DOUBLE MS_n -ALGEBRAS AND DOUBLE $K_{n,m}$ -ALGEBRAS by M. SEQUEIRA[†]

(Received 21 November, 1991)

0. Abstract. The variety O_2 of all algebras $(L; \land, \lor, f, g, 0, 1)$ of type (2, 2, 1, 1, 0, 0) such that $(L; \land, \lor, f, 0, 1)$ and $(L; \land, \lor, g, 0, 1)$ are Ockham algebras is introduced, and, for $n, m \in \mathbb{N}$, its subvarieties **DMS**_n, of double MS_n -algebras, and **DK**_{n,m}, of double $K_{n,m}$ -algebras, are considered. It is shown that **DK**_{n,m} has equationally definable principal congruences: a description of principal congruences on double $K_{n,m}$ -algebras is given and simplified for double MS_n -algebras. A topological duality for O_2 -algebras is developed and used to determine the subdirectly irreducible algebras in **DK**_{n,m} and in **DMS**_n. Finally, MS_n -algebras which are reduct of a (unique) double MS_n -algebra are characterized.

1. Preliminaries. Algebras $(L; \land, \lor, f, 0, 1)$ of type (2, 2, 1, 0, 0) such that $(L; \land, \lor, 0, 1)$ is a bounded distributive lattice and f is a dual endomorphism of $(L; \land, \lor, 0, 1)$ are called distributive Ockham algebras and form a variety. In [1], for $n \in \mathbb{N}$, $m \in \mathbb{N}_0$, the subvariety of Ockham algebras characterized by the equation $f^{2n+m}(x) = f^m(x)$ is denoted by $\mathbf{K}_{n,m}$. Notice that $\mathbf{K}_{n,m} \subseteq \mathbf{K}_{n',m'}$ if and only if $n \mid n'$ and $m \leq m'$, [11].

A topological duality for Ockham algebras based on Priestley's duality for bounded distributive lattices was established in [13]. The duality was used to describe the subdirectly irreducible algebras and several subvarieties including $\mathbf{K}_{n,m}$ (denoted $\mathcal{P}_{2n+m,m}$ in [13]). In particular, each $\mathbf{K}_{n,m}$ is generated by a single algebra, $\mathcal{L}_{2n+m,m}$, which is subdirectly irreducible.

The variety **MS** of *MS*-algebras, [4], is the subvariety of Ockham algebras characterized by $x \le f^2(x)$. For $n \in \mathbb{N}$, we denote by **MS**_n the variety of Ockham algebras satisfying $x \le f^{2n}(x)$, [12], (these varieties appeared in [11] denoted by $\mathbf{K}_{n,0}^{\le}$). Obviously, $\mathbf{MS}_{t} = \mathbf{MS}$. We have $\mathbf{K}_{n,0} \subset \mathbf{MS}_{n} \subset \mathbf{K}_{n,1}$; besides, $\mathbf{MS}_{n} \subseteq \mathbf{MS}_{n'}$ if and only if $n \mid n'$, [11]. If $(L; \land, \lor, f, 0, 1)$ is an MS_{n} -algebra, f^{2n} is both an endomorphism and a closure operator on $(L; \land, \lor, 0, 1)$.

The notion of double *MS*-algebra, introduced by T. Blyth and J. Varlet in [5], was inspired by the properties of double Stone algebras. A *double MS*-algebra $(L; \land, \lor, f, g, 0, 1)$ is an algebra of type (2, 2, 1, 1, 0, 0) such that $(L; \land, \lor, f, 0, 1)$ and $(L; \land, \lor, g, 0, 1)$ are Ockham algebras and f, g satisfy $x \le f^2(x), g^2(x) \le x, gf(x) = f^2(x), fg(x) = g^2(x), \forall x \in L$. **DMS** denotes the variety of double *MS*-algebras. Each algebra $(L; \land, \lor, f, g, 0, 1) \in \text{DMS}$ is associated with an *MS*-algebra and a dual *MS*-algebra; gf and fg are, respectively, a closure and a dual closure on $(L; \land, \lor, 0, 1)$.

2. The variety O_2 and the subvarieties $DK_{n,m}$ and DMS_n . We shall consider algebras of type (2, 2, 1, 1, 0, 0) which are associated with Ockham algebras.

DEFINITION. [12] An O_2 -algebra is an algebra $\mathscr{L} = (L; \land, \lor, f, g, 0, 1)$ of type (2, 2, 1, 1, 0, 0) such that $(L; \land, \lor, f, 0, 1)$ and $(L; \land, \lor, g, 0, 1)$ are Ockham algebras.

† Work done within the activities of Centro de Álgebra da Universidade de Lisboa, I.N.I.C.

Glasgow Math. J. 35 (1993) 189-201.

The class of all O_2 -algebras is a variety and we denote it by \mathbf{O}_2 . For brevity, we write $\mathcal{L} = (L, f, g) \in \mathbf{O}_2$, (L, f), (L, g) for Ockham algebras and L for the underlying bounded distributive lattice.

For each $n \in \mathbb{N}$, we introduce a subvariety of O_2 which is related to MS_n in the same way that double *MS*-algebras are related to *MS*-algebras. The fact that, for $(L, f) \in MS_n$, the mapping f^{2n} is a closure on L leads to the following definition.

DEFINITION [12]. A double MS_n -algebra is an algebra $\mathscr{L} = (L, f, g) \in \mathbf{O}_2$ such that

$$fg = g^{2n} \le \mathrm{id} \le f^{2n} = gf.$$

The variety of double MS_n -algebras is denoted by \mathbf{DMS}_n . Now $\mathbf{DMS}_1 = \mathbf{DMS}$, and it is easy to check that $\mathbf{DMS}_n \subseteq \mathbf{DMS}_{n'}$ if $n \mid n'$. Notice that, if $(L, f) \in \mathbf{K}_{n,0}$ and $g = f^{2n-1}$, we obtain $(L, f, g) \in \mathbf{DMS}_n$. Hence, if $\mathbf{DMS}_n \subseteq \mathbf{DMS}_{n'}$, extending $\mathcal{L}_{2n,0}$ to a double MS_n -algebra, we conclude that $\mathbf{K}_{n,0} (=V(\{\mathcal{L}_{2n,0}\})) \subset \mathbf{MS}_{n'} \subset \mathbf{K}_{n',1}$ and $n \mid n'$.

Let $n,m \in \mathbb{N}$. For each $(L,f) \in \mathbf{K}_{n,m}$, we have $f^{2n+k} = f^k$, $\forall k \in \mathbb{N}$, $k \ge m$. If $2n \ge m$, the map $g = f^{2n-1}$ is a dual endomorphism of L satisfying $g^{2n} = f^{2n}$ and $g^{2n+m} = g^m$; hence $gf = f^{2n}$ and $fg = g^{2n}$. In general, if z is the smallest integer such that $2zn \ge m$, i.e. $z = \lceil m/2n \rceil (\lceil x \rceil$ stands for the smallest integer greater than or equal to x), the dual endomorphism $g = f^{2zn-1}$ of L satisfies $g^{2n+m} = g^m$ and $g^{2zn} = f^{2zn}$; therefore $gf = f^{2zn}$ and $fg = g^{2zn}$.

DEFINITION. Let $n,m \in \mathbb{N}$ and $z = \lceil m/2n \rceil$. We denote by $\mathbf{DK}_{n,m}$ the class of all algebras $\mathscr{L} = (L, f, g) \in \mathbf{O}_2$ such that

$$f^{2n+m} = f^m$$
, $g^{2n+m} = g^m$, $gf = f^{2zn}$, $fg = g^{2zn}$.

If $\mathcal{L} \in \mathbf{DK}_{n,m}$, we say that \mathcal{L} is a *double* $K_{n,m}$ -algebra. For m = 1, we get the double $K_{n,1}$ -algebras introduced in [12]. Clearly, $\mathbf{DMS}_n \subset \mathbf{DK}_{n,1}$. The varieties $\mathbf{DK}_{n,m}$, $n, m \in \mathbb{N}$, are related in the following way.

PROPOSITION 1. Let $n, n', m, m' \in \mathbb{N}$.

(i) If $n \mid n'$, then $\mathbf{DK}_{n,m} \subseteq \mathbf{DK}_{n',m}$.

(ii) If $m \leq m'$, then $\mathbf{DK}_{n,m} \subseteq \mathbf{DK}_{n,m'}$.

(iii) $\mathbf{DK}_{n,m} \subseteq \mathbf{DK}_{n',m'}$ if and only if $n \mid n'$ and $m \leq m'$.

