in Table 1. The
gametic parameter of linkage disequilibrium within a
subpopulation is

D', = 0186479, —0-186479%.

ABt

This is plotted in Fig. 2. In this case, there is no
differentiation of linkage disequilibrium. The linkage
disequilibrium is initially zero, first increases and then
decreases to zero again. As this example shows, if the
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Fig. 2. Change of the gametic parameters of linkage
disequilibrium. Two initial gene frequencies (example 1
(—) and 2, (-—-), see the text) are used. In the example 2,
three parameters, D, ,, D%, representing those of
subpopulation 1-5 and DS, representing those of
subpopulation 6-10 are different and they are shown.
Parameters are m = 0-001, r = 0-001, 1/(2N) = 0001, n =
10.

initial values of the linkage disequilibrium parameters
are zero, the absolute values of the coefficients of the
two terms due to the two eigenvalues are the same but
the signs are different. The increase of the dis-
equilibrium is caused by the different rates of decrease
in the two terms due to the eigenvalues. Thus, how big
the gametic disequilibrium becomes depends on the
relative magnitude of the two eigenvalues. As shown
in Fig. 1, the finiteness of the subpopulation size
broadens the difference of the two eigenvalues. Thus,
as the size becomes smaller, the maximum gametic
disequilibrium achieved increases, especially when the
size becomes very small (N < 50).

In the second example, the frequencies of the 4B
gametes are one in the first five subpopulations and
one-half in the remaining five subpopulations initially.
The rest of the gametes in the last five subpopulations
do not have the 4 or B gene. As in the first example,
initial frequencies are tabulated in Table 1. The
gametic parameter of linkage disequilibrium in the ith
subpopulation is

DY, = —0-031976 59, —0-093273 5, +0-109 0962}
+001615442;, (1<i<5),
D', = 0031976 5% +0-093273 54 + 0-109 0967,
+00161544A; (6 <i<10).
These are piotied in Fig. 2 with D, ,,. Init
t

fi ll 7
gametic linkage disequilibrium is zero in the

ally,

first
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o

ve
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Fig. 3. Change of D and Fs in the later stage. The
parameters and the initial condition are the same as those
of the example 2 in Fig. 2. The absolute values of Fs are
the same among subpopulations and they are plotted
without a subscript to indicate the subpopulation.

subpopulations and 02505 in the last five sub-
populations. There is differentiation of the linkage
disequilibrium initially. But it diminishes as time
passes and the linkage disequilibrium within each
subpopulation becomes equal. The final rate of
approach to zero is A,.

Finally, the relative magnitudes of Fs and Ds are
compared in the later stage (1000th to 10000th
generations) in the second example (Fig. 3). Although
Fs are larger until up to 4000 generations, the
relationship is reversed after that. In this example,
1—m = 0-999 is smaller than A; = 0999341 and this
is why Fs become smaller than Ds ultimately.

3. Discussion

Linkage disequilibria are generated by various causes
such as admixture of populations, bottlenecks and
selection. If the markers in consideration are neutral,
linkage equilibrium is attained in time. How quickly
linkage equilibrium is attained depends upon the
recombination rate and the mating structure of the
population. In the present paper, I investigated the
time-dependent behaviour of linkage disequilibrium
in a finite island model. I found that the ultimate decay
of linkage disequilibrium is slowed compared to that
in an infinite population and the initial rate is
quickened when r, m and 1/(2N) of comparable
order. This implies that in a population where linkage
disequilibrium was suspected to be generated in the
past and these parameters are of comparable order, it
is likely that linkage disequilibrium would be observed
in samples taken later. The linkage disequilibrium will
persist for generations of the order of the inverse of
these parameters. Since structures of natural popula-
tions are changing in a long time scale, only likely
cause of generating linkage disequilibrium is ad-
mixture of subpopulations which had been isolated
for a long time. In such situations, linkage dis-
equilibrium which is a remnant of the initial linkage
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disequilibrium caused by the past population ad-
mixture may be still persisting now. Nei & Li (1973)
previously pointed out that the decay of linkage
disequilibrium is retarded in a geographically struc-
tured population but the present study shows that this
is more so when the population size is finite. The
acceleration in the initial phase and the retardation in
the later phase due to the finite size is sometimes
significant as seen in Fig. 1. This is in contrast to the
situation in a random mating population where the
decay of linkage disequilibrium is just accelerated by
the finiteness of the population size (Wright 1933).

As noted above, significant retardation in the later
phase of the decay is found when r, m and 1/(2N) are
of comparable order. For allozyme markers, re-
combination rates are usually larger than 0-01. Thus,
we expect to see the effect of finite population size on
the decay of linkage disequilibrium if the sub-
population size is of the order of one hundred or
smaller. Retardation in the later phase would be
observed if the generation of the linkage dis-
equilibrium occurred one hundred generations ago or
so. Such situations might be abundant in recent
human evolution, especially in aboriginal populations
(Smouse, Neel & Liu, 1986). Even in non-aboriginal
populations, linkage disequilibria are sometimes found
for two loci with this magnitude of recombination or
less. For example, Hastbacka et al. (1992) observed
significant linkage disequilibrium between a disease
locus and a polymorphic marker in Finland. The
authors consider that the Finland population was
founded about 2000 years ago and has been isolated
with little migration. The population structure was
thought to have only a small influence on the decay of
linkage disequilibrium in this case since both the
disease allele and the marker allele associated with it
are rare. However, if loci are polymorphic, the
retardation of the decay considered in this paper may
occur in populations with such a structure.

