
FUNCTIONALS OF BOUNDED FRECHET VARIATION 

MARSTON MORSE AND WILLIAM TRANSUE 

1. Introduction. In a series of papers which will follow this paper the 
authors will present a theory of functionals which are bilinear over a product 
A X B of two normed vector1 spaces A and B. This theory will include a 
representation2 theory, a variational theory, and a spectral theory. The as
sociated characteristic equations will include as special cases the Jacobi equa
tions of the classical variational theory when n = 1, and self-adjoint integro-
differential equations of very general type. The bilinear theory is oriented 
by the needs of non-linear and non-bilinear analysis in the large. 

The object of this paper is the proof of several preliminary but fundamental 
theorems on functionals k with values k (s, t) defined over a rectangle 

(1.1) Q [a^s éa', b ^t^b'] 
of the (5, /)-plane. We shall require that the Fréchet3 variation P(k) (defined 
in 3) be finite, and that for the given a and b, 

(1.2) k(a, t) = 0, k(s, b) = 0 {te [bf b'] , s e [a, a']} . 
The condition (1.2) does not limit the useful generality of the theorems. The 
theorems to be proved are the analogues of simple theorems on a functional / 
with values f(s) defined over an interval [a, a'] with a finite total variation T(f). 

To state these theorems let / + and f~ denote functionals defined by / over 
[a, a!\ as follows: 

f+(s) = lim f(s + u), [a < s < a', u > 0] 

f~(s) = lim/(s - u), [a < s < a!, u > 0] 

f+ifi) = f-(a) = / (a) , 

/V)=r(a') = jV). 
The theorems to be extended follow: 

I. The limits f(s — ) a n d / ( s + ) exist for a < s ^ a' and a S s < a' respec
tively. 

II. The points 5 at which / fails to be continuous are at most countably 
infinite. 

Received June 18, 1948. 
^ee Banach, Théorie des opérations linéaires (Warsaw, 1932), chap. IV. 
2Morse and Transue, "Functionals F Bilinear over the Produce A X B of Two Pseudo-

normed Vector Spaces. I. The Representation of F," Ann, of Math, (To be published.) 
8Fréchet, "Sur les fonctionnelles bilinéaires," Trans. Amer. Math. Soc, vol. 16 (1915), 215-234. 

In this basic memoir Fréchet obtains a representation of any functional K which is bilinear 
on C X C, in the form of a repeated Stieltjeas integral with a distribution function k of the 
above type. 
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154 MARSTON MORSE AND WILLIAM TRANSUE 

III . The functionals/4- and/"" are of bounded variation and 

T(f+) = T(f-) ^ T(f). 
Fréchet has established [cf. 3] the following for k. For fixed se [a, a'], 

the functional on [b, V] whose values are k(s, t) will be denoted by k(s, •)• 
The functional fe(-, /) on [a, a'] with fixed t is similarly defined. According 
to Fréchet T[k(s, •)] and T[k(-, t)] are finite with P(k)> for fixed s and t re
spectively. Moreover 

(1.3) T[k(s, •)] ^ P(£), r[*( . ,01 ^ P(k). 
The 2-dimensional extensions of I, II, III will be stated in 2, and proved in 
the later sections. 

2. The principal theorems. The statement of our theorems requires cer
tain definitions. We shall use the notation / + , /"" in the sense of 1. For 
5 e [a, a'] set k(s, •) = / « . For fixed 5 and t e [6, V], ff is well defined. Set 

ft if) = v(s, t), f? (t) = *r2(s, o [(5, o € a . 
With *(•, /) = fa, for fixed / set 

A+W = #(*, 0. *f (0 = fe"1^, 0 [(5, 0 e 0 . 
Under our hypothesis that P(k) is finite the functionals with values fe"(s, t) 
are well defined over Q for JU = ± 1, db 2. Granting the result of Lemma 
3 , 3 t h a t pm < p{k) 
and Fréchet's result (1.3), the functionals (k1*)" are likewise well defined over 
Q for fi} v = db 1, =b 2. As a matter of notation set (feT= F ' " . At inner 
points (s, t) of Q, for /* = 1, *> = 2 for example, 

jfex'2(s, 0 = lim f lim k(s + u, t + vf\ 

In the (u, v)-plane let the four quadrants on which wo =̂  0 be designated as 
follows: 

Hi, 2 [u > 0, v > 0], 1st quadrant, 
H-i, 2 [u < 0, v > 0], 2nd quadrant, 

jff_i, _2 [w < 0, v < 0], 3rd quadrant, 

Hi, _2 [w > 0, v < 0], 4th quadrant. 

