DOUBLE $M S_{n}$-ALGEBRAS AND DOUBLE $K_{n, m}$-ALGEBRAS by M. SEQUEIRA \dagger

(Received 21 November, 1991)
0. Abstract. The variety \mathbf{O}_{2} of all algebras $(L ; \wedge, \vee, f, g, 0,1)$ of type $(2,2,1,1,0,0)$ such that $(L ; \wedge, \vee, f, 0,1)$ and $(L ; \wedge, \vee, g, 0,1)$ are Ockham algebras is introduced, and, for $n, m \in \mathbb{N}$, its subvarieties $\mathbf{D M S}_{n}$, of double $M S_{n}$-algebras, and $\mathbf{D K}_{n, m}$, of double $K_{n, m}$-algebras, are considered. It is shown that $\mathbf{D K}_{n, m}$ has equationally definable principal congruences: a description of principal congruences on double $K_{n, m}$-algebras is given and simplified for double $M S_{n}$-algebras. A topological duality for O_{2}-algebras is developed and used to determine the subdirectly irreducible algebras in $\mathbf{D K}_{n, m}$ and in $\mathbf{D M S}_{n}$. Finally, $M S_{n}$-algebras which are reduct of a (unique) double $M S_{n}$-algebra are characterized.

1. Preliminaries. Algebras $(L ; \wedge, \vee, f, 0,1)$ of type $(2,2,1,0,0)$ such that $(L ; \wedge, \vee$, 0,1) is a bounded distributive lattice and f is a dual endomorphism of ($L ; \wedge, \vee$, $0,1)$ are called distributive Ockham algebras and form a variety. In [1], for $n \in \mathbb{N}, m \in \mathbb{N}_{0}$, the subvariety of Ockham algebras characterized by the equation $f^{2 n+m}(x)=f^{m}(x)$ is denoted by $\mathbf{K}_{n, m}$. Notice that $\mathbf{K}_{n, m} \subseteq \mathbf{K}_{n^{\prime}, m^{\prime}}$ if and only if $n \mid n^{\prime}$ and $m \leq m^{\prime}$, [11].

A topological duality for Ockham algebras based on Priestley's duality for bounded distributive lattices was established in [13]. The duality was used to describe the subdirectly irreducible algebras and several subvarieties including $\mathbf{K}_{n, m}$ (denoted $\mathscr{P}_{2 n+m, m}$ in [13]). In particular, each $K_{n, m}$ is generated by a single algebra, $\mathscr{L}_{2 n+m, m}$, which is subdirectly irreducible.

The variety MS of MS-algebras, [4], is the subvariety of Ockham algebras characterized by $x \leq f^{2}(x)$. For $n \in \mathbb{N}$, we denote by $\mathbf{M S}_{n}$ the variety of Ockham algebras satisfying $x \leq f^{2 n}(x)$, [12], (these varieties appeared in [11] denoted by $\mathbf{K}_{n, 0}^{\leq}$). Obviously, $\mathbf{M S}_{\mathbf{1}}=\mathbf{M S}$. We have $\mathbf{K}_{n, 0} \subset \mathbf{M S}_{n} \subset \mathbf{K}_{n, 1}$; besides, $\mathbf{M S}_{n} \subseteq \mathbf{M S}_{n}$, if and only if $n \mid n^{\prime}$, [11]. If ($L ; \wedge, \vee, f, 0,1$) is an $M S_{n}$-algebra, $f^{2 n}$ is both an endomorphism and a closure operator on ($L ; \wedge, \vee, 0,1$).

The notion of double $M S$-algebra, introduced by T. Blyth and J. Varlet in [5], was inspired by the properties of double Stone algebras. A double MS-algebra ($L ; \wedge, \vee$, $f, g, 0,1$) is an algebra of type $(2,2,1,1,0,0)$ such that ($L ; \wedge, \vee, f, 0,1$) and $(L ; \wedge, \vee, g, 0,1)$ are Ockham algebras and f, g satisfy $x \leq f^{2}(x), g^{2}(x) \leq x, g f(x)=$ $f^{2}(x), f g(x)=g^{2}(x), \forall x \in L$. DMS denotes the variety of double $M S$-algebras. Each algebra $(L ; \wedge, \vee, f, g, 0,1) \in \mathbf{D M S}$ is associated with an $M S$-algebra and a dual $M S$-algebra; $g f$ and $f g$ are, respectively, a closure and a dual closure on ($L ; \wedge, \vee, 0,1$).
2. The variety O_{2} and the subvarieties $\mathrm{DK}_{n, m}$ and DMS_{n}. We shall consider algebras of type $(2,2,1,1,0,0)$ which are associated with Ockham algebras.

Definition. [12] An O_{2}-algebra is an algebra $\mathscr{L}=(L ; \wedge, \vee, f, g, 0,1)$ of type $(2,2,1,1,0,0)$ such that $(L ; \wedge, \vee, f, 0,1)$ and $(L ; \wedge, \vee, g, 0,1)$ are Ockham algebras.
\dagger Work done within the activities of Centro de Álgebra da Universidade de Lisboa, I.N.I.C.

The class of all O_{2}-algebras is a variety and we denote it by \mathbf{O}_{2}. For brevity, we write $\mathscr{L}=(L, f, g) \in \mathbf{O}_{2},(L, f),(L, g)$ for Ockham algebras and L for the underlying bounded distributive lattice.

For each $n \in \mathbb{N}$, we introduce a subvariety of \mathbf{O}_{2} which is related to $\mathbf{M S}_{n}$ in the same way that double $M S$-algebras are related to $M S$-algebras. The fact that, for $(L, f) \in \mathbf{M S}_{n}$, the mapping $f^{2 n}$ is a closure on L leads to the following definition.

Definition [12]. A double $M S_{n}$-algebra is an algebra $\mathscr{L}=(L, f, g) \in \mathbf{O}_{2}$ such that

$$
f g=g^{2 n} \leq \mathrm{id} \leq f^{2 n}=g f
$$

The variety of double $M S_{n}$-algebras is denoted by $\mathbf{D M S}_{n}$. Now $\mathbf{D M S}_{1}=\mathbf{D M S}$, and it is easy to check that $\mathbf{D M S}_{n} \subseteq \mathbf{D M S}_{n}$, if $n \mid n^{\prime}$. Notice that, if $(L, f) \in \mathbf{K}_{n, 0}$ and $g=f^{2 n-1}$, we obtain $(L, f, g) \in \mathbf{D M S}_{n}$. Hence, if $\mathbf{D M S}_{n} \subseteq \mathbf{D M S}_{n^{\prime}}$, extending $\mathscr{L}_{2 n, 0}$ to a double $M S_{n}$-algebra, we conclude that $\mathbf{K}_{n, 0}\left(=V\left(\left\{\mathscr{L}_{2 n, 0}\right\}\right)\right) \subset \mathbf{M S}_{n^{\prime}} \subset \mathbf{K}_{n^{\prime}, 1}$ and $n \mid n^{\prime}$.

Let $n, m \in \mathbb{N}$. For each $(L, f) \in \mathbf{K}_{n, m}$, we have $f^{2 n+k}=f^{k}, \forall k \in \mathbb{N}, k \geq m$. If $2 n \geq m$, the map $g=f^{2 n-1}$ is a dual endomorphism of L satisfying $g^{2 n}=f^{2 n}$ and $g^{2 n+m}=g^{m}$; hence $g f=f^{2 n}$ and $f g=g^{2 n}$. In general, if z is the smallest integer such that $2 z n \geq m$, i.e. $z=\lceil m / 2 n\rceil(\lceil x\rceil$ stands for the smallest integer greater than or equal to $x)$, the dual endomorphism $g=f^{2 z n-1}$ of L satisfies $g^{2 n+m}=g^{m}$ and $g^{2 z n}=f^{2 z n}$; therefore $g f=f^{2 z n}$ and $f g=g^{22 n}$.

Definition. Let $n, m \in \mathbb{N}$ and $z=\lceil m / 2 n\rceil$. We denote by $\mathbf{D K}_{n, m}$ the class of all algebras $\mathscr{L}=(L, f, g) \in \mathbf{O}_{2}$ such that

$$
f^{2 n+m}=f^{m}, \quad g^{2 n+m}=g^{m}, \quad g f=f^{2 z n}, \quad f g=g^{2 z n}
$$

If $\mathscr{L} \in \mathbf{D K}_{n, m}$, we say that \mathscr{L} is a double $K_{n, m}$-algebra. For $m=1$, we get the double $K_{n, 1}$-algebras introduced in [12]. Clearly, $\mathbf{D M S}_{n} \subset \mathbf{D K}_{n, 1}$. The varieties $\mathbf{D K}_{n, m}, n, m \in \mathbb{N}$, are related in the following way.

Proposition 1. Let $n, n^{\prime}, m, m^{\prime} \in \mathbb{N}$.
(i) If $n \mid n^{\prime}$, then $\mathbf{D K}_{n, m} \subseteq \mathbf{D K}_{n^{\prime}, m}$.
(ii) If $m \leq m^{\prime}$, then $\mathbf{D K}_{n, m} \subseteq \mathbf{D K}_{n, m^{\prime}}$.
(iii) $\mathbf{D K}_{n, m} \subseteq \mathbf{D K}_{n^{\prime}, m^{\prime}}$ if and only if $n \mid n^{\prime}$ and $m \leq m^{\prime}$.