Proof. Recall that $\mathbf{K}_{n,m} \subseteq \mathbf{K}_{n',m'}$ if and only if $n \mid n'$ and $m \leq m'$.

(i) Let n' = nk, $z = \lceil m/2n \rceil$, $z' = \lceil m/2n' \rceil$ and $\mathcal{L} = (L, f, g) \in \mathbf{DK}_{n,m}$. Then $kz' \ge z$ and, for $\rho \in \{f, g\}$, we have $\rho^{2z'n'} = \rho^{2(kz'-z)n+2zn} = \rho^{2zn}$. Hence $\mathcal{L} \in \mathbf{DK}_{n',m}$.

(ii) If $m \le m'$ and $\mathcal{L} = (L, f, g) \in \mathbf{DK}_{n,m}$, we have $z = \lceil m/2n \rceil \le z' = \lceil m'/2n \rceil$ and, for $\rho \in \{f, g\}, \rho^{2z'n} = \rho^{2(z'-z)n+2zn} = \rho^{2zn}$. Hence $\mathcal{L} \in \mathbf{DK}_{n,m'}$.

(iii) If $n \mid n'$ and $m \leq m'$, then $\mathbf{D}\mathbf{K}_{n,m} \subseteq \mathbf{D}\mathbf{K}_{n',m'}$ by (i) and (ii). Conversely, if $\mathbf{D}\mathbf{K}_{n,m} \subseteq \mathbf{D}\mathbf{K}_{n',m'}$, it suffices to extend the algebra $\mathscr{L}_{2n+m,m}$ (which generates $\mathbf{K}_{n,m}$) to a double $K_{n,m}$ -algebra to conclude that $\mathbf{K}_{n,m} \subseteq \mathbf{K}_{n',m'}$, hence $n \mid n'$ and $m \leq m'$.

The process that motivates the definition of $\mathbf{DK}_{n,m}$ is not, in general, the only one that allows us to obtain a double $K_{n,m}$ -algebra from a given algebra in $\mathbf{K}_{n,m}$. For instance, the Stone algebra $\mathscr{S} = (S, f)$, where S is the chain 0 < a < 1 and f is defined by f(0) = 1, f(a) = f(1) = 0, yields two algebras in $\mathbf{DK}_{1,1}$: letting $g_1(0) = g_1(a) = 1$, $g_1(1) = 0$, we get $(S, f, g_1) \in \mathbf{DMS}_1$; taking $g_2 = f$, we get $(S, f, g_2) \in \mathbf{DK}_{1,1} \setminus \mathbf{DMS}_1$.

190

191

Let $\mathscr{L} = (L, f, g) \in \mathbf{DK}_{n,m}$. Then $f^{2n+k} = f^k$, $g^{2n+k} = g^k$, $\forall k \ge m$. Denote by r(t) the remainder of the integer t on division by 2n. For $1 \le i, j \le 2n + m - 1$, let $z_{i,j} = m + r(j - i - m)$ (then $m \le z_{i,j} \le 2n + m - 1$).

PROPOSITION 2. Let $n, m \in \mathbb{N}$, $z = \lceil m/2n \rceil$ and $\mathcal{L} = (L, f, g) \in \mathbf{DK}_{n,m}$. Then (i) $g^{i}f^{i} = f^{2zn}, f^{i}g^{i} = g^{2zn}, 1 \le i \le 2n + m - 1$. (ii) $g^{i}f^{j} = f^{z_{ij}}, f^{j}g^{i} = g^{z_{ji}}, 1 \le i, j \le 2n + m - 1$. (iii) Im $f^{m} = \operatorname{Im} g^{m}$.

Proof. (i) Use induction on *i* and the fact that $2zn \ge m$.

(ii) For $1 \le i$, $j \le 2n + m - 1$, we have $|i - j| \le 2n + m - 2 \le 2n + 2zn - 2 < 4zn$. We consider three cases:

(a) i = j. Now, $z_{i,j} = 2zn$ and $g^{i}f^{j} = f^{2zn}$, by (i). (b) i < j. We have $g^{i}f^{j} = g^{i}f^{i}f^{j-i} = f^{2zn+j-i} = f^{2zn+m+(j-i-m)} = f^{z_{i,j}}$. (c) i > j. Now, $g^{i}f^{j} = g^{i-j}g^{i}f^{j} = g^{i-j}f^{2zn}$. If i - j < 2zn, we get $g^{i}f^{j} = f^{z_{i,j}}$ by (b). If i - j = 2zn, we have $g^{i}f^{j} = g^{2zn}f^{2zn} = f^{2zn} = f^{z_{i,j}}$. If i - j > 2zn, we get $g^{i}f^{j} = g^{i-j-2zn}f^{2zn} = g^{i-j-2zn}f^{2zn} = f^{z_{i,j}}$ using (b), since i - j - 2zn < 2zn. (iii) Just notice that $f^{m} = g^{m}f^{m+r(m)}$ and $g^{m} = f^{m}g^{m+r(m)}$.

COROLLARY 3 [12, Lemma 5.3]. Let $n \in \mathbb{N}$ and $\mathcal{L} = (L, f, g) \in \mathbf{DMS}_n$. Then (i) $g^i f^i = f^{2n}, f^i g^i = g^{2n}, 1 \le i \le 2n$; (ii) $g^i f^j = f^{r(j-i)}, f^j g^i = g^{r(i-j)}, 1 \le i, j \le 2n, i \ne j$; (iii) Im f = Im g; (iv) $f^{2k+1}(x) \le g^{2n-2k-1}(x), g^{2n-2k}(x) \le f^{2k}(x), \forall x \in L, 0 \le k \le n-1$.

Proof. Since $\mathbf{DMS}_n \subset \mathbf{DK}_{n,1}$, (i), (ii) and (iii) follow from Proposition 2.

(iv) We have $g^{2n}(x) \le x$, $\forall x \in L$. For $0 \le k \le n-1$, using (ii) and the fact that f^{2k+1} is a dual endomorphism of L, we get $f^{2k+1}(x) \le f^{2k+1}g^{2n}(x) = g^{2n-2k-1}(x)$. Again by (ii) and as f^{2k} is an endomorphism of L, we have $f^{2k}(x) \ge f^{2k}g^{2n}(x) = g^{2n-2k}(x)$.

3. Principal congruences. For $\mathcal{L} = (L, f, g) \in \mathbf{O}_2$, we denote by $\operatorname{Con}(\mathcal{L})$ the congruence lattice of \mathcal{L} and by $\operatorname{Con}_D(\mathcal{L})$ the congruence lattice of the D_{01} -lattice L. For a, $b \in L$, $\theta(a, b)$, resp. $\theta_D(a, b)$, is the smallest element of $\operatorname{Con}(\mathcal{L})$, resp. $\operatorname{Con}_D(\mathcal{L})$, collapsing a and b. It suffices to consider $\theta(a, b)$ for a < b, since, if $\theta \in \operatorname{Con}(\mathcal{L})$ and x, $y \in L$, we have $(x, y) \in \theta$ if and only if $(x \land y, x \lor y) \in \theta$.

It is easy to see that, for $\mathscr{L} = (L, f, g) \in \mathbf{DK}_{n,m}$ and $a, b \in L, a < b$, the principal congruence $\theta(a, b)$ is given by

$$\theta(a,b) = \theta_D(a,b) \vee \bigvee_{i=1}^{2n+m-1} \theta_D(f^i(a),f^i(b)) \vee \bigvee_{j=1}^{2n+m-1} \theta_D(g^j(a),g^j(b)).$$

Now, by [2, Th. 1.3], we conclude that $DK_{n,m}$ has equationally definable principal congruences and, hence, satisfies the congruence extension property, [8, Corollary 2].

The description of a principal congruence as a join of congruences of a distributive lattice and [9, Lemma 2] allow us to conclude that each principal congruence in a double $K_{n,m}$ -algebra can be defined by $2^{4n+2m-1}$ equations.

For $n, m \in \mathbb{N}$, define

$$T_{n,m} = \left\{0, 1, 2, \dots, n + \left\lfloor \frac{m-1}{2} \right\rfloor\right\}, \qquad T'_{n,m} = \left\{0, 1, 2, \dots, n + \left\lfloor \frac{m-2}{2} \right\rfloor\right\},$$
$$T''_{n,m} = T_{n,m} \setminus \{0\}$$

([x] stands for the greatest integer less than or equal to x).