Thus the sign preceding a subscript 1 indicates the sign of u in a quadrant £TM, „, 
while the sign preceding a subscript 2 indicates the sign of v in a quadrant i?M t „. 
It will be convenient to let Hw t M indicate the same quadrant as i?M t v so that 

# „ , , = flr.M k ^ = ± 1 , ± 2 , | M J 5 * | l > | ] . 
With this understood, let (5, /) be an inner point of Q and set 

(2.1) lim k(s + u,t + v) = jfe0*'"^, 0 , [(«. «0 * #„,„] 
(«,»)>(0,0) 

granting the existence of the limit, as affirmed in Theorem 5.1. This is a 
limit of k a t (s, t) on approaching (s, i) from a specified quadrant with vertex 
at (5, t). The relation (2.1) defines k^,v) at wmer points of Q. On the edges 
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of Q, ft"'1' is well defined, and we shall complete the definition of k^'p) by 
setting 

(2.2) k(fi'"\s,t) = lf9(js,t) 

for (s, t) on any edge of Q. 

_ In order to state the full analogue of I, 1, we need to define an extension 
k of ft over the whole (s, /)-plane. If L is any line parallel to the coordinate 
axes and intersecting Q, we require that ft be constant on the closure of each 
of the two segments of L exterior to Q. On the closure of each of the four 
regions in the (s, t)-plane on which jfc is as yet undefined, we require that ft be 
constant. These requirements on ft are consistent as is readily seen. 

The generalizations of I, II, and III of 1 can be stated now. 

It is assumed throughout that the Frêchet variation P(ft) is finite and that ft 
vanishes on the lower and left edges of Q. 

THEOREM 2.1. The limit functional ft" ' " exist at each point of Q. The limits 
defined by (2.1) exist not only at each inner point of Q, but if ft is extended over the 
(s, t)-plane as above, at each point of the (s> typlane. 

THEOREM 2.2. The points of discontinuity of ft can be covered by a countable 
number of lines parallel to the coordinate axes. 

THEOREM 2.3. On Q, for n,v = =fc 1, db 2 with \ ju | 5̂  | v | , 
k^'v\syt) = hr-w(s,t) = fe"'M(M), 

while P [k^'v\s, t)] is independent of admissible ju, v, and at most P{k). 

That P(k) can be finite while the classical total variation V(k) of Vitali is 
infinite has been shown by example by Clarkson and Adams.4 The difficult 
problem which Clarkson and Adams solve corresponds to a general problem 
which we shall solve in the bilinear theory. In particular it is possible to re
place the Clarkson and Adams k with its infinitely many points of discontinuity 
by a k which is absolutely continuous in each variable separately with P(k) 
finite and V(k) still infinite. Such an example is essential for the theory of 
functionals bilinear on Lp X Lq, p è 1, <Z = !• 

It is easy to produce an example in which the limit functionals defined by k, 

(2.3) ft1'2, ft"1'2, ft-1'""2, ft1'-2 

have four different values at some point of Q. One can, for example, suppose 
that ft (s, t)= 0 on Q except on some rectangle Qi interior to Q. We admit only 
those rectangles whose edges are parallel to the coordinate axes. Let Qi be 
divided into four congruent rectangles by lines parallel to its edges. On these 
four rectangles let ft have the values 1, 2, 3, 4. The assignment of the dividing 
lines to the four rectangles is immaterial. At the centre (so, £0) of Qi the func
tionals (2. 3) take on the values 1, 2, 3, 4 in some order. 

The fact that the Vitali variation V(k) is in general infinite prohibits the 

4Clarkson and Adams, "On Definitions of Bounded Variation for Functions of Two Vari
ables," Trans. Amer. Math. Soc, vol. 35 (1933), 824-854. 
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use of the Fubini theorem to justify the interchange of the order of integration 
in the repeated Lebesgue Stieltjes integrals which we shall use in the repre
sentation theory. However the equality 

#"'(5,0 = fe"*M) Ks,t)*Q] 
fills the gap, so that the desired interchange of order of integration will be seen 
to be permissible. 