For DNA polymorphisms, the recombination rate
is very small among sites. For example, one centi-
morgan corresponds to about 570 kb on the average
in Drosophila (p. 113 of Fincham 1983). Thus, the
recombination rate between sites 1 kb apart is about
1-7x107%. For such small recombination rates, we
expect to observe larger linkage disequilibria in larger
populations with sizes of the order of 10° and small
migration rates of the order of 107°. Indeed, Langley,
Montgomery & Quattlebaum (1982) and Miyashita &
Langley (1988) found significant linkage disequilibria
among sites several kilobases apart and these might be
remnants of the initial linkage disequilibria generated
more than 10° generations ago.

Recently, Miyashita, Aguade & Langley (1993) and
Schaeffer & Miller (1993) conducted large scale surveys
of linkage disequilibria in Drosophila populations
and found large linkage disequilibria concentrated in
restricted regions of genes. They suggest that selection
rather than the population structure is responsible for
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the large linkage disequilibria based on the following
observations and Ohta (19824)’s suggestion of dis-
criminating effects of selection from those of the
population structure by comparing her statistics, D,
and Dg,: 1. The heterogeneity of D,, among
subpopulations was not found. 2. The differentiation
of two-gene frequencies, D¢ or Dy, is smaller than
the linkage disequilibrium parameter, D, or Di,.
However, the heterogeneity (differentiation) of D,
among subpopulations diminishes quickly for small r,
m, 1/(2N). Furthermore, if r or N is small, F which
approximately corresponds to Dj; or D, decays
faster than D which approximately corresponds to
D, or D, as shown in the present study in the non-
equilibrium state (see Fig. 1). Although the population
structure hypothesis does not explain why the large
linkage disequilibria are concentrated in restricted
regions of the genes, the hypothesis cannot be rejected
based just on the two observations mentioned above if
the Drosophila populations are not in the equilibrium
state. Of course, since we need to assume the non-
equilibrium state and also some specific initial
configuration to explain the pattern, the population
structure hypothesis may not be a parsimonious one.
However, a recent study suggests that the population
of Drosophila melanogaster which is the species
analysed by Miyashita, Aguade & Langley (1993) is
not in the equilibrium state (Begun & Aquadro, 1993)
and the first assumption is satisfied in this species.

Now population data of simple repeated sequences
such as microsatellites and minisatellites are accumu-
lating rapidly (e.g. Valdes, Slatkin & Freimer, 1993;
Shriver et al. 1993). Thus far, only the minisatellite
data collected for DNA fingerprinting have been
analysed with regard to disequilibrium between loci
(Weir, 1992). Since the loci analysed there are not
linked or loosely linked, the population structure will
not affect the decay of linkage disequilibrium in these
loci. However, since microsatellites and minisatellites
are found in various positions in genomes, linkage
disequilibrium between loci which are separated by
various map units can be measured. If we choose a
pair of such loci with the recombination rate com-
parable to the migration rate and the inverse of the
size of the population, we may observe linkage
disequilibrium which is a remnant of the past history
of the population.

In the present formulation, the initial gene
frequencies are given. Sometimes founder populations
are established by sampling gametes from a base
population. In such cases, the initial parameters of
linkage disequilibrium are random variables and the
expectation of the latter can be computed (Cockerham
& Weir, 1973). Since linkage disequilibrium para-
meters at generation ¢ are expressed as linear
combinations of initial linkage disequilibrium para-
meters as shown in (5), (6) and (30), the expectations
of the parameters at ¢ are computed by putiing ihe
expected initial values into these equations. If the
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initial sampling is made randomly, linkage dis-
equilibrium parameters are non-zero only when there
is linkage disequilibrium in the base population.

In the present paper, I investigated the behaviour of
linkage disequilibrium parameters. These parameters
are estimated from samples and the estimators have
variances. In finite populations, the variances of these
estimators are non-zero even if the parameters
themselves are zero (Ohta & Kimura, 1969; Hill &
Robertson 1968; Weir & Cockerham, 1969). The
variance becomes larger in geographically structured
populations in the mutation-drift equilibrium state
where the linkage disequilibrium parameters are zero
(Ohta, 19824, b; Tachida & Cockerham, 1986). Thus,
large variances of estimators of the linkage dis-
equilibrium parameters are expected in the present
situation. In theory, I can compute these variances
deriving transition equations for gene frequencies as
was done in the present paper. But the number of gene
frequencies necessary for the transition equations to
be closed becomes very large and this approach seems
impractical. Different approaches such as computer
simulations are required to evaluate these variances
and this would be a next step toward understanding
the decay of linkage disequilibrium in structured
populations.
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