Let $\mathscr{L} = (L, f, g) \in \mathbf{DK}_{n,m}$, $a, b \in L$, a < b. Then $(x, y) \in \theta(a, b)$ if and only if

$$(x \wedge d_{F,G,H,J}(a,b)) \vee e_{F,G,H,J}(a,b) = (y \wedge d_{F,G,H,J}(a,b)) \vee e_{F,G,H,J}(a,b) \quad (\dagger)$$

for each F, G, H, J such that $F \subseteq T_{n,m}$; G, $J \subseteq T'_{n,m}$; $H \subseteq T''_{n,m}$ and where

$$d_{F,G,H,J}(a,b) = \bigwedge_{i \in F} f^{2i}(a) \wedge \bigwedge_{j \in G} f^{2j+1}(b) \wedge \bigwedge_{k \in H} g^{2k}(a) \wedge \bigwedge_{l \in J} g^{2l+1}(b),$$

$$e_{F,G,H,J}(a,b) = \bigvee_{q \in T_{n,m} \setminus F} f^{2q}(b) \vee \bigvee_{r \in T_{n,m} \setminus G} f^{2r+1}(a) \vee \bigvee_{s \in T_{n,m} \setminus X} g^{2s}(b) \vee \bigvee_{r \in T_{n,m} \setminus J} g^{2t+1}(a).$$

(The process used for obtaining these equations is described in [12, Theorem 6.4].)

For double MS_n -algebras, this description can be simplified since some of the 2^{4n+1} equations (†) obtained for algebras in $\mathbf{DK}_{n,1}$ hold trivially for algebras in \mathbf{DMS}_n . Let $\mathscr{L} = (L, f, g) \in \mathbf{DMS}_n$ and $x \in L$. Then $x \leq f^{2n}(x)$; and, for each $i \in T'_{n,1}$ and each $j \in T'_{n,1}$, we have $g^{2i}(x) \leq f^{2n-2i}(x)$ and $f^{2j+1}(x) \leq g^{2n-2j-1}(x)$ (Corollary 3(iv)).

For F, G, H, J such that $F \subseteq T_{n,1}$; G, $J \subseteq T'_{n,1}$; $H \subseteq T''_{n,1}$, define

$$T''_{F,H} = \{s \in T''_{n,1} \mid s \in H, n - s \notin F\}, \qquad T'_{G,J} = \{t \in T'_{n,1} \mid t \in G, n - 1 - t \notin J\}.$$

We say that

the pair (F, H) satisfies the condition (0'') if $T''_{F,H} = \emptyset$, $n \notin F$ and $0 \in F$: the pair (F, H) satisfies the condition (i''), for $i \in T''_{n,1}$, if $T''_{F,H} \neq \emptyset$ and $i = \min T''_{F,H}$; the pair (G, J) satisfies the condition (j'), for $j \in T'_{n,1}$, if $T'_{GJ} \neq \emptyset$ and $j = \min T'_{GJ}$.

THEOREM 4 [12, Theorem 6.5]. Let $\mathcal{L} = (L, f, g) \in \text{DMS}_n$ and $a, b \in L, a < b$. Then the principal congruence $\theta(a, b)$ is defined by the equations (†) in which (F, H) does not satisfy $(i''), i \in T_{n,1}$, and (G, J) does not satisfy $(j'), j \in T'_{n,1}$.

Proof. Since $DMS_n \subset DK_{n,1}$, the congruence $\theta(a, b)$ is defined by the 2^{4n+1} equations (†) above. Consider the following cases.

(a) (F, H) satisfies (0''). Then $0 \in F$, $n \notin F$, hence

$$d_{F,G,H,J}(a,b) \le a \le f^{2n}(a) \le f^{2n}(b) \le e_{F,G,H,J}(a,b).$$

(b) $\exists i \in T''_{n,1}$: (F, H) satisfies (i''). Since $i \in H$ and $n - i \notin F$, we get

$$d_{F,G,HJ}(a,b) \leq g^{2i}(a) \leq g^{2i}(b) \leq f^{2n-2i}(b) \leq e_{F,G,HJ}(a,b).$$

(c) $\exists j \in T'_{n,1}$: (G, J) satisfies (j'). Now, $j \in G$ and $n - 1 - j \notin J$, hence

$$d_{F,G,H,J}(a,b) \leq f^{2j+1}(b) \leq f^{2j+1}(a) \leq g^{2n-2j-1}(a) \leq e_{F,G,H,J}(a,b).$$

In each case, we have $(z \land d_{F,G,H,J}(a,b)) \lor e_{F,G,H,J}(a,b) = e_{F,G,H,J}(a,b), \forall z \in L$, therefore the corresponding equation (†) holds trivially in L.

192

Observe that, if $F \subseteq T_{n,1}$; $H \subseteq T''_{n,1}$ and (F, H) satisfies (0''), then each k such that $1 \le k \le n-1$ satisfies exactly one of the following: $k \in H$, $n-k \in F$; $k \notin H$, $n-k \in F$; $k \notin H$, $n-k \in F$; moreover, we have either $n \in H$, $0 \in F$ or $n \notin H$, $0 \in F$, and, besides, $n \notin F$. Therefore the number of pairs (F, H) that satisfy (0'') is $\alpha_{n,0} = 3^{n-1}$. 2.

Also, if (F, H) satisfies (s''), for a given $s \in T''_{n,1}$, we have $s \in H$, $n - s \notin F$ and, for each $k \in T''_{n,1}$ with k < s, exactly one of the above cases holds. Therefore there exist $\alpha_{n,s} = 3^{s-1} \cdot 2^{n+1-s} \cdot 2^{n-s} = 3^{s-1} \cdot 2^{2n+1-2s}$ pairs (F, H) satisfying (s'').

Similarly we conclude that the number of pairs (G, J), with $G, J \subseteq T'_{n,1}$, that satisfy (t'), for a given $t \in T'_{n,1}$, is $\beta_{n,t} = 3^t \cdot 2^{n-1-t} \cdot 2^{n-1-t} = 3^t \cdot 2^{2n-2-2t}$.

COROLLARY 5. [12, Corollary 6.6] Let $\mathcal{L} = (L, f, g) \in \mathbf{DMS}_n$ and $a, b \in L$. Then $\theta(a, b)$ can be described by $2^2 \cdot 3^{2n-1}$ equations.

Proof. Since $\theta(a, b) = \theta(a \land b, a \lor b)$, we simply consider the case a < b. Then $\theta(a, b)$ is defined by the equations (†) in the conditions of Theorem 4.

There are $\alpha_n = 2^{2n+1} - \sum_{s=0}^n \alpha_{n,s} = 2^2 \cdot 3^{n-1}$ pairs (F, H) that do not satisfy (i''), $i \in T_{n,1}$; and there exist $\beta_n = 2^{2n} - \sum_{i=0}^{n-1} \beta_{n,i} = 3^n$ pairs (G, J) that do not satisfy (j'), $j \in T'_{n,1}$. Therefore $\theta(a, G)$ is defined by $\alpha_n \beta_n = 2^2 \cdot 3^{2n-1}$.

A description of principal congruences in double MS-algebras by means of 12 equations is given in [7, Theorem 1].

4. A duality for O_2 -algebras. We develop a topological duality for O_2 -algebras which is similar to the duality for Ockham algebras obtained in [13].

DEFINITION [12]. $X = (X, \mathcal{T}, \leq, \varepsilon, \gamma)$ is an O_2 -space if (X, \mathcal{T}, \leq) is a Priestley space (i.e., a compact totally ordered disconnected space) and $\varepsilon, \gamma : X \to X$ are continuous antitone mappings.

DEFINITION. The dual space of the algebra $\mathcal{L} = (L, f, g) \in \mathbf{O}_2$ is $Pr_2(\mathcal{L}) = (X_L, \mathcal{T}, \leq, \varepsilon_f, \varepsilon_g)$ where

(i) X_L is the set of D_{01} -homomorphisms from L into the two-element chain $\{0, 1\}$;

- (ii) \mathcal{T} is the topology induced in X_L by the product topology of $\{0, 1\}^L$;
- (iii) \leq is the order in X_L given by $h_1 \leq h_2$ if and only if $h_1(a) \leq h_2(a), \forall a \in L$;
- (iv) $\varepsilon_f(h) = chf$ and $\varepsilon_g(h) = chg$, $\forall h \in X_L$ (c denotes complementation in $\{0, 1\}$).

 $Pr_2(\mathcal{L})$ is an O_2 -space. For $\rho \in \{f, g\}, j \in \mathbb{N}$ and $h \in X_L$, we have $\varepsilon_{\rho}^j(h) = ch\rho^j$ if j is odd and $\varepsilon_{\rho}^j(h) = h\rho^j$ if j is even. If \mathcal{L} is finite, then \mathcal{T} is the discrete topology in X_L .