3. Definitions and first properties of P(k). Let [s, s'] and [t, t'] be sub-
intervals of [a, a'] and [&,&'] respectively. The " mixed difference'1 deter
mined by h and the rectangle [s, s'] X [t, t'] will be denoted by [k: s, s': t, t'\. 
It is given by the equation 

[k:s,s':t,tf] = k(s', t')- k(s',t)- k(s,t') + k(s,t). 
Let So, Si, . . . , sn and fa, h, . . . , tp be values of s and t such that 

a = s0^ s i ^ . . . ^ 5 n= a', 
( } b =tt>£h£... g tp = V. 

With (3.1) associate numbers 6i, . . . , en and ei, . . . , ep
r equal to ± 1. For 

0 < i ^ n, and 0 < j ^ p, let 

(3.2) Aijik) = [k : Si, s t_i : ^ , ^_i] . 
The subdivision of Q defined by the set of lines s = Si and t = tj will be 
called the partition ir of Q defined by (3.1). Using the summation convention 
of tensor algebra, let 

(3.3) sup ei e/A{j(k) = P(fe), [i = 1 , . . . , »; j = 1, . . . , p] 
taking the sup over all partitions of Q and associated sets (e) and (e'). We 
shall term P(k) the Fréchet variation of k. We are assuming that P(k) is 
finite. 

The following lemma is due to Fréchet. 
LEMMA 3.1. If P(k) is finite, then for fixed s and t respectively on [a, a'] and 

[ M l 
(3.4) Tins,.)] ^ p(*), n*(-, 01 ^ p(« . 

Using the partition (3.1) set 

k(si, •) - k(si-i, •) = A- (fe), [i = 1, , w] 
and observe5 that 

(3.5) P(k) è sup T [**/(*)] , 
where the sup is taken over all partitions of [a, a'] and corresponding sets (e) 
with ei= d= 1. Since the functional in the bracket [ ] in (3.5) has a null 
value when t = 6, it follows that for each / in [&, &'], on setting A] fe(-, 0 = 
k(Si-,t)— k(Si-.x,t), 

|e,Ajjfe(-,*)| â T[eiA}(k)] £P{k). 
Hence the second inequality in (3.4) holds. Interchanging the roles of s and / 
the first inequality in (3.4) follows similarly. 

5The equality holds in (3.5). 
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Lower semi-continuity. (Written l.s.c.) Let G be the class of all functionals 
which map Q into i?i, the space of real numbers. Convergence of a sequence 
of elements g^n)eG to geG shall mean pointwise convergence of g(n) to g, that 
is that 

lim g(n)(s,t) = g(s,t) l(s,t)eQ]. 
n+co 

Let Ri, extended by adding the value + oo, be denoted by Rf. Let F map 
G into Rt. The value of F at g is denoted by F(g). By definition F is l.s.c. 
if, whenever g(n) —» g in G, 

lim inf,F[g<»>] ^ F(g). 

A sufficient condition that F be l.s.c. is given in the following. 
(A). For each element a in a range (a) let Fa be a l.s.c. map of G into R\. If 

for every g in G, 
F(g) = sup Fa(g), 

(a) 
then F is l.s.c. over G. Cf. McShane.6 

LEMMA 3.2. The Fréchet variation P is l.s.c. over G. 

To prove this lemma we apply (A). To this end let a symbolize any par
tition (3.1) of Q together with associated sets 

(e) = (eu • • • , 0no), (ef) = (e'i,. . . , epa). 

For this partition and sets (e) and (ef) set 

Fa(k) = | eie'jAijik) \ [i = 1, . . . , na; j = 1, . . . , pa]. 

It is clear that for a fixed a, Fa is l.s.c. over G, in fact continuous. Since 
P(k) = sup Fa(k) 

(a) 
by definition of P(&), the lemma follows from (A). 

LEMMA 3.3. P ( F ) S P(k) for /x = =b 1, db 2. 

Since P(k) is finite the limit functional feM exists by Lemma 3.1. To continue 
we suppose ix = 1. 

For each positive integer w, let cj>n be a homeomorphic mapping of [a, a'\ 
onto [a, a'] leaving s = a and s = a! invariant, and such that 

0 < <t>n(s) - 5 < - [a < s < a'], 
n 

Such a mapping is seen to exist. In terms of k set 
(3.6) M^nOO, t] = kn(s, t) [n = 1, 2 , . . . ]. 
It is clear that 
(3.7) lim kn(s,t) = feKM). 

For each n however 
(3.8) P(k) = P(kn). 