Proof. Recall that $\mathbf{K}_{n, m} \subseteq \mathbf{K}_{n^{\prime}, m^{\prime}}$ if and only if $n \mid n^{\prime}$ and $m \leq m^{\prime}$.
(i) Let $n^{\prime}=n k, z=\lceil m / 2 n\rceil, z^{\prime}=\left\lceil m / 2 n^{\prime}\right\rceil$ and $\mathscr{L}=(L, f, g) \in \mathbf{D K}_{n, m}$. Then $k z^{\prime} \geq z$ and, for $\rho \in\{f, g\}$, we have $\rho^{2 z^{\prime} n^{\prime}}=\rho^{2\left(k z^{\prime}-z\right) n+2 z n}=\rho^{2 z n}$. Hence $\mathscr{L} \in \mathbf{D K}_{n^{\prime}, m}$.
(ii) If $m \leq m^{\prime}$ and $\mathscr{L}=(L, f, g) \in \mathbf{D K}_{n, m}$, we have $z=\lceil m / 2 n\rceil \leq z^{\prime}=\left\lceil m^{\prime} / 2 n\right\rceil$ and, for $\rho \in\{f, g\}, \rho^{2 z^{\prime} n}=\rho^{2\left(z^{\prime}-z\right) n+2 z n}=\rho^{2 z n}$. Hence $\mathscr{L} \in \mathbf{D K}_{n, m^{\prime}}$.
(iii) If $n \mid n^{\prime}$ and $m \leq m^{\prime}$, then $\mathbf{D K}_{n, m} \subseteq \mathbf{D K}_{n^{\prime}, m^{\prime}}$ by (i) and (ii). Conversely, if $\mathbf{D K}_{n, m} \subseteq \mathbf{D K}_{n^{\prime}, m^{\prime}}$, it suffices to extend the algebra $\mathscr{L}_{2 n+m, m}$ (which generates $\mathbf{K}_{n, m}$) to a double $K_{n, m^{\prime}}$-algebra to conclude that $\mathbf{K}_{n, m} \subseteq \mathbf{K}_{n^{\prime}, m^{\prime}}$, hence $n \mid n^{\prime}$ and $m \leq m^{\prime}$.

The process that motivates the definition of $\mathbf{D K}_{n, m}$ is not, in general, the only one that allows us to obtain a double $K_{n, m}$-algebra from a given algebra in $\mathbf{K}_{n, m}$. For instance, the Stone algebra $\mathscr{S}=(S, f)$, where S is the chain $0<a<1$ and f is defined by $f(0)=1$, $f(a)=f(1)=0$, yields two algebras in $\mathbf{D K}_{1,1}$: letting $g_{1}(0)=g_{1}(a)=1, g_{1}(1)=0$, we get $\left(S, f, g_{1}\right) \in \mathbf{D M S}_{1}$; taking $g_{2}=f$, we get $\left(S, f, g_{2}\right) \in \mathbf{D K}_{1,1} \backslash \mathbf{D M S}_{1}$.

Let $\mathscr{L}=(L, f, g) \in \mathbf{D K}_{n, m}$. Then $f^{2 n+k}=f^{k}, g^{2 n+k}=g^{k}, \forall k \geq m$. Denote by $r(t)$ the remainder of the integer t on division by $2 n$. For $1 \leq i, j \leq 2 n+m-1$, let $z_{i, j}=$ $m+r(j-i-m)$ (then $m \leq z_{i, j} \leq 2 n+m-1$).

Proposition 2. Let $n, m \in \mathbb{N}, z=\lceil m / 2 n\rceil$ and $\mathscr{L}=(L, f, g) \in \mathbf{D K}_{n, m}$. Then
(i) $g^{i} f^{i}=f^{2 z n}, f^{i} g^{i}=g^{2 z n}, 1 \leq i \leq 2 n+m-1$.
(ii) $g^{i} f^{j}=f^{z_{i j}}, f^{j} g^{i}=g^{z_{i, i}}, 1 \leq i, j \leq 2 n+m-1$.
(iii) $\operatorname{Im} f^{m}=\operatorname{Im} g^{m}$.

Proof. (i) Use induction on i and the fact that $2 z n \geq m$.
(ii) For $1 \leq i, j \leq 2 n+m-1$, we have $|i-j| \leq 2 n+m-2 \leq 2 n+2 z n-2<4 z n$. We consider three cases:
(a) $i=j$. Now, $z_{i, j}=2 z n$ and $g^{i} f^{j}=f^{2 z n}$, by (i).
(b) $i<j$. We have $g^{i} f^{j}=g^{i} f^{i} f^{i-i}=f^{2 z n} f^{j-i}=f^{2 z n+j-i}=f^{2 z n+m+(j-i-m)}=f^{z_{i j}}$.
(c) $i>j$. Now, $g^{i} f^{j}=g^{i-j} g^{j} f^{j}=g^{i-j} f^{2 z n}$. If $i-j<2 z n$, we get $g^{i} f^{j}=f^{z_{i, j}}$ by (b). If $i-j=2 z n$, we have $g^{i} f^{j}=g^{2 z n} f^{2 z n}=f^{2 z n}=f^{2 z_{i j}}$. If $i-j>2 z n$, we get $g^{i} f^{j}=$ $g^{i-j-2 z n} g^{2 z n} f^{2 z n}=g^{i-j-2 z n} f^{2 z n}=f^{2, j}$ using (b), since $i-j-2 z n<2 z n$.
(iii) Just notice that $f^{m}=g^{m} f^{m+r(m)}$ and $g^{m}=f^{m} g^{m+r(m)}$.

Corollary 3 [12, Lemma 5.3]. Let $n \in \mathbb{N}$ and $\mathscr{L}=(L, f, g) \in \mathbf{D M S}_{n}$. Then
(i) $g^{i} f^{i}=f^{2 n}, f^{i} g^{i}=g^{2 n}, 1 \leq i \leq 2 n$;
(ii) $g^{i} f^{j}=f^{r(j-i)}, f^{j} g^{i}=g^{r(i-j)}, 1 \leq i, j \leq 2 n, i \neq j$;
(iii) $\operatorname{Im} f=\operatorname{Im} g$;
(iv) $f^{2 k+1}(x) \leq g^{2 n-2 k-1}(x), g^{2 n-2 k}(x) \leq f^{2 k}(x), \forall x \in L, 0 \leq k \leq n-1$.

Proof. Since $\mathbf{D M S}_{n} \subset \mathbf{D K}_{n, 1}$, (i), (ii) and (iii) follow from Proposition 2.
(iv) We have $g^{2 n}(x) \leq x, \forall x \in L$. For $0 \leq k \leq n-1$, using (ii) and the fact that $f^{2 k+1}$ is a dual endomorphism of L, we get $f^{2 k+1}(x) \leq f^{2 k+1} g^{2 n}(x)=g^{2 n-2 k-1}(x)$. Again by (ii) and as $f^{2 k}$ is an endomorphism of L, we have $f^{2 k}(x) \geq f^{2 k} g^{2 n}(x)=g^{2 n-2 k}(x)$.
3. Principal congruences. For $\mathscr{L}=(L, f, g) \in \mathbf{O}_{2}$, we denote by $\operatorname{Con}(\mathscr{L})$ the congruence lattice of \mathscr{L} and by $\operatorname{Con}_{D}(\mathscr{L})$ the congruence lattice of the D_{01}-lattice L. For a, $b \in L, \theta(a, b)$, resp. $\theta_{D}(a, b)$, is the smallest element of Con (\mathscr{L}), resp. $\operatorname{Con}_{D}(\mathscr{L})$, collapsing a and b. It suffices to consider $\theta(a, b)$ for $a<b$, since, if $\theta \in \operatorname{Con}(\mathscr{L})$ and x, $y \in L$, we have $(x, y) \in \theta$ if and only if $(x \wedge y, x \vee y) \in \theta$.

It is easy to see that, for $\mathscr{L}=(L, f, g) \in \mathbf{D K}_{n, m}$ and $a, b \in L, a<b$, the principal congruence $\theta(a, b)$ is given by

$$
\theta(a, b)=\theta_{D}(a, b) \vee V_{i=1}^{2 n+m-1} \theta_{D}\left(f^{i}(a), f^{i}(b)\right) \vee V_{j=1}^{2 n+m-1} \theta_{D}\left(g^{j}(a), g^{j}(b)\right)
$$

Now, by [2, Th. 1.3], we conclude that $\mathbf{D K}_{n, m}$ has equationally definable principal congruences and, hence, satisfies the congruence extension property, [8, Corollary 2].

The description of a principal congruence as a join of congruences of a distributive lattice and [9, Lemma 2] allow us to conclude that each principal congruence in a double $K_{n, m}$-algebra can be defined by $2^{4 n+2 m-1}$ equations.