DEFINITION. The dual algebra of the O_2 -space $X = (X, \mathcal{T}, \leq, \varepsilon, \gamma)$ is $\mathcal{O}_2(X) = (O(X), f_{\varepsilon}, f_{\gamma})$ where O(X) is the bounded distributive lattice of the clopen order filters of (X, \mathcal{T}, \leq) , and $f_{\beta}, \beta \in {\varepsilon, \gamma}$, is the unary operation defined by $f_{\beta}(Y) = X \setminus \beta^{-1}(Y)$, $\forall Y \in O(X)$.

 $\mathcal{O}_2(X)$ is an O_2 -algebra. Given $\beta \in \{\varepsilon, \gamma\}, j \in \mathbb{N}, Y \in O(X)$, we have $f^j_{\beta}(Y) = X \setminus (\beta^j)^{-1}(Y)$ if j is odd and $f^j_{\beta}(Y) = (\beta^j)^{-1}(Y)$ if j is even.

For $\mathscr{L} \in \mathbf{O}_2$, the mapping $\Phi: L \to O(X_L)$, defined by $\Phi(a) = \{h \in X_L \mid h(a) = 1\}$,

 $\forall a \in L$, is an isomorphism of O_2 -algebras from \mathscr{L} into $\mathscr{O}_2(Pr_2(\mathscr{L}))$. If X is an O_2 -space, the mapping $\Psi: X \to X_{O(X)}$, defined by

$$(\Psi(x))(Y) = \begin{cases} 1 & \text{if } x \in Y; \\ 0 & \text{if } x \notin Y. \end{cases}, \quad \forall x \in X, \quad \forall Y \in O(X), \end{cases}$$

is an O_2 -homeomorphism between X and $Pr_2(\mathcal{O}_2(X))$.

Given $\mathscr{L}_1, \mathscr{L}_2 \in \mathbf{O}_2$, there exists a bijection between the set of homomorphisms from \mathscr{L}_1 into \mathscr{L}_2 and the set of O_2 -continuous mappings from $Pr_2(\mathscr{L}_2)$ into $Pr_2(\mathscr{L}_1)$: just associate to each homomorphism $\phi: L_1 \to L_2$ the mapping $\sigma_\phi: X_{L_2} \to X_{L_1}$ defined by $\sigma_\phi(h) = h\phi, \forall h \in X_{L_2}$.

Therefore we have a duality between O_2 -algebras (with O_2 -homomorphisms) and O_2 -spaces (with O_2 -continuous mappings), (see [13, Theorems 1, 3, 4]).

Let X be a set, $Y \subseteq X$ and $\varepsilon, \gamma: X \to X$ mappings. We denote by $Y_{\varepsilon,\gamma}$ the smallest subset Z of X such that $Y \subseteq Z$, $\varepsilon(Z) \subseteq Z$ and $\gamma(Z) \subseteq Z$, and say that Y is *invariant under* ε and γ if $Y_{\varepsilon,\gamma} = Y$.

THEOREM 6. [12, Theorem 7.5] The congruence lattice of an algebra $\mathscr{L} = (L, f, g) \in \mathbf{O}_2$ is dually isomorphic to the lattice of all closed subsets of $Pr_2(\mathscr{L}) = (X_L, \mathscr{T}, \leq, \varepsilon_f, \varepsilon_g)$ which are invariant under ε_f and ε_g .

Proof. The proof is analogous to that of [13, Theorem 5]. Identify \mathscr{L} and $\mathscr{O}_2(Pr_2(\mathscr{L}))$; for each closed invariant subset Y of $Pr_2(\mathscr{L})$, define the relation θ_Y on L by $(a, b) \in \theta_Y$ if and only if $Y \subseteq (a \cap b) \cup ((X_L \setminus a) \cap (X_L \setminus b))$. Then the correspondence associating Y to θ_Y is a dual isomorphism from the lattice of all closed invariant subsets of $Pr_2(\mathscr{L})$ into $Con(\mathscr{L})$.

Note that, if $\mathcal{L} = (L, f, g) \in \mathbf{DK}_{n,m}$ and $x, y \in L$ satisfy $\rho^i(x) = \rho^i(y)$, for some $\rho \in \{f, g\}$ and $m + 1 \le i \le 2n + m - 1$, then $\rho^m(x) = \rho^m(y)$. Now, for $1 \le i, j \le m$, we define the relation ker (f^i, g^j) on L by $(x, y) \in \text{ker}(f^i, g^j)$ if and only if $f^i(x) = f^i(y)$, $g^j(x) = g^j(y)$. Using Proposition 2 we may easily prove that ker $(f^i, g^j) \in \text{Con}(\mathcal{L})$.

The results concerning subdirectly irreducible algebras in O_2 are similar to those in [13, 2].

LEMMA 7. [12, Lemma 7.6] Let $X = (X, \mathcal{T}, \leq, \varepsilon, \gamma)$ be an O_2 -space and Y a subset of X.

(i) If Y is invariant under ε and γ , then so is \overline{Y} .

(ii) $\overline{Y_{\varepsilon,\gamma}}$ is the smallest closed subset of X that contains Y and is invariant under ε and γ .

THEOREM 8. [12, Theorem 7.7] Let $\mathcal{L} = (L, f, g) \in \mathbf{O}_2$ and $Pr_2(\mathcal{L}) = (X_L, \mathcal{T}, \leq \varepsilon_f, \varepsilon_g)$. Then \mathcal{L} is subdirectly irreducible if and only if $\{x \in X_L \mid Ax\}_{\varepsilon_f, \varepsilon_g} \neq X_L\}$ is not dense in (X_L, \mathcal{T}) . In particular, if L is finite, \mathcal{L} is subdirectly irreducible if and only if there exists $x \in X_L$ such that $\{x\}_{\varepsilon_f, \varepsilon_g} = X_L$.

5. Subdirectly irreducible algebras in $DK_{n,m}$ and in DMS_n . In order to apply the above duality to determine the subdirectly irreducible algebras in $DK_{n,m}$ and in DMS_n , we begin by characterizing the dual space of a double $K_{n,m}$ -algebra and of a double MS_n -algebra.

THEOREM 9. Let $\mathcal{L} = (L, f, g) \in \mathbf{O}_2$ and $Pr_2(\mathcal{L}) = (X_L, \mathcal{T}, \leq, \varepsilon_f, \varepsilon_g)$. Let $n, m \in \mathbb{N}$ and $z = \lfloor m/2n \rfloor$. Then

(i) $\mathcal{L} \in \mathbf{DK}_{n,m}$ if and only if

$$\begin{cases} \varepsilon_f^{2n+m}(h) = \varepsilon_f^m(h), \ \varepsilon_g^{2n+m}(h) = \varepsilon_g^m(h), \\ \varepsilon_f \varepsilon_g(h) = \varepsilon_f^{2zn}(h), \ \varepsilon_g \varepsilon_f(h) = \varepsilon_g^{2zn}(h), \end{cases}, \forall h \in X_L.$$

(ii) $\mathscr{L} \in \mathbf{DMS}_n$ if and only if
$$\begin{cases} h \le \varepsilon_f^{2n}(h), & \varepsilon_g^{2n}(h) \le h \\ \varepsilon_f \varepsilon_g(h) = \varepsilon_f^{2n}(h), & \varepsilon_g \varepsilon_f(h) = \varepsilon_g^{2n}(h), \end{cases}, \forall h \in X_L.$$

Proof. Observe that $gf = f^{2zn}$ in L if and only if $\varepsilon_f \varepsilon_g = \varepsilon_f^{2zn}$ in X_L (similarly, $fg = g^{2zn}$ if and only if $\varepsilon_g \varepsilon_f = \varepsilon_g^{2zn}$). In fact, if $gf = f^{2zn}$ and $h \in X_L$, we get

$$\varepsilon_f \varepsilon_g(h) = \varepsilon_f(chg) = c(chg)f = h(gf) = hf^{2zn} = \varepsilon_f^{2zn}(h).$$

Conversely, suppose that $\varepsilon_f \varepsilon_g = \varepsilon_f^{2zn}$ and recall that \mathscr{L} and $\mathscr{O}_2(Pr_2(\mathscr{L}))$ are isomorphic algebras. Let $Y \in O(X_L)$. Then

$$gf(Y) = g(X_L \setminus \varepsilon_f^{-1}(Y)) = X_L \setminus \varepsilon_g^{-1}(X_L \setminus \varepsilon_f^{-1}(Y)) = (\varepsilon_f \varepsilon_g)^{-1}(Y) = (\varepsilon_f^{2zn})^{-1}(Y) = f^{2zn}(Y).$$

Also, for $\rho \in \{f, g\}$ and $p, q \in \mathbb{N}_0$ such that $p \neq q$ and |p - q| is even, $\rho^p(x) \leq \rho^q(x)$ holds in L if and only if $\varepsilon_{\rho}^p(h) \leq \varepsilon_{\rho}^q(h)$, $h \in X_L$, (see [13, Theorem 9]).

