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Abstract

The class of all monolithic (that is, subdirectly irreducible) groups belonging to a variety generated by a
finite nilpotent group can be axiomatised by a finite set of elementary sentences.
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1. Introduction

A group is subdirectly irreducible or monolithic if it has some minimal nontrivial
normal subgroup, called its monolith. A variety of groups is a class of groups
closed with respect to homomorphic images, subgroups and arbitrary direct products.
According to a fundamental result of Garrett Birkhoff in his 1935 paper [2], a variety
is also a proper class of groups that is axiomatised by some set of equations. Given a
group G, the variety generated by G, denoted V(G), is the smallest variety to which
G belongs, or equivalently the intersection of all varieties containing G.

By another theorem of Birkhoff in a 1944 paper [3], two varieties are equal if
they share the same subdirectly irreducible members. Thus, given a variety V, the
class of its subdirectly irreducible members, commonly denoted Vsi, is of particular
interest. Subdirect irreducibility as a property is not preserved by the formation of
direct products, and soVsi is not a variety and cannot be determined by a finite set of
equations. But it can still be axiomatised by a finite set of elementary sentences, which
are more general first-order statements.

The main result of this paper is as follows.

Theorem 1.1. Let V be a variety generated by a finite nilpotent group G. Then the
class of subdirectly irreducible groups belonging toV is axiomatisable by a finite set
of elementary sentences.
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Finite axiomatisability of various structures has been studied at length by logicians,
abstract algebraists and universal algebraists. In the realm of groups, Lyndon proved
in 1952 [5] that the variety generated by any nilpotent group is finitely axiomatisable.
In 1965, Oates and Powell [8] proved that the variety generated by any finite group is
finitely axiomatisable. In both of these cases, the axioms can be taken to be equations.

A broader result than our main theorem was a hair’s breadth from being proved
by George F. McNulty and Wang Ju in 2000. A preprint was circulated in which it
was claimed that the subdirectly irreducible members of a variety generated by any
finite group was finitely axiomatisable. However, an error in the proof caused much
of the work to be unusable. The current paper is an attempt to salvage some of that
work, and has managed to prove the assertion with the added hypothesis of nilpotence.
The author wishes to thank Dr. McNulty personally for his devoted guidance as a PhD
advisor, and for this problem in particular.

Baker and Wang proved in 2002 in [1] that for certain kinds of varieties, V itself
being finitely axiomatisable andVsi being finitely axiomatisable are in fact equivalent.
It is that result, together with the aforementioned importance of subdirectly irreducible
members of varieties, that motivates investigation into finite axiomatisability of
subdirectly irreducible algebras.

2. Preliminaries

2.1. Elementary logic. Our result dwells in first-order or elementary logic, using the
language of groups. The terms of the language of groups are built up from variables
representing elements of the group joined together with the multiplication and inverse
operations of groups, and the named constant symbol 1 representing the identity. For
instance, the conjugate xyx−1 is a term in this language. The variables cannot be used
to represent sequences or subgroups, only elements; hence the name elementary logic.

An equation is some statement of equality between two terms whose variables are
understood to range over the whole group. For instance, the commutative law of
Abelian groups can be expressed by the equation

xy ≈ yx.

An elementary formula is built up from equations in a systematic way with the help of
logical connectives ∨,∧,¬,← and↔ (conjunction, disjunction, negation, implication
and biconditional, respectively) and the quantifiers ∃ and ∀. A formula may look
something like

∀y (xy ≈ yx) ∧ ¬(x ≈ 1).

Note that in this formula, the variable x appears but is not quantified. This makes x a
free variable and illustrates how formulas can be used to define sets of elements. If
the above formula is named Φ, for instance, the set defined by Φ(x) would be the set
of all elements x of a group that satisfy that formula. In this case, Φ(x) is the set of
nontrivial elements of the group’s centre.
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If a formula has no free variables, it is called an elementary sentence. A sentence
in the language of groups is either true or false in a given group, whereas a formula
depends on the value that the variables take. Sentences are useful for stating laws
obeyed in a structure that cannot be expressed by equations alone. For example, the
presence of an inverse for every element of a group is expressed by the formula

∀x∃y (xy ≈ 1).

Let K be a proper class of structures. If Σ is a finite set of sentences so that a given
structure A belongs toK if and only if it satisfies every sentence in Σ, we say thatK is
finitely axiomatisable. When axiomatising varieties, we note that these sentences can
all be taken to be equations.