6McShane, Integration (Princeton, 1944), 41. 
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To establish (3.8) let it be a partition of Q given by (3.1) with (e) and (e') 
corresponding sets and A# the corresponding mixed difference operator. Let 
7Tn be a partition in which Si in (3.1) is replaced by <j>n{si) and tj remains un
changed, while A J is the corresponding mixed difference operator. With kn 

defined by (3.6) it is clear that 

Relation (3.8) follows. 
Since kn—

> k1 pointwise, and P(g) is l.s.c. 

lim inf P(kn) ^ Pik1). 

From (3.8) therefore, P(k) ^ P(kl). 
The cases in which /x = — 1, or db 2 are similar. 

THEOREM 3.1. The limit Junctionals kll,p exist for /*, v = =fc 1, ± 2, awd 
P ( F ' " ) £P(k). 

When P{k) is finite ¥" exists by Lemma 3.1, and P{k11) ^ P(fe) by Lemma 
3.3. Hence by Lemma 3.1, (kti)p= kfl,v exists, and by Lemma 3.3 

P(k*'9) ^P(Jfe). 
A second definition of P(k). Corresponding to the partition (3.1) of Q, let 

Oh, • • • , i?n), Oh» . . . , rj'p) 
be sets of constants at most 1 in absolute value, in particular admitting the 
value 0. Taking the sup over all partitions (3.1) of Q and corresponding sets 
(rj) and (?/), set 
(3.9) P\k) = sup ruJjAijik) [i = 1, . . . , n; j = 1, . . . , p]. 

LEMMA 3.4. P(k)= P'(jfe). 
It is immediately clear that P(k)^ Pf{k). It remains to show that 

P'(k) ^ P(k). To that end set 
ei= sign [iijAij(k)] . 

It then appears that for a partition (3.1) of Q 
r}ii)jAij(k) ^ ewjAijik). 

Similarly if 
e'j = sign [CiAijik)] , 

ewjAijik) ^ eie'jAij(k) g P(fe) 
from which it follows that P'(fe) ^ P(jfe). 

4. A fundamental lemma. Let (o-, r) be a point interior to Q. Let 

tt < Si< Si< S2< 52 < . . . 
(4.1) 

b < h< t\< t2< h< ... 
be increasing sequences of values of 5 and t respectively converging to a and r. 
Let r and m be arbitrary positive integers. Denote the mixed difference 
determined by k and the rectangle [sri sr] X [tm, tm] by [k: r, m]. 
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Let ô be a positive constant. With [sr, sr] fixed, for r — tm sufficiently small 
and for tm< tm< T, 

(4.2) [k:r,m] < Ô. 

This follows from the existence of the limits 

fefan r — ), k(sr, T—), 
recalling that these limits exist since P(k) is finite. Similarly, for fixed [tmj tm], 
for a — sr sufficiently small, and for sr< sr< c, (4.2) again holds. 

Let (s, t) and (sf, tr) be points of Q for which 

(4.3) a < s < s' < o-, b <t <t'<r, 

and as previously let [k: s, s': t, t'] be the mixed difference determined by k 
and the rectangle [s, s'] X [t, t']. The following lemma is fundamental. 

LEMMA 4.1. Lim [k: s, s': t, t'] = 0 as (s, t) —> (o-, r) with (4.3.) holding. 
Given e > 0, the lemma affirms in effect that for a — s and r — t sufficiently 

small and positive, and with (4.3) holding 

(4.4) | [ fc :s ,s ' :U ' ] l ^ e. 
Let erm be a double sequence of positive constants such that 

S erm< e [r, m = 1, 2 , . . . ] . 
Assume the lemma false. Then for some e > 0, (4.4) will fail to hold subject 

to (4.3), for a — 5 and r — / sufficiently small. One can accordingly choose 
the numbers 
V*.0) [Smj Smi tm, tm\ 

in the order of increasing m so that (4.1) holds, so that sm—> o-, £m—» r, and so 
that the following conditions are successively satisfied. For m = 1, the set 
(4.5) is to be such that 

| [*: 1, 1] | > e. 

For m = 2, the set (4.5) is to be such that the order (4.1) holds and 

(4.6) | [k: 2, 2] | > e; | [k: 1, 2] | < e12; | [fe: 2, 1] | < e21. 

The last two conditions will be fulfilled if <r — s2 and r — h are sufficiently 
small and positive, as has been remarked in connection with (4.2). For a 
general m the set (4.5) is to be such that (4.1) holds, 

I [k: m,m]\ > e, 

and for r = 1, 2, . . . , m — 1, 

[k: r,m]\ < I [k:m, r]\ < 
A partition 7r(w) of Q will be defined now by the points of division 

(4.7) a = s0< Si< si< s2< s2< . . . < sm< sm< a', 

(4.8) b = ^0< / i < /'i< fe< h< . . . <tm< L< V. 