Hence the double $K_{n,m}$ -algebras (resp. double MS_n -algebras) are exactly the algebras $\mathscr{L} \in \mathbf{O}_2$ for which the conditions in (i) (resp. (ii)) hold in $Pr_2(\mathscr{L})$.

- PROPOSITION 10. Let $\mathscr{L} = (L, f, g) \in \mathbf{DK}_{n,m}$ and $Pr_2(\mathscr{L}) = (X_L, \mathscr{T}, \leq, \varepsilon_f, \varepsilon_g)$. Then (i) $\varepsilon_f^j \varepsilon_g^i = \varepsilon_f^{z_{j,i}}, \varepsilon_g^i \varepsilon_f^j = \varepsilon_g^{z_{j,i}}, 1 \leq i, j \leq 2n + m - 1$ (in particular, $\varepsilon_f^j \varepsilon_g^i = \varepsilon_f^{2zn}, \varepsilon_g^i \varepsilon_f^j = \varepsilon_g^{2zn}$). (ii) $(\mathbf{x})_{j=1}^{j} = (\mathbf{x}, \varepsilon_g^j(\mathbf{x}), \varepsilon_g^j(\mathbf{x})) + 1 \leq i \leq 2n + m - 1$) $\forall \mathbf{x} \in \mathbf{X}$
- (ii) $\{x\}_{\varepsilon_f,\varepsilon_g} = \{x, \varepsilon_f^i(x), \varepsilon_g^i(x) \mid 1 \le i \le 2n + m 1\}, \forall x \in X_L.$

Proof. (i) Just translate the properties in Proposition 2 to the dual space of \mathcal{L} .

(ii) Apply (i) to check that $Y = \{x, \varepsilon_f^i(x), \varepsilon_g^i(x) \mid 1 \le i \le 2n + m - 1\}$ is invariant under ε and γ . Now it is clear that $\{x\}_{\varepsilon_f, \varepsilon_g} = Y$.

THEOREM 11. Every subdirectly irreducible algebra in $DK_{n,m}$ is finite. Up to isomorphism, there is only a finite number of subdirectly irreducible algebras in $DK_{n,m}$.

Proof. Let $\mathscr{L} = (L, f, g) \in \mathbf{DK}_{n,m}$ be subdirectly irreducible and $Pr_2(\mathscr{L}) = (X_L, \mathscr{T}, \leq, \varepsilon_f, \varepsilon_g)$. By Theorem 8, we have $\{x\}_{\varepsilon_f, \varepsilon_g} = X_L$, for some $x \in X_L$. By Proposition 10(ii), $\{x\}_{\varepsilon_f, \varepsilon_g}$ is finite. Hence \mathscr{L} is finite. Since the cardinality of the dual space of a subdirectly irreducible algebra is not greater than 4n + 2m - 1, the number of non-isomorphic subdirectly irreducible algebras in $\mathbf{DK}_{n,m}$ is finite.

PROPOSITION 12. Every subalgebra of a subdirectly irreducible algebra $\mathcal{L} \in \mathbf{DK}_{n,m}$ is subdirectly irreducible.

Proof. Let $\mathscr{L} = (L, f, g) \in \mathbf{DK}_{n,m}$ be subdirectly irreducible, $Pr_2(\mathscr{L}) = (X_L, \mathscr{T}, \le, \varepsilon_f, \varepsilon_g)$ and \mathscr{L}_1 a subalgebra of \mathscr{L} . Then \mathscr{L} is finite and there exists $x_0 \in X_L$ such that $X_L = \{x_0\}_{\varepsilon_f, \varepsilon_g}$. The inclusion inc: $L_1 \to L$ is an embedding, hence the corresponding O_2 -continuous mapping $\sigma_{inc}: X_L \to X_{L_1}$ is onto. It is easy to check that $X_{L_1} = \{\sigma_{inc}(x_0)\}_{\varepsilon_f, \varepsilon_g}$. Therefore \mathscr{L}_1 is subdirectly irreducible.

We are going to introduce an algebra whose role is particularly important in $\mathbf{DK}_{n,m}$. For each integer t, denote by r(t) the remainder of t on division by 2n and let s(t) = 4n + 2m - 2 - r(2m - 2 - t). Consider $X_{n,m} = \{0, 1, 2, ..., 4n + 2m - 2\}$ and define the mappings ε , $\gamma: X_{n,m} \to X_{n,m}$ by

$$\varepsilon(k) = \begin{cases} k-1 & \text{if } 2n+1 \le k \le 2n+m-1; \\ r(k-1) & \text{otherwise.} \end{cases}$$
$$\gamma(k) = \begin{cases} k+1 & \text{if } 2n+m-1 \le k \le 2n+2m-3; \\ s(k+1) & \text{otherwise.} \end{cases}$$

Then $\varepsilon(X_{n,m}) = \{0, 1, 2, \dots, 2n + m - 2\}$ and $\gamma(X_{n,m}) = \{2n + m, 2n + m + 1, \dots, 4n + 2m - 2\}.$

LEMMA 13. For $j \in \mathbb{N}$ and $k \in X_{n,m}$,

$$\varepsilon^{j}(k) = \begin{cases} k-j & \text{if } 2n+j \le k \le 2n+m-1; \\ r(k-j) & \text{otherwise.} \end{cases}$$

$$\gamma^{j}(k) = \begin{cases} k+j & \text{if } 2n+m-1 \le k \le 2n+2m-2-j; \\ s(k+j) & \text{otherwise.} \end{cases}$$

If $j \ge m$, then $\varepsilon^{j}(k) = r(k-j)$, $\gamma^{j}(k) = s(k+j)$, $\forall k \in X_{n,m}$ (in particular, $\varepsilon^{2zn}(k) = r(k)$, $\gamma^{2zn}(k) = s(k)$, $\forall k \in X_{n,m}$).

Proof. By induction on j.

Note that, for $1 \le j \le m$,

$$\varepsilon^{j}(X_{n,m}) = \{k \in X_{n,m} \mid 0 \le k \le 2n + m - 1 - j\}$$

and

$$\gamma^{j}(X_{n,m}) = \{k \in X_{n,m} \mid 2n + m - 1 + j \le k \le 4n + m - 2\};$$

for $j \ge m$, $\varepsilon^j(X_{n,m}) = \varepsilon^m(X_{n,m})$ and $\gamma^j(X_{n,m}) = \gamma^m(X_{n,m})$.

Let $X_{n,m} = (X_{n,m}, \mathcal{T}_d, \leq_T, \varepsilon, \gamma)$ where $X_{n,m} = \{0, 1, 2, \dots, 4n + 2m - 2\}$, \mathcal{T}_d is the discrete topology, \leq_T is the trivial order and $\varepsilon, \gamma : X_{n,m} \to X_{n,m}$ are the mappings defined above. It is obvious that $X_{n,m}$ is an O_2 -space. Denote by $\mathcal{D}_{n,m}$ the dual algebra of $X_{n,m}$: the D_{01} -reduct of $\mathcal{D}_{n,m}$ is the lattice $\mathcal{P}(X_{n,m})$ of all subsets of $X_{n,m}$, and the unary operations f_β , $\beta \in \{\varepsilon, \gamma\}$, are defined by $f_\beta(Y) = X_{n,m} \setminus \beta^{-1}(Y)$, $\forall Y \subseteq X_{n,m}$.

THEOREM 14. For $n, m \in \mathbb{N}$, $\mathcal{D}_{n,m}$ is a subdirectly irreducible double $K_{n,m}$ -algebra.

Proof. Let $n, m \in \mathbb{N}$ and $X_{n,m} = (X_{n,m}, \mathcal{T}_d, \leq_T, \varepsilon, \gamma)$. By Lemma 13 we have $\varepsilon^{2n+m} = \varepsilon^m, \gamma^{2n+m} = \gamma^m, \varepsilon \gamma = \varepsilon^{2zn}, \gamma \varepsilon = \gamma^{2zn}$. Therefore $\mathcal{D}_{n,m} \in \mathbf{DK}_{n,m}$ by Theorem 9(i). Now, $\{2n + m - 1\}_{\varepsilon,\gamma} = X_{n,m}$, hence $\mathcal{D}_{n,m}$ is subdirectly irreducible (Proposition 10(ii), Theorem 8).