For $n, m \in \mathbb{N}$, define

$$
\begin{gathered}
T_{n, m}=\left\{0,1,2, \ldots, n+\left\lfloor\frac{m-1}{2}\right\rfloor\right\}, \quad T_{n, m}^{\prime}=\left\{0,1,2, \ldots, n+\left\lfloor\frac{m-2}{2}\right\rfloor\right\}, \\
T_{n, m}^{\prime \prime}=T_{n, m} \backslash\{0\}
\end{gathered}
$$

($\lfloor x\rfloor$ stands for the greatest integer less than or equal to x).
Let $\mathscr{L}=(L, f, g) \in \mathbf{D K}_{n, m}, a, b \in L, a<b$. Then $(x, y) \in \theta(a, b)$ if and only if

$$
\left(x \wedge d_{F, G, H, J}(a, b)\right) \vee e_{F, G, H, J}(a, b)=\left(y \wedge d_{F, G, H, J}(a, b)\right) \vee e_{F, G, H, J}(a, b)
$$

for each F, G, H, J such that $F \subseteq T_{n, m} ; G, J \subseteq T_{n, m}^{\prime} ; H \subseteq T_{n, m}^{\prime \prime}$ and where

$$
\begin{gathered}
d_{F, G, H, J}(a, b)=\bigwedge_{i \in F} f^{2 i}(a) \wedge \bigwedge_{j \in G} f^{2 j+1}(b) \wedge \bigwedge_{k \in H} g^{2 k}(a) \wedge \bigwedge_{i \in J} g^{2 l+1}(b), \\
e_{F, G, H, j}(a, b)=\bigvee_{q \in T_{n, m} \backslash F} f^{2 q}(b) \vee \bigvee_{r \in T_{n, m}, G} f^{2 r+1}(a) \vee \bigvee_{s \in T_{n, m}^{\prime \prime} \cup} g^{2 s}(b) \vee \bigvee_{i \in T_{n, m}, \cup} g^{2 t+1}(a) .
\end{gathered}
$$

(The process used for obtaining these equations is described in [12, Theorem 6.4].)
For double $M S_{n}$-algebras, this description can be simplified since some of the $2^{4 n+1}$ equations (\dagger) obtained for algebras in $\mathbf{D K}_{n, 1}$ hold trivially for algebras in DMS ${ }_{n}$. Let $\mathscr{L}=(L, f, g) \in \mathbf{D M S}_{n}$ and $x \in L$. Then $x \leq f^{2 n}(x)$; and, for each $i \in T_{n, 1}^{\prime \prime}$ and each $j \in T_{n, 1}^{\prime}$, we have $g^{2 i}(x) \leq f^{2 n-2 i}(x)$ and $f^{2 j+1}(x) \leq g^{2 n-2 j-1}(x)$ (Corollary 3(iv)).

For F, G, H, J such that $F \subseteq T_{n, 1} ; G, J \subseteq T_{n, 1}^{\prime} ; H \subseteq T_{n, 1}^{\prime \prime}$, define

$$
T_{F, H}^{\prime \prime}=\left\{s \in T_{n, 1}^{\prime \prime} \mid s \in H, n-s \notin F\right\}, \quad T_{G, J}^{\prime}=\left\{t \in T_{n, 1}^{\prime} \mid t \in G, n-1-t \notin J\right\}
$$

We say that
the pair (F, H) satisfies the condition $\left(0^{\prime \prime}\right)$ if $T_{F, H}^{\prime \prime}=\varnothing, n \notin F$ and $0 \in F$:
the pair (F, H) satisfies the condition $\left(i^{\prime \prime}\right)$, for $i \in T_{n, 1}^{\prime \prime}$, if $T_{F, H}^{\prime \prime} \neq \varnothing$ and $i=\min T_{F, H}^{\prime \prime}$;
the pair (G, J) satisfies the condition (j^{\prime}), for $j \in T_{n, 1}^{\prime}$, if $T_{G, J}^{\prime} \neq \varnothing$ and $j=\min T_{G, J}^{\prime}$.
Theorem 4 [12, Theorem 6.5]. Let $\mathscr{L}=(L, f, g) \in \mathbf{D M S}_{n}$ and $a, b \in L, a<b$. Then the principal congruence $\theta(a, b)$ is defined by the equations (\dagger) in which (F, H) does not satisfy $\left(i^{\prime \prime}\right), i \in T_{n, 1}$, and (G, J) does not satisfy $\left(j^{\prime}\right), j \in T_{n, 1}^{\prime}$.

Proof. Since $\mathbf{D M S}_{n} \subset \mathbf{D K}_{n .1}$, the congruence $\theta(a, b)$ is defined by the $2^{4 n+1}$ equations (\dagger) above. Consider the following cases.
(a) (F, H) satisfies $\left(0^{\prime \prime}\right)$. Then $0 \in F, n \notin F$, hence

$$
d_{F, G, H, J}(a, b) \leq a \leq f^{2 n}(a) \leq f^{2 n}(b) \leq e_{F, G, H,}(a, b)
$$

(b) $\exists i \in T_{n, 1}^{\prime \prime}:(F, H)$ satisfies $\left(i^{\prime \prime}\right)$. Since $i \in H$ and $n-i \notin F$, we get

$$
d_{F, G, H, J}(a, b) \leq g^{2 i}(a) \leq g^{2 i}(b) \leq f^{2 n-2 i}(b) \leq e_{F, G, H, J}(a, b) .
$$

(c) $\exists j \in T_{n, 1}^{\prime}:(G, J)$ satisfies $\left(j^{\prime}\right)$. Now, $j \in G$ and $n-1-j \notin J$, hence

$$
d_{F, G, H, J}(a, b) \leq f^{2 j+1}(b) \leq f^{2 j+1}(a) \leq g^{2 n-2 j-1}(a) \leq e_{F, G, H, J}(a, b) .
$$

In each case, we have $\left(z \wedge d_{F, G, H, J}(a, b)\right) \vee e_{F, G, H_{J} J}(a, b)=e_{F, G, H, J}(a, b), \forall z \in L$, therefore the corresponding equation (\dagger) holds trivially in L.

Observe that, if $F \subseteq T_{n, 1} ; H \subseteq T_{n, 1}^{\prime \prime}$ and (F, H) satisfies ($0^{\prime \prime}$), then each k such that $1 \leq k \leq n-1$ satisfies exactly one of the following: $k \in H, n-k \in F ; k \notin H, n-k \in F$; $k \notin H, n-k \notin F$; moreover, we have either $n \in H, 0 \in F$ or $n \notin H, 0 \in F$, and, besides, $n \notin F$. Therefore the number of pairs (F, H) that satisfy $\left(0^{\prime \prime}\right)$ is $\alpha_{n, 0}=3^{n-1} .2$.

Also, if (F, H) satisfies $\left(s^{\prime \prime}\right)$, for a given $s \in T_{n, 1}^{\prime \prime}$, we have $s \in H, n-s \notin F$ and, for each $k \in T_{n .1}^{\prime \prime}$ with $k<s$, exactly one of the above cases holds. Therefore there exist $\alpha_{n, s}=3^{s-1} \cdot 2^{n+1-s} \cdot 2^{n-s}=3^{s-1} \cdot 2^{2 n+1-2 s}$ pairs (F, H) satisfying ($s^{\prime \prime}$).

Similarly we conclude that the number of pairs (G, J), with $G, J \subseteq T_{n, 1}^{\prime}$, that satisfy $\left(t^{\prime}\right)$, for a given $t \in T_{n, 1}^{\prime}$, is $\beta_{n, t}=3^{t} .2^{n-1-t} \cdot 2^{n-1-t}=3^{t} .2^{2 n-2-2 t}$.

Corollary 5. [12, Corollary 6.6] Let $\mathscr{L}=(L, f, g) \in \mathbf{D M S}_{n}$ and $a, b \in L$. Then $\theta(a, b)$ can be described by $2^{2} .3^{2 n-1}$ equations.

Proof. Since $\theta(a, b)=\theta(a \wedge b, a \vee b)$, we simply consider the case $a<b$. Then $\theta(a, b)$ is defined by the equations (\dagger) in the conditions of Theorem 4.

There are $\alpha_{n}=2^{2 n+1}-\sum_{s=0}^{n} \alpha_{n, s}=2^{2} \cdot 3^{n-1}$ pairs (F, H) that do not satisfy $\left(i^{\prime \prime}\right), i \in T_{n, 1}$; and there exist $\beta_{n}=2^{2 n}-\sum_{i=0}^{n-1} \beta_{n, t}=3^{n}$ pairs (G, J) that do not satisfy $\left(j^{\prime}\right), j \in T_{n, 1}^{\prime}$. Therefore $\theta(a, G)$ is defined by $\alpha_{n} \beta_{n}=2^{2} .3^{2 n-1}$.

A description of principal congruences in double $M S$-algebras by means of 12 equations is given in [7, Theorem 1].
4. A duality for $\boldsymbol{O}_{\mathbf{2}}$-algebras. We develop a topological duality for O_{2}-algebras which is similar to the duality for Ockham algebras obtained in [13].

Definition [12]. $X=(X, \mathscr{T}, \leq, \varepsilon, \gamma)$ is an O_{2}-space if (X, \mathscr{T}, \leq) is a Priestley space (i.e., a compact totally ordered disconnected space) and $\varepsilon, \gamma: X \rightarrow X$ are continuous antitone mappings.

Definition. The dual space of the algebra $\mathscr{L}=(L, f, g) \in \mathbf{O}_{2}$ is $\operatorname{Pr}_{2}(\mathscr{L})=$ $\left(X_{L}, \mathscr{T}, \leq, \varepsilon_{f}, \varepsilon_{g}\right)$ where
(i) X_{L} is the set of D_{01}-homomorphisms from L into the two-element chain $\{0,1\}$;
(ii) \mathscr{T} is the topology induced in X_{L} by the product topology of $\{0,1\}^{L}$;
(iii) \leq is the order in X_{L} given by $h_{1} \leq h_{2}$ if and only if $h_{1}(a) \leq h_{2}(a), \forall a \in L$;
(iv) $\varepsilon_{f}(h)=\operatorname{chf}$ and $\varepsilon_{g}(h)=c h g, \forall h \in X_{L}$ (c denotes complementation in $\{0,1\}$).
$\operatorname{Pr}_{2}(\mathscr{L})$ is an O_{2}-space. For $\rho \in\{f, g\}, j \in \mathbb{N}$ and $h \in X_{L}$, we have $\varepsilon_{\rho}^{j}(h)=c h \rho^{j}$ if j is odd and $\varepsilon_{\rho}^{j}(h)=h \rho^{j}$ if j is even. If \mathscr{L} is finite, then \mathscr{T} is the discrete topology in X_{L}.