2.2. Group theory. We define the normal closure of a set X of elements of a group
G as the smallest normal subgroup containing X. We may also call it the normal
subgroup generated by X. We denote this subgroup by XG. If X is a singleton set, say
X = {a}, we call this subgroup a principal normal subgroup and write aG. Note that
in a subdirectly irreducible group, the monolith cannot contain any nontrivial normal
subgroup and is therefore always principal.

Given two elements a, b of a given group G, their commutator [a, b] is the element
aba−1b−1. The commutator operation can be extended to normal subgroups in the
following way. The commutator of two normal subgroups H and K of G is defined as
[H,K] = {[h, k] : h ∈ H, k ∈ K}. The commutator of two normal subgroups is again a
normal subgroup. Using the commutator operation, one may fabricate a lower central
series G0 . G1 . G2 . . . . where G0 = G and Gi = [G,Gi−1]. The group G is called
nilpotent of class k if there is some k for which Gk = {1}.

An equivalent (and, for our purposes, more useful) definition of nilpotence is the
presence of an upper central series Z0 / Z1 / Z2 / . . . so that {1} = Z0 and, for each i,
Zi+1/Zi = Z(G/Zi). The group G is nilpotent if there is some k for which Zk = G. It is
well known that the length of the upper and lower central series coincides; a proof can
be found in Dummit and Foote [6]. A third well-known characterisation of nilpotence
exists; a group is nilpotent if and only if it is the direct product of its Sylow subgroups.

By Lyndon’s work, the nilpotence class of a group can be captured with a finite
set of equations [5]. Therefore, if G is nilpotent of class k, any group H ∈ V(G) is
nilpotent of class at most k.

Given a group G, the normal subgroups of G form a lattice. If K < H are normal
subgroups of G and there exists no normal subgroup N so that H ≤ N ≤ K, then H/K
is called a chief factor of G. According to Hanna Neumann’s 1967 book [7], the
cardinality of chief factors in a variety generated by a finite group G is bounded above
by |G|.

3. Definable principal normal subgroups

Our proof of the finite axiomatisability of Vsi is contingent on a useful
definition from Baker and Wang’s 2002 paper [1] that they called definable principal
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subcongruences. Their formulation of this concept is from the perspective of general
algebraic structures, so we will rework it here to focus purely through the spyglass of
group theory.

Let Φ(x, y) be an elementary formula. We will say that Φ is a normal closure
formula provided that for any group H, if Φ(a, b) holds in H, then a belongs to the
normal closure bH. For instance, the formula

∃z (x ≈ zyz−1)

is a normal closure formula, since any conjugate of the element b will belong to bH.
Normal closure formulas are useful for capturing the principal normal subgroups of
a given group or class of groups in a way that is compatible with first-order logic,
which in turn can help to axiomatise the groups themselves. A class of groups might
be highly compatible with such a capturing; for some classes of groups, there might
be one normal closure formula Φ(x, y) that can define every principal normal subgroup
of every group in the class. Baker and Wang’s definition is not quite so strong as that,
but is in many ways the next best thing.

We will say that a class K of groups has definable principal normal subgroups if
and only if there are normal closure formulas Φ(x, y) and Ψ(x, y) so that for every
H ∈ K and every nonidentity b ∈ H, there exists a nonidentity a ∈ H so that

(1) H |= Ψ(a, b) and
(2) Φ(x, a) defines the normal closure of a.

In other words, if b is an arbitrary element of H, then Ψ can find some nonidentity
a ∈ bH so that aH is definable by Φ.

In their paper, Baker and Wang use this definition to prove another finite
axiomatisability result. Their result applies to more general algebraic structures, but
we express it in terms of groups.

Theorem (Baker and Wang [1]). LetV be a variety of groups and suppose thatV has
definable principal normal subgroups. Then,V is finitely axiomatisable if and only if
Vsi is finitely axiomatisable.

A variation on the proof of this theorem yields the following result, whose proof we
reproduce from McNulty and Wang’s unpublished work. Again, the theorem holds for
more general structures, but we state and prove it in terms of groups.

Theorem 3.1. If V is a variety of groups and Vsi has definable principal normal
subgroups, thenVsi is finitely axiomatisable relative toV. In particular, ifV is finitely
axiomatisable, thenVsi is finitely axiomatisable.

Proof. Let Σ be a finite set of elementary sentences which axiomatises V, and let
Φ(x, y) and Ψ(x, y) be the formulas witnessing thatVsi has definable principal normal
subgroups. Let Θ be the following set of sentences:

Σ ∪ {∃u[u , 1 ∧ ∀z(z , 1⇒ ∃x(Φ(u, x) ∧ Ψ(x, z)))]}.