We can, in fact, describe $\operatorname{Con}(\mathcal{D}_{n,m})$.

Theorem 15. Let $n, m \in \mathbb{N}$.

(i) Besides \emptyset and $X_{n,m}$, the (closed) subsets of $X_{n,m}$ which are invariant under ε and γ are exactly the sets $Y_{i,j} = \varepsilon^i(X_{n,m}) \cup \gamma^j(X_{n,m}), 1 \le i, j \le m$.

(ii) $\operatorname{Con}(\mathcal{D}_{n,m}) \cong 1 \oplus (\underline{m} \times \underline{m}) \oplus 1.$

Proof.(i) Let $1 \le i, j \le m$ and $Y_{i,j} = \varepsilon^i(X_{n,m}) \cup \gamma^j(X_{n,m})$. Then

$$\varepsilon(Y_{i,j}) = \varepsilon^{i+1}(X_{n,m}) \cup \varepsilon^{z_{j,1}}(X_{n,m}) = \varepsilon^{i+1}(X_{n,m}) \cup \varepsilon^m(X_{n,m}) \subseteq \varepsilon^i(X_{n,m}) \subseteq Y_{i,j}$$

Similarly, $\gamma(Y_{i,j}) \subseteq Y_{i,j}$. Hence $Y_{i,j}$ is invariant under ε and γ . Let $Y \subseteq X_{n,m}$ be a nonempty set invariant under ε and γ . If $2n + m - 1 \in Y$, then $X_{n,m} = \{2n + m - 1\}_{\varepsilon,\gamma} \subseteq Y$, i.e. $Y = X_{n,m}$. If $2n + m - 1 \notin Y$, let $Y_1 = \{k \in Y \mid k \le 2n + m - 2\}$ and $Y_2 = \{k \in Y \mid k \ge 2n + m\}$. Then $Y_1 \neq \emptyset$, $Y_2 \neq \emptyset$ and $Y = Y_1 \cup Y_2$. Notice that max $Y_1 \ge 2n - 1$ and min $Y_2 \le 2n + 2m - 1$. Let $i = 2n + m - 1 - \max Y_1$, $j = \min Y_2 - (2n + m - 1)$. Now we have $1 \le i$, $j \le m$, $Y_1 = \varepsilon^i(X_{n,m})$, $Y_2 = \gamma^j(X_{n,m})$; hence $Y = Y_{i,j}$.

(ii) By Theorem 6, $\operatorname{Con}(\mathcal{D}_{n,m})$ is dually isomorphic to the lattice of all (closed) subsets of $X_{n,m}$ which are invariant under ε and γ . The set $\{Y_{i,j} | 1 \le i, j \le m\}$, partially ordered by inclusion, is lattice-isomorphic to $\underline{m} \times \underline{m}$ and its non-trivial \vee -irreducibles are $Y_{i,m}, Y_{m,j}, 1 \le i, j \le m - 1$. Therefore, both $\operatorname{Con}(\mathcal{D}_{n,m})$ and the lattice of invariant subsets of $X_{n,m}$ are isomorphic to the self-dual lattice $1 \oplus (\underline{m} \times \underline{m}) \oplus 1$. (Note that, for $1 \le i, j \le m$, the congruence $\theta_{Y_{i,j}}$ associated with $Y_{i,j}$ in Theorem 6 is just $\ker(f_{\varepsilon}^i, f_{\gamma}^j)$).

The importance of $\mathcal{D}_{n,m}$ in **DK**_{n,m} is evident in the following result.

THEOREM 16. Up to isomorphism, each double $K_{n,m}$ -algebra is a subalgebra of a direct product of copies of $\mathcal{D}_{n,m}$, i.e., $\mathbf{DK}_{n,m} = SP(\{\mathcal{D}_{n,m}\})$.

Proof. Let $\mathscr{L} = (L, f, g) \in \mathbf{DK}_{n,m}$ and $Pr_2(\mathscr{L}) = (X_L, \mathscr{T}, \leq \varepsilon_f, \varepsilon_g)$. Identifying \mathscr{L} and $\mathcal{O}_2(Pr_2(\mathscr{L}))$, we shall define an embedding of \mathscr{L} into a direct product of copies of $\mathscr{D}_{n,m}$. For each $x \in X_L$ and $Y \in L$, consider

$$Y_{\varepsilon_{f}}^{x} = \{2n + m - 1 - k \mid 1 \le k \le 2n + m - 1, \varepsilon_{f}^{k}(x) \in Y\},\$$

$$Y_{\varepsilon_{f}}^{x} = \{2n + m - 1 + l \mid 1 \le l \le 2n + m - 1, \varepsilon_{e}^{l}(x) \in Y\};\$$

and define $\varphi_x: L \to \mathscr{P}(X_{n,m})$ by

$$\varphi_x(Y) = \begin{cases} Y_{\varepsilon_f}^x \cup Y_{\varepsilon_g}^x & \text{if } x \notin Y; \\ Y_{\varepsilon_f}^z \cup Y_{\varepsilon_g}^x \cup \{2n+m-1\} & \text{if } x \in Y. \end{cases}$$

Given $x \in X_L$, it is easily seen that φ_x is a D_{01} -homomorphism and, using Lemma 13, we conclude that $\varphi_x(f(Y)) = f_{\varepsilon}(\varphi_x(Y))$ and $\varphi_x(g(Y)) = f_{\gamma}(\varphi_x(Y))$, $\forall Y \in L$. Hence the mapping $\varphi: L \to \prod_{x \in X_L} \mathcal{P}(X_{n,m})$, defined by $\varphi(Y) = (\varphi_x(Y))_{x \in X_L}$, $\forall Y \in L$, is an O_2 -homomorphism. For $Y_0, Y_1 \in L, Y_0 \neq Y_1$, there exist $i \in \{0, 1\}$ and $x \in X_L$ such that $x \in Y_i$, $x \notin Y_{1-i}$. Then $2n + m - 1 \in \varphi_x(Y_i)$ and $2n + m - 1 \notin \varphi_x(Y_{1-i})$, i.e., $\varphi(Y_0) \neq \varphi(Y_1)$. Therefore φ is injective.

THEOREM 17. Up to isomorphism, the subdirectly irreducible algebras in $\mathbf{DK}_{n,m}$ are exactly the subalgebras of $\mathcal{D}_{n,m}$.

Proof. Since $\mathcal{D}_{n,m}$ is subdirectly irreducible, so are all its subalgebras (Proposition 12). It follows immediately from Theorem 16 that each subdirectly irreducible algebra in $\mathbf{DK}_{n,m}$ is isomorphic to a subalgebra of $\mathcal{D}_{n,m}$.

In order to obtain the subdirectly irreducible algebras in DMS_n , observe that every algebra $\mathscr{L} = (L, f, g) \in DK_{n,1}$ has, at least, a subalgebra in DMS_n ; the universe of the greatest subalgebra of \mathscr{L} in DMS_n is $\{x \in L \mid g^{2n}(x) \le x \le f^{2n}(x)\}$. Since $DK_{n,1}$ is generated by a single subdirectly irreducible algebra, the same is true for DMS_n . Denote by \mathscr{D}'_n the greatest subalgebra of $\mathscr{D}_{n,1}$ that belongs to DMS_n .

COROLLARY 18. The subdirectly irreducible algebras in DMS_n are, up to isomorphism, the subalgebras of \mathcal{D}'_n . Therefore DMS_n is generated by \mathcal{D}'_n .

Proof. It follows immediately from Theorem 17: each subalgebra \mathscr{L} of \mathscr{D}'_n is a subalgebra of $\mathscr{D}_{n,1}$, hence \mathscr{L} is subdirectly irreducible; on the other hand, every subdirectly irreducible algebra in **DMS**_n is a subalgebra of $\mathscr{D}_{n,1}$ and, hence, of \mathscr{D}'_n .

The subdirectly irreducible algebras in $DMS_1 = DMS$ were determined in [6, Theorem 2.7].