Definition. The dual algebra of the O_{2}-space $X=(X, \mathscr{T}, \leq, \varepsilon, \gamma)$ is $\mathcal{O}_{2}(X)=$ $\left(O(X), f_{\varepsilon}, f_{\gamma}\right)$ where $O(X)$ is the bounded distributive lattice of the clopen order filters of (X, \mathscr{T}, \leq), and $f_{\beta}, \beta \in\{\varepsilon, \gamma\}$, is the unary operation defined by $f_{\beta}(Y)=X \backslash \beta^{-1}(Y)$, $\forall Y \in O(X)$.
$\mathcal{O}_{2}(X)$ is an O_{2}-algebra. Given $\beta \in\{\varepsilon, \gamma\}, j \in \mathbb{N}, Y \in O(X)$, we have $f_{\beta}^{j}(Y)=X \backslash\left(\beta^{j}\right)^{-1}(Y)$ if j is odd and $f_{\beta}^{j}(Y)=\left(\beta^{j}\right)^{-1}(Y)$ if j is even.

For $\mathscr{L} \in \mathbf{O}_{2}$, the mapping $\Phi: L \rightarrow O\left(X_{L}\right)$, defined by $\Phi(a)=\left\{h \in X_{L} \mid h(a)=1\right\}$,
$\forall a \in L$, is an isomorphism of O_{2}-algebras from \mathscr{L} into $\mathscr{O}_{2}\left(\operatorname{Pr}_{2}(\mathscr{L})\right)$. If X is an O_{2}-space, the mapping $\Psi: X \rightarrow X_{O(X)}$, defined by

$$
(\Psi(x))(Y)=\left\{\begin{array}{ll}
1 & \text { if } x \in Y ; \\
0 & \text { if } x \notin Y .
\end{array} \quad \forall x \in X, \quad \forall Y \in O(X)\right.
$$

is an O_{2}-homeomorphism between X and $\operatorname{Pr}_{2}\left(\mathcal{O}_{2}(X)\right)$.
Given $\mathscr{L}_{1}, \mathscr{L}_{2} \in \mathbf{O}_{2}$, there exists a bijection between the set of homomorphisms from \mathscr{L}_{1} into \mathscr{L}_{2} and the set of O_{2}-continuous mappings from $\operatorname{Pr}_{2}\left(\mathscr{L}_{2}\right)$ into $\operatorname{Pr}_{2}\left(\mathscr{L}_{1}\right)$: just associate to each homomorphism $\phi: L_{1} \rightarrow L_{2}$ the mapping $\sigma_{\phi}: X_{L_{2}} \rightarrow X_{L_{1}}$ defined by $\sigma_{\phi}(h)=h \phi, \forall h \in X_{L_{2}}$.

Therefore we have a duality between O_{2}-algebras (with O_{2}-homomorphisms) and O_{2}-spaces (with O_{2}-continuous mappings), (see [13, Theorems 1, 3, 4]).

Let X be a set, $Y \subseteq X$ and $\varepsilon, \gamma: X \rightarrow X$ mappings. We denote by $Y_{\varepsilon, \gamma}$ the smallest subset Z of X such that $Y \subseteq Z, \varepsilon(Z) \subseteq Z$ and $\gamma(Z) \subseteq Z$, and say that Y is invariant under ε and γ if $Y_{\varepsilon, \gamma}=Y$.

Theorem 6. [12, Theorem 7.5] The congruence lattice of an algebra $\mathscr{L}=(L, f, g) \in$ \mathbf{O}_{2} is dually isomorphic to the lattice of all closed subsets of $\operatorname{Pr}_{2}(\mathscr{L})=\left(X_{L}, \mathscr{T}, \leq, \varepsilon_{f}, \varepsilon_{g}\right)$ which are invariant under ε_{f} and ε_{g}.

Proof. The proof is analogous to that of [13, Theorem 5]. Identify \mathscr{L} and $\mathcal{O}_{2}\left(\mathrm{Pr}_{2}(\mathscr{L})\right)$; for each closed invariant subset Y of $\operatorname{Pr}_{2}(\mathscr{L})$, define the relation θ_{Y} on L by $(a, b) \in \theta_{Y}$ if and only if $Y \subseteq(a \cap b) \cup\left(\left(X_{L} \backslash a\right) \cap\left(X_{L} \backslash b\right)\right)$. Then the correspondence associating Y to θ_{Y} is a dual isomorphism from the lattice of all closed invariant subsets of $\operatorname{Pr}_{2}(\mathscr{L})$ into $\operatorname{Con}(\mathscr{L})$.

Note that, if $\mathscr{L}=(L, f, g) \in \mathbf{D K}_{n, m}$ and $x, y \in L$ satisfy $\rho^{i}(x)=\rho^{i}(y)$, for some $\rho \in\{f, g\}$ and $m+1 \leq i \leq 2 n+m-1$, then $\rho^{m}(x)=\rho^{m}(y)$. Now, for $1 \leq i, j \leq m$, we define the relation $\operatorname{ker}\left(f^{i}, g^{j}\right)$ on L by $(x, y) \in \operatorname{ker}\left(f^{i}, g^{j}\right)$ if and only if $f^{i}(x)=f^{i}(y)$, $g^{j}(x)=g^{j}(y)$. Using Proposition 2 we may easily prove that $\operatorname{ker}\left(f^{i}, g^{j}\right) \in \operatorname{Con}(\mathscr{L})$.

The results concerning subdirectly irreducible algebras in \mathbf{O}_{2} are similar to those in [13, 2].

Lemma 7. [12, Lemma 7.6] Let $X=(X, \mathscr{T}, \leq, \varepsilon, \gamma)$ be an O_{2}-space and Y a subset of X.
(i) If Y is invariant under ε and γ, then so is \bar{Y}.
(ii) $\overline{Y_{\varepsilon, \gamma}}$ is the smallest closed subset of X that contains Y and is invariant under ε and γ.

Theorem 8. [12, Theorem 7.7] Let $\mathscr{L}=(L, f, g) \in \mathbf{O}_{2}$ and $\operatorname{Pr}_{2}(\mathscr{L})=\left(X_{L}, \mathscr{T}, \leq \varepsilon_{f}, \varepsilon_{g}\right)$. Then \mathscr{L} is subdirectly irreducible if and only if $\left.\left\{x \in X_{L} \mid \overline{A x}\right\}_{\varepsilon_{f}, \varepsilon_{g}} \neq X_{L}\right\}$ is not dense in $\left(X_{L}, \mathscr{T}\right)$. In particular, if L is finite, \mathscr{L} is subdirectly irreducible if and only if there exists $x \in X_{L}$ such that $\{x\}_{\varepsilon_{f}, \varepsilon_{g}}=X_{L}$.
5. Subdirectly irreducible algebras in $\mathbf{D K}_{n, m}$ and in DMS $_{n}$. In order to apply the above duality to determine the subdirectly irreducible algebras in $\mathbf{D K}_{n, m}$ and in $\mathbf{D M S}_{n}$, we begin by characterizing the dual space of a double $K_{n, m}$-algebra and of a double $M S_{n}$-algebra.

Theorem 9. Let $\mathscr{L}=(L, f, g) \in \mathbf{O}_{2}$ and $\operatorname{Pr}_{2}(\mathscr{L})=\left(X_{L}, \mathscr{T}, \leq, \varepsilon_{f}, \varepsilon_{g}\right)$. Let $n, m \in \mathbb{N}$ and $z=\lceil m / 2 n\rceil$. Then
(i) $\mathscr{L} \in \mathbf{D K}_{n, m}$ if and only if

$$
\left\{\begin{array}{l}
\varepsilon_{f}^{2 n+m}(h)=\varepsilon_{f}^{m}(h), \varepsilon_{g}^{2 n+m}(h)=\varepsilon_{g}^{m}(h) \\
\varepsilon_{f} \varepsilon_{g}(h)=\varepsilon_{f}^{2 z n}(h), \varepsilon_{g} \varepsilon_{f}(h)=\varepsilon_{g}^{2 z n}(h)
\end{array}, \forall h \in X_{L}\right.
$$

(ii) $\mathscr{L} \in \mathbf{D M S}_{n}$ if and only if $\left\{\begin{array}{ll}h \leq \varepsilon_{f}^{2 n}(h), & \varepsilon_{g}^{2 n}(h) \leq h \\ \varepsilon_{f} \varepsilon_{g}(h)=\varepsilon_{f}^{2 n}(h), & \varepsilon_{g} \varepsilon_{f}(h)=\varepsilon_{g}^{2 n}(h)\end{array}, \forall h \in X_{L}\right.$.