We claim that Θ axiomatisesVsi.
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On the one hand, suppose S ∈ Vsi. Let c be a generator of the monolith of S.
So, c , 1 and c belongs to every nontrivial normal subgroup. Now let b ∈ S − {1}.
Because Vsi has definable principal normal subgroups, there exists some nonidentity
a ∈ S so that S |= Ψ(a, b) and Φ(x, a) defines the normal closure aS. Since c generates
the monolith, also c ∈ aS and so S |= Φ(c, a). So,

S |= ∃u[u , 1 ∧ ∀z(z , 1⇒ ∃x(Φ(u, x) ∧ Ψ(x, z)))].

Since S belongs toV, also S |= Σ. Therefore, S |= Θ.
Now suppose S |= Θ. Then S ∈ V since Σ axiomatisesV. But also, since S believes

the second part of Θ and since Φ and Ψ are normal closure formulas, there exists
c ∈ S − {1} so that c is contained within any other principal normal subgroup. In
particular, the principal normal subgroup cH is contained within any other principal
normal subgroup of S and so S is subdirectly irreducible. �

Thus, in view of Theorem 3.1 and the Oates–Powell theorem, to prove our main
result we need only prove the following result.

Theorem 3.2. Let V be a variety generated by a finite nilpotent group G. Then Vsi
has definable principal normal subgroups.

We now introduce some machinery that will let us quantify principal normal
subgroup inclusion in a first-order way. The set of conjugate product terms in x of
a variety of groups is the smallest set C of terms so that:

• 1 ∈ C;
• if t ∈ C and y is a variable, then both (yxy−1)t and (yx−1y−1)t belong to C.

The definition is apt; C is the set of all terms made by taking products of conjugates of
x and x−1. A sample member of C might be

t(x, y0, y2, y7) = y0xy−1
0 y2x−1y−1

2 y7xy−1
7 .

A conjugate product polynomial is a unary polynomial π(x) forged from some
conjugate product term. We might write π(x, ȳ) if we wish to specify the parameters.
So, for instance, in some group H, we might choose members c0, c2, c7 ∈ H and, from
our prior example, obtain the conjugate product polynomial

π(x) = t(x, c0, c2, c7) = c0xc−1
0 c2x−1c−1

2 c7xc−1
7 .

Conjugate product polynomials are a powerful tool in groups; they are capable of
defining principal normal subgroups. The normal closure of an element a, for instance,
is the collection of products of conjugates of a and a−1, which is precisely the outputs
of the sets of conjugate product polynomials in a. This arms us with a method of
defining principal normal subgroups with objects that are easily written in first-order
logic.

We refer to a statement of the form a ∈ cH as a membership condition. Membership
conditions are our main object of interest in trying to establish definable principal
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normal subgroups, and we now have technology in the form of conjugate product
polynomials to witness them. Our strategy in the proof will be to show that these
conditions can be witnessed with a limited number of variables. This will enable us
to quantify the witnessing using a first-order statement. In this paper, the complexity
of a conjugate product polynomial refers to the number of conjugates present in the
product. Our previous example has complexity 3.

4. Proving Theorem 3.2

In order to show that Vsi has definable principal normal subgroups, as desired,
we need two different normal closure formulas: the first, Ψ(x, y), to seek out some
definable principal normal subgroup of any given principal normal subgroup; and the
second, Φ(x, y), to do the defining. We will prove the existence of Φ first, using a proof
of McNulty and Wang that appears in their unpublished paper that they have kindly
allowed to be presented here. By an atom we mean a nontrivial normal subgroup N of
G which does not properly contain any other nontrivial normal subgroups of G.

Theorem 4.1. LetV be the variety generated by a finite group. Then there is a normal
closure formula Φ(x, y) such that, for any H ∈ V and every c ∈ H such that cH is an
atom in the lattice of normal subgroups of H, it follows that Φ(x, c) defines cH .

Proof. Let r be a finite upper bound on the size of chief factors in algebras belonging
to V. We claim that if cH is an atom for some c ∈ H, then any membership condition
of the form a ∈ cH can be witnessed by a conjugate product polynomial of complexity
no more than r.

If a ∈ cH , then a = g0g1 · · · gn−1 where each gi is some conjugate of either c or c−1.
If n is chosen to be as small as possible,

g0, g0g1, g0g1g2, . . . , g0g1 · · · gn−1

are n distinct elements of cH . Now, since cH is an atom, cH/{1} is a chief factor and
|cH | = |cH/{1}| ≤ r, so n ≤ r.

