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Abstract

A pair of multi-objective programming problems is shown to be symmetric dual by
associating a vector-valued infinite game to the given pair. This symmetric dual pair
seems to be more general than those studied in the literature.

1. Introduction

Dorn [6] introduced symmetric duality in nonlinear programming by denning
a program and its dual to be symmetric if the dual of the dual is the original
problem. In the past, the symmetric duality has been studied extensively in the
literature, notably by Dantzig et al. [5], Mond [7] and Mond and Weir [9].

Recently, Weir and Mond [13] studied symmetric duality in the context of
multi-objective programming by introducing a multi-objective analogue of the
primal-dual pair presented in Mond [8]. Although the multi-objective primal-
dual pair constructed in [13] subsumes the single objective symmetric duality
[7] as a special case, the construction of [13] seems to be somewhat restricted
because the same parameter A. e Rp (vector multiplier corresponding to various
objectives) is present in both primal and dual. Further, the proof of the main
duality result in [13] assumes this k to be fixed in the dual problem.

The main aim of this paper is to present a pair of multi-objective programming
problems (P) and (D) with A. as variable in both programs and to establish
symmetric duality by associating a vector-valued infinite game to this pair.
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Although this construction seems to be more natural than that of [13] as it does
not require X to be fixed in the dual problem, it lacks the weak duality theorem
as illustrated in Section 3. However, the case of single objective symmetric
duality [7] is fully subsumed here as well, because (P) and (D) then reduce to
the primal-dual pair of Dantzig et al. [5].

2. Preliminaries and statement of problems

Let R" be an n -dimensional Euclidean space and R^ be its non-negative

orthant. For z, w e R", by z = w we mean z, = u>, for all /, and z < w means

z, = wi for all / and zs > ws for at least one s, I = s — n. By z < w,v/e mean

z, < wi for all i. Let e = (1, 1,..., 1)T € Rp and A = {X e Rp
+ : XJe = 1}.

We now consider the vector-valued two-person zero-sum game G : {X, Y, K},
where

(i) X — x e R"l : Pk(x) — 0, k — 1, 2 , . . . , s is the space of strategies for
player I

(ii) Y = y G R™ : qk(x) = 0, r = 1, 2 , . . . , Ms the space of strategies for
player II

(hi) K.XxY^R" given by K(X, Y) = (Kl(x, y), K2{x, y),..., Kp(x, y)),
is the payoff to player I and — K(x, y) is the payoff to player II.

In this representation it is assumed that player I solves the "min-max problem"
and player II solves the "max-min problem" in the sense of Definition 3 given
below. Also the symbol "V-max" stands for vector maximisation and V-min
stands for vector minimisation.

The following definition will be needed in this sequel.

DEFINITION 1. (Cor ley [1]): A point (x,y) € XxY is said to be an equilibrium
point of the game G if

K{x,y) t K(x,y)forallx e X

andK(x,y) £ K(jc, y) for all y e Y

DEFINITION 2. (Tanino, Nakayama and Sawaragi [12] ) : Let / : / ? " - > Rp.
A point x e X is said to be an efficient solution of the vector maximisation
problem: y-max f(x) over x e X, if there does not exist any x e X such that
fix) > fix).
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DEFINITION 3. (Rodder [10] ): A point (x°, y°) e X x Y is called a solution of
the max-min problem if

(i) y° is an efficient solution of V-mmyeY K(x°, y)
(ii) K(x°, y°) £ K(x, y) for all x e X and y eY.

DEFINITION 4. (Rodder [10]): A point (x°, y°) e X x Y is called a solution of
the min-max problem if

(i) x° is an efficient solution of V-m&xxeX K{x, y°)
(ii) K(x°, y°) t K(x, y) for all x € X and y eY.

DEFINITION 5. (Rodder [10]): A point (x°, y°) e X xY is called a generalised
saddle point if(x°, y°) solves both max-min and min-max problems.

LEMMA 1. (Rodder [10]): The following statements are equivalent.