We describe the algebra \mathfrak{D}'_n . Recall that $\mathfrak{D}_{n,1}$ is the dual algebra of $X_{n,1} = (X_{n,1}, \mathcal{T}_d, \leq_T, \varepsilon, \gamma)$ where $X_{n,1} = \{0, 1, 2, \dots, 4n\}$, and $\varepsilon, \gamma: X_{n,1} \to X_{n,1}$ are defined by $\varepsilon(k) = r(k-1)$ and $\gamma(k) = s(k+1)$, $\forall k \in X_{n,1}$. Then $\mathfrak{D}_{n,1} = (\mathscr{P}(X_{n,1}), f_{\varepsilon}, f_{\gamma})$ where f_{ε} and f_{γ} are the dual endomorphisms of $\mathscr{P}(X_{n,1})$ induced, respectively, by

$$f_{\varepsilon}(\{i\}) = \begin{cases} X_{n,1} \setminus \{i+1, i+1+2n\} & \text{if } 0 \le i \le 2n-2; \\ X_{n,1} \setminus \{0, 2n, 4n\} & \text{if } i = 2n-1; \\ X_{n,1} & \text{if } 2n \le i \le 4n. \end{cases}$$
$$f_{\gamma}(\{i\}) = \begin{cases} X_{n,1} & \text{if } 0 \le i \le 2n; \\ X_{n,1} \setminus \{0, 2n, 4n\} & \text{if } i = 2n+1; \\ X_{n,1} \setminus \{0, 2n, 4n\} & \text{if } i = 2n+1; \\ X_{n,1} \setminus \{i-1, i-1-2n\} & \text{if } 2n+2 \le i \le 4n. \end{cases}$$

 \mathscr{D}'_n is the subalgebra of $\mathscr{D}_{n,1}$ whose universe is $D'_n = \{Y \in \mathscr{P}(X_{n,1}) | f^{2n}_{\gamma}(Y) \subseteq Y \subseteq f^{2n}_{\varepsilon}(Y)\}$. For $Y \in \mathscr{P}(X_{n,1})$, we have

(i)
$$Y \subseteq f_{\varepsilon}^{2n}(Y) \Leftrightarrow (\forall k \in X_{n,1}, k \in Y \Rightarrow \varepsilon^{2n}(k) \in Y)$$

 $\Leftrightarrow (\forall k \in X_{n,1}, k \in Y \Rightarrow r(k) \in Y).$
(ii) $f_{\gamma}^{2n}(Y) \subseteq Y \Leftrightarrow (\forall k \in X_{n,1}, \gamma^{2n}(k) \in Y \Rightarrow k \in Y)$
 $\Leftrightarrow (\forall k \in X_{n,1}, s(k) \in Y \Rightarrow k \in Y).$

We say that $Z \subseteq X_{n,1}$ satisfies (*) if $Z = Z' \cup Z'' \cup Z'''$ where

$$Z' \subseteq \{2n+1, 2n+2, \dots, 4n-1\}, \qquad Z'' = \{r(k) \mid k \in Z'\}, \\ Z''' \subseteq \{1, 2, \dots, 2n-1\} \setminus Z''.$$

The elements of $\mathcal{P}(X_{n,1})$ in case (i) are

Z, $Z \cup \{0\}$, $Z \cup \{0, 2n\}$, $Z \cup \{0, 4n\}$, $Z \cup \{0, 2n, 4n\}$ where Z satisfies (*); the subsets of $X_{n,1}$ in case (ii) are

Z, $Z \cup \{0\}$, $Z \cup \{2n\}$, $Z \cup \{0, 2n\}$, $Z \cup \{0, 2n, 4n\}$ where Z satisfies (*). Hence $D'_n = \{Z, Z \cup \{0\}, Z \cup \{0, 2n\}, Z \cup \{0, 2n, 4n\} \mid Z$ satisfies (*)} and $\mathcal{D}'_n = (D'_n, f_{\varepsilon}, f_{\gamma})$ where f_{ε} and f_{γ} are the dual endomorphisms of D'_n whose restriction to $J(D'_n)$ is, respectively,

$$\begin{split} f_{\varepsilon}(\{0\}) &= f_{\varepsilon}(\{0, 2n\}) = f_{\varepsilon}(\{0, 2n, 4n\}) = X_{n,1} \setminus \{1, 2n+1\}, \\ f_{\varepsilon}(\{i\}) &= f_{\varepsilon}(\{i, i+2n\}) = \begin{cases} X_{n,1} \setminus \{i+1, i+2n+1\} & \text{if } 1 \leq i \leq 2n-2; \\ X_{n,1} \setminus \{0, 2n, 4n\} & \text{if } i = 2n-1. \end{cases} \\ f_{\gamma}(\{i, i+2n\}) &= \begin{cases} X_{n,1} \setminus \{0, 2n, 4n\} & \text{if } i = 1; \\ X_{n,1} \setminus \{0, 2n, 4n\} & \text{if } i = 1; \\ X_{n,1} \setminus \{i-1, i+2n-1\} & \text{if } 2 \leq i \leq 2n-1. \end{cases} \\ f_{\gamma}(\{0, 2n, 4n\}) &= X_{n,1} \setminus \{2n-1, 4n-1\}, \\ f_{\gamma}(\{i\}) &= f_{\gamma}(\{0, 2n\}) = X_{n,1} & 0 \leq i \leq 2n-1. \end{split}$$

https://doi.org/10.1017/S0017089500009745 Published online by Cambridge University Press

6. MS_n -algebras which are reduct of double MS_n -algebras. We already observed that each algebra $(L, f) \in \mathbf{K}_{n,m}$ can be extended to, at least, one double $K_{n,m}$ -algebra. On the contrary, not every MS_n -algebra can be extended to a double MS_n -algebra, but, whenever it is possible, the extension is unique.

The *MS*-algebras which are reduct of a double *MS*-algebra are characterized in [5, Theorem 2.2]. We obtain a similar result for MS_n -algebras, $n \in \mathbb{N}$, and the central point is the fact that, for $(L, f, g) \in \mathbf{DMS}_n$, the closure f^{2n} is residuated.

We recall a few notions from [3]. Let E, F be partially ordered sets. A mapping $\varphi: E \to F$ is said to be *residuated* if it is isotone and there exists a (unique) isotone mapping $\psi: F \to E$ such that $\psi \varphi \ge id_E$ and $\varphi \psi \le id_F$. The mapping ψ is called the *residual* of φ and is given by $\psi(y) = \max\{x \in E \mid \varphi(x) \le y\}$, $\forall y \in F$. Moreover, φ preserves suprema and ψ preserves infima. If E = F and φ is a residuated closure, we have $\varphi(x) = \min([x) \cap \operatorname{Im} \varphi)$ and $\psi(x) = \max((x] \cap \operatorname{Im} \varphi)$, $\forall x \in E$; besides, ψ is a dual closure on E and $\operatorname{Im} \psi = \operatorname{Im} \varphi$.

A nonempty subset Z of E is said to be *bicomplete* if, for each $x \in E$, $[x) \cap Z$ has a smallest element and $(x] \cap Z$ has a greatest element. The bicomplete subsets of E are exactly the sets Im φ , where φ is a residuated closure on E. Let Z be a bicomplete subset of E and $v; E \to E$ the mapping defined by $v(x) = \max((x] \cap Z), \forall x \in E$; then we say that Z is *strong* if v preserves suprema, [5]. Clearly, Z is a strong bicomplete subset if and only if $Z = \text{Im } \varphi$ for a residuated closure φ whose residual ψ preserves suprema. Moreover, the following result holds.

LEMMA 19 [12, Lemma 5.4]. Let E be a distributive lattice and φ be a closure on E. Then the following are equivalent:

- (i) Im φ is a strong bicomplete subset of E.
- (ii) Im φ is a bicomplete subset of E and, for every x ∈ Im φ, if x = y ∨ z, with y, z ∈ E, then x = ψ(y) ∨ ψ(z).

Proof. See the proof of the equivalence of the statements (2) and (3) in [5, Theorem 2.2]: only properties of closure operators are used, not the particular closure involved.

Note that (i) \Rightarrow (ii) holds in every partially ordered set E, but the converse is not true in general. Consider the lattice E whose Hasse diagram is

Figure 1.

The mapping φ defined by $\varphi(1) = \varphi(e) = \varphi(a) = \varphi(b) = 1$, $\varphi(d) = d$ and $\varphi(0) = 0$ is a residuated closure on E and its residual ψ is given by $\psi(1) = 1$, $\psi(e) = \psi(d) = d$ and $\psi(a) = \psi(b) = \psi(0) = 0$. Then Im $\varphi = \{0, d, 1\}$ satisfies (ii) and does not satisfy (i) since $d = \psi(e) = \psi(a \lor b) > \psi(a) \lor \psi(b) = 0$.