Proof. Observe that $g f=f^{2 z n}$ in L if and only if $\varepsilon_{f} \varepsilon_{g}=\varepsilon_{f}^{2 z n}$ in X_{L} (similarly, $f g=g^{2 z n}$ if and only if $\varepsilon_{g} \varepsilon_{f}=\varepsilon_{g}^{2 z n}$). In fact, if $g f=f^{2 z n}$ and $h \in X_{L}$, we get

$$
\varepsilon_{f} \varepsilon_{g}(h)=\varepsilon_{f}(\operatorname{chg})=c(c h g) f=h(g f)=h f^{2 z n}=\varepsilon_{f}^{2 z n}(h)
$$

Conversely, suppose that $\varepsilon_{f} \varepsilon_{g}=\varepsilon_{f}^{22 n}$ and recall that \mathscr{L} and $\mathcal{O}_{2}\left(\operatorname{Pr}_{2}(\mathscr{L})\right)$ are isomorphic algebras. Let $Y \in O\left(X_{L}\right)$. Then

$$
g f(Y)=g\left(X_{L} \backslash \varepsilon_{f}^{-1}(Y)\right)=X_{L} \backslash \varepsilon_{g}^{-1}\left(X_{L} \backslash \varepsilon_{f}^{-1}(Y)\right)=\left(\varepsilon_{f} \varepsilon_{g}\right)^{-1}(Y)=\left(\varepsilon_{f}^{2 z n}\right)^{-1}(Y)=f^{2 z n}(Y)
$$

Also, for $\rho \in\{f, g\}$ and $p, q \in \mathbb{N}_{0}$ such that $p \neq q$ and $|p-q|$ is even, $\rho^{p}(x) \leq \rho^{q}(x)$ holds in L if and only if $\varepsilon_{\rho}^{p}(h) \leq \varepsilon_{\rho}^{q}(h), h \in X_{L}$, (see [13, Theorem 9]).

Hence the double $K_{n, m}$-algebras (resp. double $M S_{n}$-algebras) are exactly the algebras $\mathscr{L} \in \mathbf{O}_{2}$ for which the conditions in (i) (resp. (ii)) hold in $\operatorname{Pr}_{2}(\mathscr{L})$.

Proposition 10. Let $\mathscr{L}=(L, f, g) \in \mathbf{D K}_{n, m}$ and $\operatorname{Pr}_{2}(\mathscr{L})=\left(X_{L}, \mathscr{T}, \leq, \varepsilon_{f}, \varepsilon_{g}\right)$. Then
(i) $\varepsilon_{f}^{j} \varepsilon_{g}^{i}=\varepsilon_{f}^{z_{i j}}, \varepsilon_{g}^{i} \varepsilon_{f}^{j}=\varepsilon_{g}^{z_{j, i}}, \quad 1 \leq i, j \leq 2 n+m-1$ (in particular, $\varepsilon_{f}^{j} \varepsilon_{g}^{i}=\varepsilon_{f}^{2 z n}, \varepsilon_{g}^{i} \varepsilon_{f}^{j}=$ $\left.\varepsilon_{g}^{2 z n}\right)$.
(ii) $\{x\}_{\varepsilon_{f}, \varepsilon_{g}}=\left\{x, \varepsilon_{f}^{i}(x), \varepsilon_{g}^{i}(x) \mid 1 \leq i \leq 2 n+m-1\right\}, \forall x \in X_{L}$.

Proof. (i) Just translate the properties in Proposition 2 to the dual space of \mathscr{L}.
(ii) Apply (i) to check that $Y=\left\{x, \varepsilon_{f}^{i}(x), \varepsilon_{g}^{i}(x) \mid 1 \leq i \leq 2 n+m-1\right\}$ is invariant under ε and γ. Now it is clear that $\{x\}_{\varepsilon_{f}, \varepsilon_{g}}=Y$.

Theorem 11. Every subdirectly irreducible algebra in $\mathbf{D K}_{n, m}$ is finite. Up to isomorphism, there is only a finite number of subdirectly irreducible algebras in $\mathbf{D K}_{n, m}$.

Proof. Let $\mathscr{L}=(L, f, g) \in \mathbf{D K}_{n, m}$ be subdirectly irreducible and $\operatorname{Pr}_{2}(\mathscr{L})=\left(X_{L}, \mathscr{T}, \leq\right.$, $\varepsilon_{f}, \varepsilon_{g}$). By Theorem 8, we have $\frac{n, m}{\{x\}_{\varepsilon_{f}, \varepsilon_{g}}}=X_{L}$, for some $x \in X_{L}$. By Proposition 10 (ii), $\{x\}_{\varepsilon_{f}, \varepsilon_{8}}$ is finite. Hence \mathscr{L} is finite. Since the cardinality of the dual space of a subdirectly irreducible algebra is not greater than $4 n+2 m-1$, the number of non-isomorphic subdirectly irreducible algebras in $\mathbf{D K}_{n, m}$ is finite.

Proposition 12. Every subalgebra of a subdirectly irreducible algebra $\mathscr{L} \in \mathbf{D K}_{n, m}$ is subdirectly irreducible.

Proof. Let $\mathscr{L}=(L, f, g) \in \mathbf{D K}_{n, m}$ be subdirectly irreducible, $\operatorname{Pr}_{2}(\mathscr{L})=\left(X_{L}, \mathscr{T}\right.$, $\leq, \varepsilon_{f}, \varepsilon_{g}$) and \mathscr{L}_{1} a subalgebra of \mathscr{L}. Then \mathscr{L} is finite and there exists $x_{0} \in X_{L}$ such that $X_{L}=\left\{x_{0}\right\}_{\varepsilon_{\rho}, \varepsilon_{g}}$. The inclusion inc: $L_{1} \rightarrow L$ is an embedding, hence the corresponding O_{2}-continuous mapping $\sigma_{\text {inc }}: X_{L} \rightarrow X_{L_{1}}$ is onto. It is easy to check that $X_{L_{1}}=$ $\left\{\sigma_{\text {inc }}\left(x_{0}\right)\right\}_{\varepsilon_{f}, \varepsilon_{g}}$. Therefore \mathscr{L}_{1} is subdirectly irreducible.

We are going to introduce an algebra whose role is particularly important in $\mathbf{D K}_{n, m}$. For each integer t, denote by $r(t)$ the remainder of t on division by $2 n$ and let $s(t)=4 n+2 m-2-r(2 m-2-t)$. Consider $X_{n, m}=\{0,1,2, \ldots, 4 n+2 m-2\}$ and define the mappings $\varepsilon, \gamma: X_{n, m} \rightarrow X_{n, m}$ by

$$
\begin{aligned}
& \varepsilon(k)= \begin{cases}k-1 & \text { if } 2 n+1 \leq k \leq 2 n+m-1 \\
r(k-1) & \text { otherwise }\end{cases} \\
& \gamma(k)= \begin{cases}k+1 & \text { if } 2 n+m-1 \leq k \leq 2 n+2 m-3 \\
s(k+1) & \text { otherwise }\end{cases}
\end{aligned}
$$

Then $\varepsilon\left(X_{n, m}\right)=\{0,1,2, \ldots, 2 n+m-2\}$ and $\gamma\left(X_{n, m}\right)=\{2 n+m, 2 n+m+1, \ldots, 4 n+$ $2 m-2\}$.

Lemma 13. For $j \in \mathbb{N}$ and $k \in X_{n, m}$,

$$
\begin{aligned}
& \varepsilon^{i}(k)= \begin{cases}k-j & \text { if } 2 n+j \leq k \leq 2 n+m-1 \\
r(k-j) & \text { otherwise } .\end{cases} \\
& \gamma^{j}(k)= \begin{cases}k+j & \text { if } 2 n+m-1 \leq k \leq 2 n+2 m-2-j \\
s(k+j) & \text { otherwise }\end{cases}
\end{aligned}
$$

If $j \geq m$, then $\varepsilon^{j}(k)=r(k-j), \gamma^{j}(k)=s(k+j), \forall k \in X_{n, m}$ (in particular, $\varepsilon^{2 z n}(k)=r(k)$, $\left.\gamma^{2 z n}(k)=s(k), \forall k \in X_{n, m}\right)$.

Proof. By induction on j.
Note that, for $1 \leq j \leq m$,

$$
\varepsilon^{j}\left(X_{n, m}\right)=\left\{k \in X_{n, m} \mid 0 \leq k \leq 2 n+m-1-j\right\}
$$

and

$$
\gamma^{j}\left(X_{n, m}\right)=\left\{k \in X_{n, m} \mid 2 n+m-1+j \leq k \leq 4 n+m-2\right\} ;
$$

for $j \geq m, \varepsilon^{j}\left(X_{n, m}\right)=\varepsilon^{m}\left(X_{n, m}\right)$ and $\gamma^{j}\left(X_{n, m}\right)=\gamma^{m}\left(X_{n, m}\right)$.
Let $X_{n, m}=\left(X_{n, m}, \mathscr{T}_{d}, \leq_{T}, \varepsilon, \gamma\right)$ where $X_{n, m}=\{0,1,2, \ldots, 4 n+2 m-2\}, \mathscr{T}_{d}$ is the discrete topology, \leq_{T} is the trivial order and $\varepsilon, \gamma: X_{n, m} \rightarrow X_{n, m}$ are the mappings defined above. It is obvious that $X_{n, m}$ is an O_{2}-space. Denote by $\mathscr{D}_{n, m}$ the dual algebra of $X_{n, m}$: the D_{01}-reduct of $\mathscr{D}_{n, m}$ is the lattice $\mathscr{P}\left(X_{n, m}\right)$ of all subsets of $X_{n, m}$, and the unary operations $f_{\beta}, \beta \in\{\varepsilon, \gamma\}$, are defined by $f_{\beta}(Y)=X_{n, m} \backslash \beta^{-1}(Y), \forall Y \subseteq X_{n, m}$.

Theorem 14. For $n, m \in \mathbb{N}, \mathscr{D}_{n, m}$ is a subdirectly irreducible double $K_{n, m}$-algebra.
Proof. Let $n, m \in \mathbb{N}$ and $X_{n, m}=\left(X_{n, m}, \mathscr{T}_{d}, \leq_{T}, \varepsilon, \gamma\right)$. By Lemma 13 we have $\varepsilon^{2 n+m}=\varepsilon^{m}, \gamma^{2 n+m}=\gamma^{m}, \varepsilon \gamma=\varepsilon^{2 z n}, \gamma \varepsilon=\gamma^{2 z n}$. Therefore $\mathscr{D}_{n, m} \in \mathbf{D K} \mathbf{K}_{n, m}$ by Theorem 9(i). Now, $\{2 n+m-1\}_{\varepsilon, \gamma}=X_{n, m}$, hence $\mathscr{D}_{n, m}$ is subdirectly irreducible (Proposition 10 (ii), Theorem 8).