Now, let T be the set of all conjugate product terms in the signature of V whose
parameters are chosen from the distinct variables u0, . . . , ur−1. Since there are only
finitely many variables being used, T is finite. Let Φ(x, y) be the sentence

∃u0, . . . , ur−1

[∨
t∈T

t(y, ū) ≈ x
]
.

Thus Φ(x, c) defines cH whenever cH is an atom. �

Theorem 4.1 gives us a normal closure formula that can define any atoms in any
group belonging to V; in particular, for any group in Vsi, this formula will always
define the group’s monolith. The second formula that we need, Ψ(x, y), will come
from the following theorem, which is the original work of this paper.
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Theorem 4.2. Let V be a variety generated by a group G of finite exponent m and
nilpotence class k. Let S ∈ Vsi. Then, given any a ∈ S, there is some b belonging to
the monolith of S so that the membership condition b ∈ aS is witnessed by a conjugate
product polynomial of complexity bounded above in terms of the generating group G.

Proof. Since S ∈ V, the exponent of S divides that of G, as the equation xm = 1 holds
throughoutV. We also know that the nilpotence class k of S is bounded above by that
of G; we harmlessly assume it is k. Denote the upper central series of S as

{1} = Z0 / Z1 / · · · / Zk = S.

Note that Z1 is the centre of S, which contains the monolith M of S. Choose any
arbitrary a ∈ S . If a ∈ M, then no more work is needed, so we can assume it is not.
Label a = ak. We will form a sequence of elements walking down the steps of the
central series that form a chain of principal normal subgroups.

Given ai+1 ∈ Zi+1, we will seek out ai so that the following hold:

(1) ai ∈ Zi;
(2) ai , 1;
(3) ai ∈ aS

i+1, and this fact is witnessed by a conjugate product polynomial of
complexity at most m.

We can certainly find ai ∈ Zi so that ai ∈ aS
i+1; since S is subdirectly irreducible,

any element of the monolith M will suffice. We choose ai from all such possible
nonidentity candidates in Zi so that the conjugate product polynomial πi that witnesses
πi(ai+1, c̄) = ai has minimal possible complexity, and claim that this satisfies our three
requirements. The first two are already satisfied, so we need only worry about the
complexity of πi.

Observe that πi takes the form πi(x, c̄) = c0x±1c−1
0 c1x±1c−1

1 , . . . , cnx±1c−1
n for some n.

The structure of this polynomial breaks down into two cases.

Case 1: There are both positive and negative conjugates present in πi. So, πi contains,
somewhere, a product of the form

c jxc−1
j c j+1x−1c−1

j+1

(or perhaps the same product with the negative conjugate on the left). We claim that
these two conjugates are the whole of πi, and that the element c jai+1c−1

j c j+1a−1
i+1c−1

j+1,
which we will temporarily call a∗i , is in fact ai itself. Indeed, a∗i cannot be 1; if it were,
these two conjugates could be removed from πi to preserve the given membership
condition with a shorter polynomial, contradicting the minimality of πi. Clearly,
a∗i ∈ aS

i+1. So all we need to do is show that a∗i ∈ Zi and the minimal complexity of
πi will do the rest of the work for us.
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Now Zi+1/Zi is the centre of S/Zi, so ai+1/Zi commutes with every member of S/Zi

and

a∗i /Zi = (c jai+1c−1
j c j+1a−1

i+1c−1
j+1)/Zi

= (c j/Zi)(ai+1/Zi)(c−1
j /Zi)(c j+1/Zi)(a−1

i+1/Zi)(c−1
j+1/Zi)

= (ai+1/Zi)(a−1
i+1/Zi)

= 1/Zi,

that is, a∗i ∈ Zi. So, a∗i = ai, and the complexity of the polynomial needed to witness
the membership ai ∈ aS

i+1 is 2, which is certainly less than the exponent m of G unless
the variety is trivial.

Case 2: The conjugates present in πi are either all positive or all negative. We
assume that the conjugates are all positive; if they are all negative, the proof is
almost identical. In this case, we claim that the complexity of πi is at most m. The
argument is similar to case 1. Suppose the complexity is at least m; then look at
a∗i = c0ai+1c−1

0 c1ai+1c−1
1 . . . cm−1ai+1c−1

m−1. We claim that a∗i is again ai. As in case 1, a∗i
satisfies criteria 2 and 3, so it only remains to show a∗i ∈ Zi. Again,

a∗i /Zi = (c0ai+1c−1
0 c1ai+1c−1

1 . . . cm−1ai+1c−1
m−1)/Zi

= (c0/Zi)(ai+1/Zi)(c−1
0 /Zi) . . . (cm−1/Zi)(ai+1/Zi)(c−1

m−1/Zi)
= (ai+1/Zi)m

= 1/Zi,

since the exponent of any algebra in V divides m. So, again by minimality of πi, we
have a∗i = ai, and so our polynomial has complexity at most m.