To the 2m + 1 subintervals into which [a, a'] and [b, b'\ are thereby divided, 
constants 

bll, • • • » î?2m+l] , fol, . . . , Î72m+l] 
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with J rji\ ^ 1, | rij\ ^ 1, will be respectively assigned. In accordance with the 
definition (3.9) of P'(fe) = P(fe), 

P(k) è mv'jbijQt) [i, j = 1, 2 , . . . , 2m + 1] 

for the partition 7r(m) and sets (77) and (rjf). We set 

(77) = [0, sign [k: 1, 1], 0, sign [k: 2, 2], . . . , sign [k: rn, m], 0] , 

W) = [0, 1, 0, 1, . . . , 1, 0] . 

For the partition 7r(m), and above choice of (rj) and (77') 

VirijAijik) = Xrjirj'iAuik) + £ rji t)jAij(k) 
m 

= Z\[k:r,r]\ + R, 
r = 1 

where 
|jRJ < 2 erp< e, [r, p = 1, . . . , w] 

so that 
rnr]jAij(k) > me — e. 

We conclude that P(fe) > (m — l)e. Since w is an arbitrary integer P(fe) = 00. 
From this contradiction we infer the truth of the lemma. 

5. The limit functions k(fi,v\ Given values of s and t 

a < si< s2< sz< a'', 
(5.1) 

b < h< t2< h< bf, 

we shall establish the formula 

[k: a, Szibyh] = [k: a, s2:b1t2] + [k: a, S\\ t2l h] 

(5.2) + [k: s2l sz: b, h] + [k: sly s3: h, h] 

— [k: su s2: tu t2] . 

This formula results from the fact that mixed differences are additive functions 
of intervals (2-dimensional). 

To establish (5.2) we first represent the rectangle [a, s2] X [&, t2] as the union 
of four non-overlapping rectangles, 

[a,s2] X [b,t2] = [a,5i] X [ M i l + [ a f s j X [h,h] 

+ bus2] X [ M i ] + [sus2] X [/i,*2], 

corresponding to which one has the relation, 

(5.3) [k:a,s%:bftA = [k: a, Si: bfh] + [k: a, Si: h, 2̂] 

= [k: Su s2: 6, h] + [k: Su s2: tu h]. 

A decomposition of [a, sz] X [ &, h] gives the relation 
(5.4) [k: a, Sz'.bjh] = [k: a, si:b,ti\ + [k: a, si: tu h] 

+ [k: a, si: t2, h] + [ k: su s2: 6, h] 

+ [k: 52, sz: b, h] + [ k: su sz: tu h]. 
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If one adds [k: Su s2: h, h] to both sides of (5.4), and makes use of (5.3) in sim
plifying the resulting right member, one has 

[ k: a, 53: b, tz] + [k: Su s2: h, t2] 

(5.5) = [k: a, s2: 6, t2] + [k: a, si: t2l h] 

+ [k: St, sz: b, h] + [k: su sz: tu / 3 ] . 

Relation (5.5) differs from (5.2) only in the transposition of one term. 

LEMMA 5.1. At each interior point (c, r) of Q 

lim k(a — u, T — v) [u > 0, v > 0] 
(« ,0X0 ,0 ) 

exists. 
To prove the lemma the values appearing in (5.1) will be taken so that 

a < Si< s2< Sz< o-, 
(5.6) 

b < h< U< h< r. 
Let e be a positive constant. Referring to (5.2), choose $i and h respectively 
so near <r and r, say 

0 < (T - 5 i < 01, 0 < T - h< ôi, 
that 
(5.7) I [k: su sz: h, h]\ < e, \ [k: s1} s2: h, t2] \ < e. 

This is possible by virtue of Lemma 4.L With (si, h) so chosen and held fast, 
choose s2 and t2 respectively so near a and r, say 

0 < <r - s2< 5 2 , 0 < r - t2< Ô2, 
that 
(5.8) \[k: a, sx: t2y t9]\ < e, \[k: s2, sz: b,h]\ < e. 