We can, in fact, describe $\operatorname{Con}\left(\mathscr{D}_{n, m}\right)$.
Theorem 15. Let $n, m \in \mathbb{N}$.
(i) Besides \varnothing and $X_{n, m}$, the (closed) subsets of $X_{n, m}$ which are invariant under ε and γ are exactly the sets $Y_{i, j}=\varepsilon^{i}\left(X_{n, m}\right) \cup \gamma^{j}\left(X_{n, m}\right), 1 \leq i, j \leq m$.
(ii) $\operatorname{Con}\left(\mathscr{D}_{n, m}\right) \cong 1 \oplus(\underline{m} \times \underline{m}) \oplus 1$.

Proof.(i) Let $1 \leq i, j \leq m$ and $Y_{i, j}=\varepsilon^{i}\left(X_{n, m}\right) \cup \gamma^{j}\left(X_{n, m}\right)$. Then

$$
\varepsilon\left(Y_{i, j}\right)=\varepsilon^{i+1}\left(X_{n, m}\right) \cup \varepsilon^{z_{i, 1}}\left(X_{n, m}\right)=\varepsilon^{i+1}\left(X_{n, m}\right) \cup \varepsilon^{m}\left(X_{n, m}\right) \subseteq \varepsilon^{i}\left(X_{n, m}\right) \subseteq Y_{i, j} .
$$

Similarly, $\gamma\left(Y_{i, j}\right) \subseteq Y_{i, j}$. Hence $Y_{i, j}$ is invariant under ε and γ. Let $Y \subseteq X_{n, m}$ be a nonempty set invariant under ε and γ. If $2 n+m-1 \in Y$, then $X_{n, m}=\{2 n+m-1\}_{\varepsilon, \gamma} \subseteq Y$, i.e. $Y=X_{n, m}$. If $2 n+m-1 \notin Y$, let $Y_{1}=\{k \in Y \mid k \leq 2 n+m-2\}$ and $Y_{2}=\{k \in Y \mid k \geq 2 n+$ $m\}$. Then $Y_{1} \neq \varnothing, Y_{2} \neq \varnothing$ and $Y=Y_{1} \cup Y_{2}$. Notice that $\max Y_{1} \geq 2 n-1$ and $\min Y_{2} \leq$ $2 n+2 m-1$. Let $i=2 n+m-1-\max Y_{1}, j=\min Y_{2}-(2 n+m-1)$. Now we have $1 \leq i$, $j \leq m, Y_{1}=\varepsilon^{i}\left(X_{n, m}\right), Y_{2}=\gamma^{j}\left(X_{n, m}\right)$; hence $Y=Y_{i, j}$.
(ii) By Theorem 6, $\operatorname{Con}\left(\mathscr{D}_{n, m}\right)$ is dually isomorphic to the lattice of all (closed) subsets of $X_{n, m}$ which are invariant under ε and γ. The set $\left\{Y_{i, j} \mid 1 \leq i, j \leq m\right\}$, partially ordered by inclusion, is lattice-isomorphic to $\underline{m} \times \underline{m}$ and its non-trivial \vee-irreducibles are $Y_{i, m}, Y_{m j}, 1 \leq i, j \leq m-1$. Therefore, both $\operatorname{Con}\left(\mathscr{D}_{n, m}\right)$ and the lattice of invariant subsets of $X_{n, m}$ are isomorphic to the self-dual lattice $1 \oplus(\underline{m} \times \underline{m}) \oplus 1$. (Note that, for $1 \leq i$, $j \leq m$, the congruence $\theta_{Y_{i j}}$ associated with $Y_{i, j}$ in Theorem 6 is just $\operatorname{ker}\left(f_{\varepsilon}^{i}, f_{\gamma}^{j}\right)$).

The importance of $\mathscr{D}_{n, m}$ in $\mathbf{D K}_{n, m}$ is evident in the following result.
Theorem 16. Up to isomorphism, each double $K_{n, m}$-algebra is a subalgebra of a direct product of copies of $\mathscr{D}_{n, m}$, i.e., $\mathbf{D K}_{n, m}=S P\left(\left\{\mathscr{D}_{n, m}\right\}\right)$.

Proof. Let $\mathscr{L}=(L, f, g) \in \mathbf{D K} \mathbf{n}_{n, m}$ and $\operatorname{Pr}_{2}(\mathscr{L})=\left(X_{L}, \mathscr{T}, \leq \varepsilon_{f}, \varepsilon_{g}\right)$. Identifying \mathscr{L} and $\mathcal{O}_{2}\left(\operatorname{Pr}_{2}(\mathscr{L})\right)$, we shall define an embedding of \mathscr{L} into a direct product of copies of $\mathscr{D}_{n, m}$. For each $x \in X_{L}$ and $Y \in L$, consider

$$
\begin{aligned}
& Y_{\varepsilon_{f}}^{x}=\left\{2 n+m-1-k \mid 1 \leq k \leq 2 n+m-1, \varepsilon_{f}^{k}(x) \in Y\right\}, \\
& Y_{\varepsilon_{g}}^{x}=\left\{2 n+m-1+l \mid 1 \leq l \leq 2 n+m-1, \varepsilon_{g}^{l}(x) \in Y\right\} ;
\end{aligned}
$$

and define $\varphi_{x}: L \rightarrow \mathscr{P}\left(X_{n, m}\right)$ by

$$
\varphi_{x}(Y)= \begin{cases}Y_{\varepsilon_{f}}^{x} \cup Y_{\varepsilon_{g}}^{x} & \text { if } x \notin Y ; \\ Y_{\varepsilon_{f}}^{2} \cup Y_{\varepsilon_{g}}^{x} \cup\{2 n+m-1\} & \text { if } x \in Y\end{cases}
$$

Given $x \in X_{L}$, it is easily seen that φ_{x} is a D_{01}-homomorphism and, using Lemma 13, we conclude that $\varphi_{x}(f(Y))=f_{\varepsilon}\left(\varphi_{x}(Y)\right)$ and $\varphi_{x}(g(Y))=f_{Y}\left(\varphi_{x}(Y)\right), \forall Y \in L$. Hence the mapping $\quad \varphi: L \rightarrow \prod_{x \in X_{L}} \mathscr{P}\left(X_{n, m}\right)$, defined by $\varphi(Y)=\left(\varphi_{x}(Y)\right)_{x \in X_{L}}, \quad \forall Y \in L, \quad$ is an $O_{2^{-}}$ homomorphism. For $Y_{0}, Y_{1} \in L, Y_{0} \neq Y_{1}$, there exist $i \in\{0,1\}$ and $x \in X_{L}$ such that $x \in Y_{i}$, $x \notin Y_{1-i}$. Then $2 n+m-1 \in \varphi_{x}\left(Y_{i}\right)$ and $2 n+m-1 \notin \varphi_{x}\left(Y_{1-i}\right)$, i.e., $\varphi\left(Y_{0}\right) \neq \varphi\left(Y_{1}\right)$. Therefore φ is injective.

Theorem 17. Up to isomorphism, the subdirectly irreducible algebras in $\mathbf{D K}_{n, m}$ are exactly the subalgebras of $\mathscr{D}_{n, m}$.

Proof. Since $\mathscr{D}_{n, m}$ is subdirectly irreducible, so are all its subalgebras (Proposition 12). It follows immediately from Theorem 16 that each subdirectly irreducible algebra in $\mathbf{D K}_{n, m}$ is isomorphic to a subalgebra of $\mathscr{D}_{n, m}$.

In order to obtain the subdirectly irreducible algebras in $\mathbf{D M S}_{n}$, observe that every algebra $\mathscr{L}=(L, f, g) \in \mathbf{D K}_{n, 1}$ has, at least, a subalgebra in $\mathbf{D M S}_{n}$; the universe of the greatest subalgebra of \mathscr{L} in $\mathbf{D M S}_{n}$ is $\left\{x \in L \mid g^{2 n}(x) \leq x \leq f^{2 n}(x)\right\}$. Since $\mathbf{D K}_{n, 1}$ is generated by a single subdirectly irreducible algebra, the same is true for $\mathbf{D M S}_{n}$. Denote by \mathscr{D}_{n}^{\prime} the greatest subalgebra of $\mathscr{D}_{n, 1}$ that belongs to $\mathbf{D M S} \boldsymbol{N}_{n}$.

Corollary 18. The subdirectly irreducible algebras in $\mathbf{D M S}_{n}$ are, up to isomorphism, the subalgebras of \mathscr{D}_{n}^{\prime}. Therefore $\mathbf{D M S}_{n}$ is generated by \mathscr{D}_{n}^{\prime}.

Proof. It follows immediately from Theorem 17: each subalgebra \mathscr{L} of \mathscr{D}_{n}^{\prime} is a subalgebra of $\mathscr{D}_{n, 1}$, hence \mathscr{L} is subdirectly irreducible; on the other hand, every subdirectly irreducible algebra in $\mathbf{D M S}_{n}$ is a subalgebra of $\mathscr{D}_{n, 1}$ and, hence, of \mathscr{D}_{n}^{\prime}.