(i) (JC°, y°) is a generalised saddle point of K(x, y) in X x Y.
(ii) y° solves ^-min^yC*0, y) andx0 solves V-max^x K(x, y°).
(iii) K(x, y°) t K(x°, y°)Vx e X and K(x°, y) £ K(x°, y°)Vy e Y

We now state the following two multi-objective programming problems (P) and
(D) and establish the main duality theorem in Section 3:

(P): V-min(A-,(jc, y)-xJVx[l^K(x, y)],..., Kp(x, y)-x'yV1[nrK(x, y)]),
subject to

V,[/zTi«:(jc,y)] = O, (1)

x = 0, y =O,At e A. (2)

(D): V-min(K,(H, v)-xrS72[ti
xK(u, v)],..., Kp(u, v)-xTW2[n'rK(u, v)]),

subject to

V2[aTK(u, v)} = 0, (3)

M = 0, v=0,aeA. (4)

Here x, u e Rm; y,v e R"; \x, a e Rp; and K : Rm x R" -+ Rp.
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3. Vector-valued infinite game and multi-objective programming

Corresponding to the multi-objective programming problems (P) and (D) as
defined above, we introduce the vector-valued infinite game VG : {S, T, K],
where

(i) 5 = [x e Rm : x = 0} is the strategy space for player I,

(ii) T — {y € R" : y = 0} is the strategy space for player II

and

(iii) K : SxT -* R" defined by K(x, y), is the payoff to player I. The payoff
to player II will be taken as — K(x, y).

The theorems given below give necessary and sufficient conditions for a pair
(x, y) e 5 x T to be an equilibrium point of the game VG.

THEOREM 1. (Necessary conditions): Let (x, y) be an equilibrium point of the
game VG. Then there exists fl e /?+, fl ^ 0 and a € R+, a ^ 0 such that
(Jc, y, /I) and (x, y,a) are efficient to multi-objective programming problems
(P) and (D) respectively.

PROOF. Since (x, y) is an equilibrium point of the game VG, it follows that

K(x, y) £ K{x, y) Vx e 5 (5)

and K{x,y)tK{x,y) VyeT. (6)

Now (5) implies that JC is an efficient solution of the following problem:

{P)-y V- max K(x,y), subject to x = 0.

Hence there exists (Singh [11]) n0 e R+, /x0 # 0 such that

( J ) ] O

Let fx = (/iO//u.Je) so that / i g A .
Since y e T, it follows that (x, y, 71) is feasible for (P) with xTVip,JK(.x, y)=

0. Now it remains to show that (x, y, Jl) is efficient to (P). If possible let (x, y,JZ)
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be not efficient to (P); then there exists 0c0, yo, n) which is feasible for (P) such
that

Ktixo, Jo) - x^dl^Kixo, yQ)] = Kt{x, y) - JTV,[/ITtf (x, y)]

and

Kj{x0, yQ) - x^dnTK(x0, y0)] < Kj(x, y) - xJVx[p?K{x, y)]

for at least j .
The above relations give K(x0, yo) < K(x, y) which contradicts the defini-

tion of a generalised saddle point. Hence (x, y, JC) is efficient to (P). Similarly
from (6), we get that (x, y, a) is efficient to (D).

THEOREM 2. (Sufficient conditions): Let (x, y, J[) and (Jc, y, a) be feasible for
(P) and (D) respectively with

x^V^Kix, y)]=0 = fVAa^KG, y)]

and JI > 0, a > 0. Also let, for each i = 1, 2 , . . . , p, K, be concave-convex.
Then (x, y) is an equilibrium point of the game VG.

PROOF. We have to prove that

K(x,y)£K{x,y) Vx e 5,
K(x, y) t K(x, y) V;y e T.

If possible, let K{x, y) < K(x, y) for some x € S. Therefore p7K(x, y) <
p7K(x, y). Now by the concavity of j!JK at x, we have

(x-x)TVl[iiJK(x,y)}>0

i.e.
x^ii^Kix, y)] > x^di^Kix, y)]. (7)

But (3) together with the hypothesis of the theorem yields

which contradicts (1). Hence K(x, y) £ K(x,y),Vx e S. Similarly we can
show that K(x, y) t K(x, y),Vy e T.

COROLLARY 1. If n > 0 and each Kt is strictly concave at x, then Theorem 2
holds also.

COROLLARY 2. If a > 0 and each Kt is strictly convex at y, then Theorem 2
holds also.
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4. Symmetric duality

In this section, we shall prove a symmetric duality theorem for multi-objective
programming problems (P) and (D). In this context, it may be remarked that the
traditional weak duality theorem [13] does not hold good for multi-objective
programming problems (P) and (D), as illustrated by the following example.