So, we have a sequence (ai)k
i=1 that walks down through the upper central series

of S, all the way down to a1 which belongs to the centre of S. We can also walk
a1 down to some a0 in the monolith via a polynomial π0; the same proof suffices, as
Z1 is abelian, so in particular its elements commute with every element of M. Then
a0 ∈ aS , as witnessed by the composition of each of the conjugate product polynomials
πi, which is itself a conjugate product polynomial. The complexity of the composition
is bounded above by mk. This completes the proof. �

We can now complete the proof of Theorem 3.2. Let T be the set of all conjugate
product terms in the signature of V whose parameters are chosen from the distinct
variables u0, . . . , umk−1. Since the list of variables is finite, there are finitely many such
terms. Now, let Ψ(x, y) be the sentence

∃u0, . . . , umk−1

[∨
t∈T

t(y, ū) ≈ x
]
.

Let Φ(x, y) be the normal closure formula from Theorem 4.1 that defines all atoms
of congruence lattices of algebras inV. Together, Φ(x, y) and Ψ(x, y) witness thatVsi
has definable principal normal subgroups. �
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5. Future research

A number of natural follow-up questions to this result present themselves and beg
to be investigated. For one, the original conjecture of McNulty and Wang is still open,
as the current paper has only gone part-way to solving it.

Problem 5.1. IfV is a variety generated by a finite group G, is it true thatVsi is finitely
axiomatisable?

If a counterexample can be found to the conjecture, it is natural to want to know
how far the finite axiomatisability can be taken. Is nilpotence the best we can do, or
are there broader or perhaps unrelated classes of groups for which our result holds?

Problem 5.2. IfV is a variety generated by some group G, what conditions have to be
met by G in order forVsi to be finitely axiomatisable?

Universal algebraists will of course wish to extend this result to more general
algebras besides just groups. We define an algebra to be a nonempty set A along
with finitary operations which define functions on A. Groups, rings, vector spaces and
lattices all satisfy this rather broad definition. Departing the isle of groups in favour
of such general waters robs us of the concept of normal subgroups, so in universal
algebra the attention is usually given to congruence relations.

A congruence relation on an algebra A is the relational kernel of some
homomorphism. That is, given a homomorphism h, the associated congruence is the
relational kernel {〈a, b〉 : h(a) = h(b)}. Congruences are also precisely the equivalence
relations on A that are also subalgebras of A2. In groups, the equivalence classes
of congruences are the left cosets of the normal subgroup, that is, the kernel of the
homomorphism in question. The congruence class containing 1 is the kernel of the
homomorphism. In algebras in general, we lack a unit element and so the congruence
relation as a kernel must replace the normal subgroup in most discussions.

The concept of the commutator in group theory has also been extended to a general
commutator that exhibits similar properties in general algebras, at least in the case
where the congruence lattices are modular, as is the case in groups. We refer readers
to Freese and McKenzie’s 1987 work [4] for an exhaustive discussion of commutator
theory. This commutator enables an echo of concepts like abelianness, nilpotence
and solvability in varieties of algebras whose congruence lattices are modular. The
algebraic commutator provides us with a lower central series. The concept of abelian
algebras similarly provides us with an upper central series and, as in groups, these two
series have the same length.

Unfortunately, of the three characterisations of nilpotence we described earlier,
the upper and lower central series are the only ones that extend to the algebraic
commutator. The characterisation of a nilpotent group as one which is the product
of its Sylow subgroups does not extend to general algebras, even in the otherwise
well-behaved congruence modular varieties. What is worse, the notion of conjugate
product polynomials is not so easily translated to algebras either, so the method of
this paper does not seem to generalise beyond group theory. However, other methods
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might bear some fruit. The author has proved that the result extends to varieties of
nilpotent algebras with the added hypothesis that the generating algebra is a product
of algebras of prime power order. Nilpotent algebras in general remain a tougher nut
to crack.

Problem 5.3. If V is a congruence modular variety generated by a finite nilpotent
algebra A, is it true thatVsi is finitely axiomatisable?
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