The subdirectly irreducible algebras in $\mathbf{D M S}_{1}=\mathbf{D M S}$ were determined in [6, Theorem 2.7].

We describe the algebra \mathscr{D}_{n}^{\prime}. Recall that $\mathscr{D}_{n, 1}$ is the dual algebra of $X_{n, 1}=$ $\left(X_{n, 1}, \mathscr{T}_{d}, \leq_{T}, \varepsilon, \gamma\right)$ where $X_{n, 1}=\{0,1,2, \ldots, 4 n\}$, and $\varepsilon, \gamma: X_{n, 1} \rightarrow X_{n, 1}$ are defined by $\varepsilon(k)=r(k-1)$ and $\gamma(k)=s(k+1), \forall k \in X_{n, 1}$. Then $\mathscr{D}_{n, 1}=\left(\mathscr{P}\left(X_{n, 1}\right), f_{\varepsilon}, f_{\gamma}\right)$ where f_{ε} and f_{γ} are the dual endomorphisms of $\mathscr{P}\left(X_{n, 1}\right)$ induced, respectively, by

$$
\begin{aligned}
& f_{\varepsilon}(\{i\})=\left\{\begin{array}{lll}
X_{n, 1} \backslash\{i+1, i+1+2 n\} & \text { if } & 0 \leq i \leq 2 n-2 \\
X_{n, 1} \backslash\{0,2 n, 4 n\} & \text { if } & i=2 n-1 ; \\
X_{n, 1} & \text { if } & 2 n \leq i \leq 4 n .
\end{array}\right. \\
& f_{\gamma}(\{i\})=\left\{\begin{array}{lll}
X_{n, 1} & \text { if } & 0 \leq i \leq 2 n ; \\
X_{n, 1} \backslash\{0,2 n, 4 n\} & \text { if } & i=2 n+1 ; \\
X_{n, 1} \backslash\{i-1, i-1-2 n\} & \text { if } & 2 n+2 \leq i \leq 4 n .
\end{array}\right.
\end{aligned}
$$

\mathscr{D}_{n}^{\prime} is the subalgebra of $\mathscr{D}_{n, 1}$ whose universe is $D_{n}^{\prime}=\left\{Y \in \mathscr{P}\left(X_{n, 1}\right) \mid f_{\gamma}^{2 n}(Y) \subseteq Y \subseteq f_{\varepsilon}^{2 n}(Y)\right\}$. For $Y \in \mathscr{P}\left(X_{n, 1}\right)$, we have
(i) $Y \subseteq f_{\varepsilon}^{2 n}(Y) \Leftrightarrow\left(\forall k \in X_{n, 1}, k \in Y \Rightarrow \varepsilon^{2 n}(k) \in Y\right)$

$$
\Leftrightarrow\left(\forall k \in X_{n, 1}, k \in Y \Rightarrow r(k) \in Y\right) .
$$

(ii) $f_{\gamma}^{2 n}(Y) \subseteq Y \Leftrightarrow\left(\forall k \in X_{n, 1}, \gamma^{2 n}(k) \in Y \Rightarrow k \in Y\right)$

$$
\Leftrightarrow\left(\forall k \in X_{n, 1}, s(k) \in Y \Rightarrow k \in Y\right) .
$$

We say that $Z \subseteq X_{n, 1}$ satisfies (*) if $Z=Z^{\prime} \cup Z^{\prime \prime} \cup Z^{\prime \prime \prime}$ where

$$
\begin{gathered}
Z^{\prime} \subseteq\{2 n+1,2 n+2, \ldots, 4 n-1\}, \quad Z^{\prime \prime}=\left\{r(k) \mid k \in Z^{\prime}\right\} \\
Z^{\prime \prime \prime} \subseteq\{1,2, \ldots, 2 n-1\} \backslash Z^{\prime \prime}
\end{gathered}
$$

The elements of $\mathscr{P}\left(X_{n, 1}\right)$ in case (i) are

$$
Z, Z \cup\{0\}, Z \cup\{0,2 n\}, Z \cup\{0,4 n\}, Z \cup\{0,2 n, 4 n\} \text { where } Z \text { satisfies }(*)
$$

the subsets of $X_{n, 1}$ in case (ii) are

$$
Z, Z \cup\{0\}, Z \cup\{2 n\}, Z \cup\{0,2 n\}, Z \cup\{0,2 n, 4 n\} \text { where } Z \text { satisfies }(*)
$$

Hence $D_{n}^{\prime}=\{Z, Z \cup\{0\}, Z \cup\{0,2 n\}, Z \cup\{0,2 n, 4 n\} \mid Z$ satisfies $(*)\} \quad$ and $\quad \mathscr{D}_{n}^{\prime}=$ ($D_{n}^{\prime}, f_{\varepsilon}, f_{\gamma}$) where f_{ε} and f_{γ} are the dual endomorphisms of D_{n}^{\prime} whose restriction to $J\left(D_{n}^{\prime}\right)$ is, respectively,

$$
\begin{gathered}
f_{\varepsilon}(\{0\})=f_{\varepsilon}(\{0,2 n\})=f_{\varepsilon}(\{0,2 n, 4 n\})=X_{n, 1} \backslash\{1,2 n+1\}, \\
f_{\varepsilon}(\{i\})=f_{\varepsilon}(\{i, i+2 n\})= \begin{cases}X_{n, 1} \backslash\{i+1, i+2 n+1\} & \text { if } 1 \leq i \leq 2 n-2 ; \\
X_{n, 1} \backslash\{0,2 n, 4 n\} & \text { if } i=2 n-1 .\end{cases} \\
f_{\gamma}(\{i, i+2 n\})= \begin{cases}X_{n, 1} \backslash\{0,2 n, 4 n\} & \text { if } \quad i=1 ; \\
X_{n, 1} \backslash\{i-1, i+2 n-1\} & \text { if } \quad 2 \leq i \leq 2 n-1 .\end{cases} \\
f_{\gamma}(\{0,2 n, 4 n\})=X_{n, 1} \backslash\{2 n-1,4 n-1\}, \\
f_{\gamma}(\{i\})=f_{\gamma}(\{0,2 n\})=X_{n, 1} \quad 0 \leq i \leq 2 n-1 .
\end{gathered}
$$

6. $M S_{n}$-algebras which are reduct of double $M S_{n}$-algebras. We already observed that each algebra $(L, f) \in \mathbf{K}_{n, m}$ can be extended to, at least, one double $K_{n, m}$-algebra. On the contrary, not every $M S_{n}$-algebra can be extended to a double $M S_{n}$-algebra, but, whenever it is possible, the extension is unique.

The $M S$-algebras which are reduct of a double $M S$-algebra are characterized in [5, Theorem 2.2]. We obtain a similar result for $M S_{n}$-algebras, $n \in \mathbb{N}$, and the central point is the fact that, for $(L, f, g) \in \mathbf{D M S}_{n}$, the closure $f^{2 n}$ is residuated.

We recall a few notions from [3]. Let E, F be partially ordered sets. A mapping $\varphi: E \rightarrow F$ is said to be residuated if it is isotone and there exists a (unique) isotone mapping $\psi: F \rightarrow E$ such that $\psi \varphi \geq \mathrm{id}_{E}$ and $\varphi \psi \leq \mathrm{id}_{F}$. The mapping ψ is called the residual of φ and is given by $\psi(y)=\max \{x \in E \mid \varphi(x) \leq y\}, \forall y \in F$. Moreover, φ preserves suprema and ψ preserves infima. If $E=F$ and φ is a residuated closure, we have $\varphi(x)=\min ([x) \cap \operatorname{Im} \varphi)$ and $\psi(x)=\max ((x] \cap \operatorname{Im} \varphi), \forall x \in E$; besides, ψ is a dual closure on E and $\operatorname{Im} \psi=\operatorname{Im} \varphi$.

A nonempty subset Z of E is said to be bicomplete if, for each $x \in E,[x) \cap Z$ has a smallest element and $(x] \cap Z$ has a greatest element. The bicomplete subsets of E are exactly the sets $\operatorname{Im} \varphi$, where φ is a residuated closure on E. Let Z be a bicomplete subset of E and $v ; E \rightarrow E$ the mapping defined by $v(x)=\max ((x] \cap Z), \forall x \in E$; then we say that Z is strong if v preserves suprema, [5]. Clearly, Z is a strong bicomplete subset if and only if $Z=\operatorname{Im} \varphi$ for a residuated closure φ whose residual ψ preserves suprema. Moreover, the following result holds.

Lemma 19 [12, Lemma 5.4]. Let E be a distributive lattice and φ be a closure on E. Then the following are equivalent:
(i) $\operatorname{Im} \varphi$ is a strong bicomplete subset of E.
(ii) $\operatorname{Im} \varphi$ is a bicomplete subset of E and, for every $x \in \operatorname{Im} \varphi$, if $x=y \vee z$, with y, $z \in E$, then $x=\psi(y) \vee \psi(z)$.
Proof. See the proof of the equivalence of the statements (2) and (3) in [5, Theorem 2.2]: only properties of closure operators are used, not the particular closure involved.

Note that (i) \Rightarrow (ii) holds in every partially ordered set E, but the converse is not true in general. Consider the lattice E whose Hasse diagram is

Figure 1.
The mapping φ defined by $\varphi(1)=\varphi(e)=\varphi(a)=\varphi(b)=1, \varphi(d)=d$ and $\varphi(0)=0$ is a residuated closure on E and its residual ψ is given by $\psi(1)=1, \psi(e)=\psi(d)=d$ and $\psi(a)=\psi(b)=\psi(0)=0$. Then $\operatorname{Im} \varphi=\{0, d, 1\}$ satisfies (ii) and does not satisfy (i) since $d=\psi(e)=\psi(a \vee b)>\psi(a) \vee \psi(b)=0$.