Example: Let

* , (* , y) = -x2 - 30x2
2 + 2y2 + 50j2

2,

K2(x, y) = -3x2 - 0.5x1 + 5jf + 0Ay2
2

where x = (x\,x2)
1 and y = {y\,y{f- Then {x\ = 0.2, x2 = 0.3, ji =

0.0, y2 - 0.0, ^ = 0.25, \i2 - 0.75) and (ux = 0.0, u2 = 0.0, u, = 1.0, v2 =
0.0, «i = 0.5, a2 — 0.5) are feasible solutions for (P) and (D) respectively.
Further for these feasible solutions, the primal and dual objective values for (P)
and (D) are (-1.1225, 1.4525) and (-1.0, 2.0) respectively. But -1.1225 < -1.0
and 1.4525 < 2.0, and so the weak duality theorem between (P) and (D) does
not hold good.

THEOREM 3. (Symmetric Duality): Let (x, y, /Z) be an efficient solution o/(P)
with jl > 0. Assume that the Hessian matrix Vn[p,TK] is negative definite.
Let for each i = 1, 2 , . . . , p, £,(., _y) be concave at x and Kt{x,.) be strictly
convex at y. Then there exists a e R+, a ^ 0 such that (x, y, a) is efficient to
(D).

PROOF. Since (x, y,jZ) is an efficient solution of (P), it is a weak minimum.
Hence there exists £ e R", 8 e Rm, fi e R", y e Rp, rj e Rp such that
(Jc, y, /Z) satisfies the following conditions ([3] and [4]): (For simplicity we
write V,[/IT/n, Vn[AT^] etc. instead of V^pjKix, y)], Vn[/iT#(Jc, y)] etc.
respectively)

) (9)

nlJJ1 K] + «TVl2[£
TA:] -0 = 0, (10)
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t-y,-n = 0, i = 1,2, . . . , p, (11)

8JV[7ZrK] = 0, (12)

PJy = 0, (13)

yJ]Z = 0, (14)

(M,8,p,y)?0, (15)

( § , M , y ) = 0. (16)

Since JL > 0, it follows from (14) that y = 0. Hence (11) becomes

(5-cr*) T V, t f , - i j = 0, i = l , 2 , . . . , p , (17)

where cr = £f=1 ft. (8) and (9) can be rewritten as

V,[(f - a7Z)T/n + (5 - <rx)TVn[£Ttf] = 0, (18)

*TV,[(£ - cr/I)T/n + (S - ax)TVn[jj7K]x = 0. (19)

Now from (16), (18) and (19), it follows that

8 - ax)TV,[(^ - aJC^K] + (8- ax)JVu[fLJK](8 - ax) = 0.

By using (17), the above inequality gives

T T - ax) = 0,

which implies that

(8 - ax)JVn[pJK](8 - ax) > 0.

Since the Hessian matrix Vn[pjK] is negative definite, it follows that

8-ax = 0

=>• 5 = crJc (20)

Let or = 0. Then f = 0 and 5 = 0. Thus from (10) and (17), we have 0 = 0 and
r\ = 0. Hence £ = 0 , 5 = 0, y = 0, £ = 0, r? = 0 contradicts (15). Therefore,
a > 0, i.e. | > 0. Now (10) and (20) imply

V2[f
 T # ] = 0 where f = f/a. (21)
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Also (10), (13) and (20) give

fV2[fK] = 0. (22)

Thus from (21) and (22), it follows that (x,y,%) is feasible for (D) with
yTV2[f

 TA:] = 0. Also from (20) and (12), we have

jTv2[iT/n = o.

Now by applying Theorem 2, we have (x, y) is an equilibrium point of the
game VG. Hence by Theorem 1, there exists a e /?+, a ^ 0 such that (x, y, a)
is efficient to (D). This proves Theorem 3.

REMARK 1. In the case p = 1, the strict convexity ofK(x,.) at y can be replaced
by convexity.

REMARK 2. The symmetric dual formulations of [ 13] as well as the one presented
here are restricted because the former has the same multipliers k and /u, in (P)
and (D) and the latter does not admit the weak duality theorem in general.

Thus the status of symmetric duality in multi-objective programming is not very
satisfactory, and it needs to be studied further.
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