Now, if $\mathcal{L} = (L, f, g) \in \mathbf{DMS}_n$, it follows from Corollary 3(i) that the closure operator f^{2n} is residuated, its residual being g^{2n} .

For $(L, f) \in \mathbf{MS}n$, we have $\mathrm{Im} f^{2n} = \mathrm{Im} f$. We present a condition on $\mathrm{Im} f$ which is necessary and sufficient for (L, f) to be a reduct of a (unique) double MS_n -algebra.

THEOREM 20. [12, Theorem 5.6] An algebra $(L, f) \in \mathbf{MS}_n$ can be extended to a double MS_n -algebra if and only if Im f is a strong bicomplete subset of L. In this case, we obtain $(L, f, g) \in \mathbf{DMS}_n$ where $g(x) = f^{2n-1}(\max((x] \cap \operatorname{Im} f)), \forall x \in L$.

Proof. If (L, f) can be extended to a double MS_n -algebra (L, f, g), then f^{2n} is a residuated closure. Moreover, its residual, g^{2n} , is an endomorphism of L. Hence Im f is a strong bicomplete subset of L. For each $x \in L$, we have $\max((x] \cap \operatorname{Im} f) = g^{2n}(x)$ and, applying Corollary 3(ii), we have $f^{2n-1}(\max((x] \cap \operatorname{Im} f)) = g(x)$. Therefore (L, f) is the reduct of exactly one double MS_n -algebra.

Conversely, let (L, f) be an MS_n -algebra such that Im f is a strong bicomplete subset of L. Then the closure f^{2n} is residuated and its residual ψ is both an endomorphism and a dual closure on L. We have $\psi(x) = \max((x] \cap \operatorname{Im} f)$, hence $\psi(f(x)) = f(x)$, $\forall x \in L$. The mapping $g: L \to L$, defined by $g(x) = f^{2n-1}(\psi(x))$, $\forall x \in L$, is a dual endomorphism of L. Now $\psi(g(x)) = g(x)$, and $g^i(x) = f^{2n-i}(\psi(x))$, $1 \le i \le 2n$. Hence $g^{2n}(x) = \psi(x) \le x$, $gf(x) = f^{2n-1}(\psi(f(x))) = f^{2n}(x)$ and $fg(x) = f^{2n}(\psi(x)) = \psi(x) = g^{2n}(x)$ so that $(L, f, g) \in$ **DMS**_n.

From Theorem 20 and using Lemma 19 we now obtain the following corollary.

COROLLARY 21 [12, Corollary 5.7] If $(L, f) \in \mathbf{MS}_n$ can be extended to a double MS_n -algebra, then every element of Im f that is \vee -reducible in L is also \vee -reducible in Im f.

Observe that the condition stated above is not sufficient for an MS_n -algebra to be a reduct of a double MS_n -algebra: if L is the chain $-\infty < \cdots < -2 < -1 < 0 < 1 < 2 < \cdots < z < +\infty$ and f is defined by $f(z) = -\infty$, f(a) = -a if $a \neq z$, then $(L, f) \in \mathbf{MS}$ and Im $f = L \setminus \{z\}$ is not bicomplete $(\{z\} \cap \operatorname{Im} f \text{ does not a have a greatest element})$.

EXAMPLES. (1) It was already pointed out that, if $(L, f) \in \mathbf{K}_{n,0}$, then $(L, f, f^{2n-1}) \in \mathbf{DMS}_n$.

(2) The (non-isomorphic) subdirectly irreducibles in $MS_2 \setminus MS$ are the algebras \mathcal{A}_i , $1 \le i \le 5$, \mathscr{C} and \mathscr{C}_1 depicted in [11, Theorem 1].

As \mathscr{A} , $\mathscr{C} \in \mathbf{K}_{2,0}$, \mathscr{A} , \mathscr{C} are reducts of double MS_2 -algebras; so are \mathscr{A}_1 and \mathscr{A}_4 (see [12, example 5.3]). The algebra $\mathscr{C}_1 = (C_1, f)$ that generates \mathbf{MS}_2 has the Hasse diagram shown in Figure 2 and can be extended to the double MS_2 -algebra (C_1, f, g) where g is the dual endomorphism of C_1 induced by $g(a_i) = f^3(a_i)$, $0 \le i \le 3$, and $g(u) = f^3(\max((u] \cap \operatorname{Im} f)) = f^3(a_0 \lor a_2 \lor a_3) = a_0$.

The algebras \mathcal{A}_2 , \mathcal{A}_3 and \mathcal{A}_5 are not extendable to double MS_2 -algebras; just apply Corollary 21: the element $b = y \lor k$ is \lor -reducible in A_2 , but is \lor -irreducible in Im f; a similar statement holds for the element $d = s \lor k$ both in A_3 and in A_5 .

(3) Given $n \in \mathbb{N}$, let L be a direct product of 2n finite non-trivial chains. Let a_i , $0 \le i \le 2n - 1$, be the maximal elements in J(L) (i.e., the atoms of C(L), the center of L) and consider the dual endomorphism f of L induced by $f(x) = c(a_{r(i+1)}), x \in J(L), x \le a_i, 0 \le i \le 2n - 1$ (c(z) denotes the complement of z). Then $(L, f) \in \mathbf{MS}_n$ and $\mathrm{Im} f = C(L)$.

For each $y \in L$, let $w_y = \bigvee \{a_i \mid a_i \leq y\}$. It is obvious that $w_y \in (y] \cap \operatorname{Im} f$; if $a \in (y] \cap \operatorname{Im} f$, then $a = w_a \leq w_y$, hence $w_y = \max((y] \cap \operatorname{Im} f)$. Moreover, for $y, z \in L$ and

Figure 2.

since a_i , $0 \le i \le 2n - 1$, is a \lor -irreducible element, we have $w_{y \lor z} = w_y \lor w_z$. Therefore Im f is a strong bicomplete subset of L. By Theorem 20, we obtain $(L, f, g) \in \mathbf{DMS}_n$ where $g(y) = f^{2n-1}(w_y)$, $\forall y \in L$. Since $w_{a_i} = a_i$, $0 \le i \le 2n-1$, and $w_x = 0$, $\forall x \in J(L) \setminus$ $\{a_i \mid 0 \le i \le 2n-1\}$, we conclude that g is the dual endomorphism of L induced by $g(a_i) = c(a_{r(i-1)}), 0 \le i \le 2n-1$, and $g(x) = 1, \forall x \in J(L) \setminus \{a_i \mid 0 \le i \le 2n-1\}$. Note that, if $L = 4 \times 3^{2n-1}$, the algebra (L, f, g) just described is isomorphic to \mathcal{D}'_n .

REFERENCES

1. J. Berman, Distributive lattices with an additional unary operation, Aeguat. Math. 16 (1977), 165-171.

2. W. J. Blok and D. Pigozzi, On the structure of varieties with equationally definable principal congruences I, Alg. Univ. 15 (1982), 195-227.

3. T. S. Blyth and M. F. Janowitz, Residuation theory (Pergamon Press, Oxford, 1972).

4. T. S. Blyth and J. C. Varlet, On a common abstraction of de Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinburgh 94A (1983), 301-308.

5. T. S. Blyth and J. C. Varlet, Double MS-algebras, Proc. Roy. Soc. Edinburgh 98A (1984), 37 - 47.

6. T. S. Blyth and J. C. Varlet, Subdirectly irreducible double MS-algebras, Proc. Roy. Soc. Edinburgh. 98A (1984), 241-247.

7. T. S. Blyth and J. C. Varlet, Congruences on double MS-algebras, Bull. Soc. Roy. Sci. Liège 56 (1987), 143–152.

8. A. Day, A note on the congruence extension property, Alg. Univ. 1 (1971), 234–235.

9. P. Köhler and D. Pigozzi, Varieties with equationally definable principal congruences, Alg. Univ. 11 (1980), 213-219.

10. H. A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190.

11. M. Ramalho and M. Sequeira, On generalized MS-algebras, Port. Math. 44 (1987), 315-328.

12. M. Sequeira, *Álgebras-MS generalizadas e álgebras-K*_{n,1} *duplas*, Ph.D. dissertation, Lisboa, 1989.

13. A. Urquhart, Distributive lattices with a dual homomorphic operation, Stud. Log. 38 (1979), 201-209.

DEP. MATEMÁTICA-FAC. CIÈNCIAS LISBOA R. ERNESTO DE VASCONCELOS, BLOCO C1 1700 LISBOA PORTUGAL

Present address: DEP. MATEMÁTICA UNIVERSIDADE DO MINHO LARGO DO PAGO 4719 Braga Codex PORTUGAL