Now, if $\mathscr{L}=(L, f, g) \in \mathbf{D M S}_{n}$, it follows from Corollary 3(i) that the closure operator $f^{2 n}$ is residuated, its residual being $g^{2 n}$.

For $(L, f) \in \operatorname{MS} n$, we have $\operatorname{Im} f^{2 n}=\operatorname{Im} f$. We present a condition on $\operatorname{Im} f$ which is necessary and sufficient for (L, f) to be a reduct of a (unique) double $M S_{n}$-algebra.

Theorem 20. [12, Theorem 5.6] An algebra $(L, f) \in \mathbf{M S}_{n}$ can be extended to a double $M S_{n}$-algebra if and only if $\operatorname{Im} f$ is a strong bicomplete subset of L. In this case, we obtain $(L, f, g) \in \mathbf{D M S}_{n}$ where $g(x)=f^{2 n-1}(\max ((x] \cap \operatorname{Im} f)), \forall x \in L$.

Proof. If (L, f) can be extended to a double $M S_{n}$-algebra (L, f, g), then $f^{2 n}$ is a residuated closure. Moreover, its residual, $g^{2 n}$, is an endomorphism of L. Hence $\operatorname{Im} f$ is a strong bicomplete subset of L. For each $x \in L$, we have $\max ((x] \cap \operatorname{Im} f)=g^{2 n}(x)$ and, applying Corollary 3 (ii), we have $f^{2 n-1}(\max ((x] \cap \operatorname{Im} f))=g(x)$. Therefore (L, f) is the reduct of exactly one double $M S_{n}$-algebra.

Conversely, let (L, f) be an $M S_{n}$-algebra such that $\operatorname{Im} f$ is a strong bicomplete subset of L. Then the closure $f^{2 n}$ is residuated and its residual ψ is both an endomorphism and a dual closure on L. We have $\psi(x)=\max ((x] \cap \operatorname{Im} f)$, hence $\psi(f(x))=f(x), \forall x \in L$. The mapping $g: L \rightarrow L$, defined by $g(x)=f^{2 n-1}(\psi(x)), \forall x \in L$, is a dual endomorphism of L. Now $\psi(g(x))=g(x)$, and $g^{i}(x)=f^{2 n-i}(\psi(x)), \quad 1 \leq i \leq 2 n$. Hence $g^{2 n}(x)=\psi(x) \leq x$, $g f(x)=f^{2 n-1}(\psi(f(x)))=f^{2 n}(x)$ and $f g(x)=f^{2 n}(\psi(x))=\psi(x)=g^{2 n}(x)$ so that $(L, f, g) \in$ DMS $_{n}$.

From Theorem 20 and using Lemma 19 we now obtain the following corollary.
Corollary 21 [12, Corollary 5.7] If $(L, f) \in \mathbf{M S}_{n}$ can be extended to a double $M S_{n}$-algebra, then every element of $\operatorname{Im} f$ that is v-reducible in L is also v-reducible in $\operatorname{Im} f$.

Observe that the condition stated above is not sufficient for an $M S_{n}$-algebra to be a reduct of a double $M S_{n}$-algebra: if L is the chain $-\infty<\cdots<-2<-1<0<1<2<\cdots$ $<z<+\infty$ and f is defined by $f(z)=-\infty, f(a)=-a$ if $a \neq z$, then $(L, f) \in \mathbf{M S}$ and $\operatorname{Im} f=L \backslash\{z\}$ is not bicomplete $((z] \cap \operatorname{Im} f$ does not a have a greatest element $)$.

Examples. (1) It was already pointed out that, if $(L, f) \in \mathbf{K}_{n, 0}$, then $\left(L, f, f^{2 n-1}\right) \in$ DMS $_{n}$.
(2) The (non-isomorphic) subdirectly irreducibles in $\mathbf{M S}_{2} \backslash \mathbf{M S}$ are the algebras \mathscr{A}, $\mathscr{A}_{i}, 1 \leq i \leq 5, \mathscr{C}$ and \mathscr{C}_{1} depicted in [11, Theorem 1].

As $\mathscr{A}, \mathscr{C} \in \mathbf{K}_{2,0}, \mathscr{A}, \mathscr{C}$ are reducts of double $M S_{2}$-algebras; so are \mathscr{A}_{1} and \mathscr{A}_{4} (see [12, example 5.3]). The algebra $\mathscr{C}_{1}=\left(C_{1}, f\right)$ that generates $\mathbf{M S} \mathbf{S}_{2}$ has the Hasse diagram shown in Figure 2 and can be extended to the double $M S_{2}$-algebra (C_{1}, f, g) where g is the dual endomorphism of C_{1} induced by $g\left(a_{i}\right)=f^{3}\left(a_{i}\right), 0 \leq i \leq 3$, and $g(u)=$ $f^{3}(\max ((u] \cap \operatorname{Im} f))=f^{3}\left(a_{0} \vee a_{2} \vee a_{3}\right)=a_{0}$.

The algebras $\mathscr{A}_{2}, \mathscr{A}_{3}$ and \mathscr{A}_{5} are not extendable to double $M S_{2}$-algebras; just apply Corollary 21: the element $b=y \vee k$ is \vee-reducible in A_{2}, but is \vee-irreducible in $\operatorname{Im} f$; a similar statement holds for the element $d=s \vee k$ both in A_{3} and in A_{5}.
(3) Given $n \in \mathbb{N}$, let L be a direct product of $2 n$ finite non-trivial chains. Let a_{i}, $0 \leq i \leq 2 n-1$, be the maximal elements in $J(L)$ (i.e., the atoms of $C(L)$, the center of L) and consider the dual endomorphism f of L induced by $f(x)=c\left(a_{r(i+1)}\right), x \in J(L), x \leq a_{i}$, $0 \leq i \leq 2 n-1(c(z)$ denotes the complement of $z)$. Then $(L, f) \in \mathbf{M S}_{n}$ and $\operatorname{Im} f=C(L)$.

For each $y \in L$, let $w_{y}=\bigvee\left\{a_{i} \mid a_{i} \leq y\right\}$. It is obvious that $w_{y} \in(y] \cap \operatorname{Im} f$; if $a \in(y] \cap \operatorname{Im} f$, then $a=w_{a} \leq w_{y}$, hence $w_{y}=\max ((y] \cap \operatorname{Im} f)$. Moreover, for $y, z \in L$ and

Figure 2.
since $a_{i}, 0 \leq i \leq 2 n-1$, is a \vee-irreducible element, we have $w_{y \vee z}=w_{y} \vee w_{z}$. Therefore $\operatorname{Im} f$ is a strong bicomplete subset of L. By Theorem 20 , we obtain $(L, f, g) \in \mathbf{D M S}_{n}$ where $g(y)=f^{2 n-1}\left(w_{y}\right), \forall y \in L$. Since $w_{a_{i}}=a_{i}, 0 \leq i \leq 2 n-1$, and $w_{x}=0, \forall x \in J(L) \backslash$ $\left\{a_{i} \mid 0 \leq i \leq 2 n-1\right\}$, we conclude that g is the dual endomorphism of L induced by $g\left(a_{i}\right)=c\left(a_{r(i-1)}\right), 0 \leq i \leq 2 n-1$, and $g(x)=1, \forall x \in J(L) \backslash\left\{a_{i} \mid 0 \leq i \leq 2 n-1\right\}$.

Note that, if $L=\mathbf{4} \times \mathbf{3}^{2 n-1}$, the algebra (L, f, g) just described is isomorphic to \mathscr{D}_{n}^{\prime}.

REFERENCES

1. J. Berman, Distributive lattices with an additional unary operation, Aequat. Math. 16 (1977), 165-171.
2. W. J. Blok and D. Pigozzi, On the structure of varieties with equationally definable principal congruences I, Alg. Univ. 15 (1982), 195-227.
3. T. S. Blyth and M. F. Janowitz, Residuation theory (Pergamon Press, Oxford, 1972).
4. T. S. Blyth and J. C. Varlet, On a common abstraction of de Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinburgh 94A (1983), 301-308.
5. T. S. Blyth and J. C. Varlet, Double MS-algebras, Proc. Roy. Soc. Edinburgh 98A (1984), 37-47.
6. T. S. Blyth and J. C. Varlet, Subdirectly irreducible double MS-algebras, Proc. Roy. Soc. Edinburgh. 98A (1984), 241-247.
7. T. S. Blyth and J. C. Varlet, Congruences on double MS-algebras, Bull. Soc. Roy. Sci. Liège 56 (1987), 143-152.
8. A. Day, A note on the congruence extension property, Alg. Univ. 1 (1971), 234-235.
9. P. Köhler and D. Pigozzi, Varieties with equationally definable principal congruences, Alg. Univ. 11 (1980), 213-219.
10. H. A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190.
11. M. Ramalho and M. Sequeira, On generalized MS-algebras, Port. Math. 44 (1987), 315-328.
12. M. Sequeira, Álgebras-MS generalizadas e álgebras- $K_{n, 1}$ duplas, Ph.D. dissertation, Lisboa, 1989.
13. A. Urquhart, Distributive lattices with a dual homomorphic operation, Stud. Log. 38 (1979), 201-209.

Dep. Matemática-Fac. Cièncias Lisboa
R. Ernesto de Vasconcelos, Bloco C1

1700 Lisboa
Portugal

Present address:
Dep. Matemática Universidade do Minho
Largo do Pago 4719 Braga Codex Portugal