This is possible because of the existence of the limits k(s, r —) and k(<r — , t) 
respectively. With these choices of Su s2l tu h it follows from (5.2) that 

(5.9) I [k: a, sz: b, tz] — [k: a, s2: 6, t2] \ < 4e. 
Recall that [k: a, s: &, t] — k(s, t) since k vanishes on the lower and left edges 
of Q. It follows from (5.9) that if 

0 < <r - s < ô2, 0 < a - Y < ô2, 

0 < T - t < ô2, 0 < T - J ' < Ô 2 , 

then 
(5.10) I k(s, t) - k(s', t') | < 8*. 
The lemma is a ready consequence of (5.10). 

LEMMA 5.2. At each interior point (o-, r) of Q 

lim k(a + u, r + v) [u > 0, v > 0] 
(«,»)X0,0) 

exists. 

Lemma 5.2 can be deduced from Lemma 5.1. To that end make a trans
formation 
(5.11) s - a = a1 - s', t -b = &' - tf 
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of Q onto Q, interchanging the upper and lower, and the right and left edges 
of Q. Under (5.11) set 

k(s,t) = h(s',t'). 

We have P(k) = P(h), but cannot apply Lemma 5.1 to h since h(a>t') and 
h(s', b) are not necessarily zero for t' e [&, V] and s'e [a, a']. We accordingly 
introduce the functional g with values 

g(sf,t') = h(s',t') - h(a,t') - h(s',b) + h(a,b), 

for which g(a, 0 = g(sr, b) = 0 as desired. Observe also that P(g) = P(h). 

If then (<r', / ) is any interior point of Q, it follows from the preceding lemma 
that the 

(5.12) lim g(a'- u, T'- v) [u>0, v>0] 
( « , f ) > ( 0 , 0 ) 

exists. Since the limits h(a, r — ) and A((x —, b) exist, it follows from (5.12) 
that a limit similar to (5.12) exists for h. But for the image (o-, r) of (<7;, r ') 
under (5.11), 

lim h(<rf — u, T — v) = lim k(c + u, r + v) [u > 0, v > 0] 
( t*,v)X0.0) ( » , » » ( 0 , 0 ) 

and the proof of the lemma is complete. 
On using the transformation 

5 — a = a1 — s\ t = t', 

the existence of the limit 

lim k(a + u, T — v) [u > 0, v > 0] 
(«piOXO.o) 

is similarly deduced from Lemma 5.1. The transformation 

5 = s'9 t-b = V-t', 

is similarly used to establish the limit 

lim k(<r — u, T + v) [u > 0, v > 0 ] . 
(u.ioxo.o) 

The limits defined in (2.1) have thus been proved to exist at each interior 
point of Q. 

If moreover k is given an extension k over the whole (5, t)-plane as in 2, 
the limits defined in (2.1) exist at each point of the plane. To see this, observe 
that the mixed difference determined by k and any admissible rectangle X 
(with edges parallel to the coordinate axes) vanishes when the interior 
of X is on the complement of Q. Hence if Qf is any^admissible rectangle which 
contains Q in its interior, the Fréchet variation of ÂJ over Q' equals P(k) taken 
over Q. The edges of Q are interior to Q so that the limits (2.1) taken for k 
exist at points on these edges. We thus have the theorem. 

THEOREM 5.1. The limits (2.1), evaluated for the extension k of k over the 
(5, t)~plane, exist at each point of the (5, t)-plane. 
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6. The derived theorems. We begin with the lemma. 

LEMMA 6.1. At each interior point (s, i) of Q 

(6.0) k{»>v)(s, 0 = W'w(s, t) [M, v = ± 1, ± 2, |M| * M l . 

The proof for the case ju = 1, v = 2 is typical. We begin with the inequality 

(6.1) |* (1 .*>(*,*)- k^2(s}t)\ ^ j & ( 1 ' 2 ) ( M ) - &(s+*M+z>)i [ w > 0 , f l > 0 1 

+ \kKs,t+v)- k1>2(s,t)\. 
Let e be a positive constant. Since k(s + u, t + v) —* fe(l>2)(s, t) as w —> 0+> 
z; —> 0 + , there exists a ô < 0 such that the first term on the right of (6.1) is at 
most e, provided 

0 < ^ < Ô, 0 < v < 5. 
Since W(s, t + v) —> &1 »2(s, 0 as y —» 0 + , there exists a 52 with 0 < ô2< 5, such 
that when 0 < v < ô2 the third term on the right of (6.1) is at most e. Fix z> 
with 0 < v < d2; there will then exist a di with 0 < ôi< ô such that the second 
term on the right is at most e when 0 < u < di. For this choice of v and u, 
(6.1) shows that 
(6.2) l * ' 1 ^ , * ) - * 1 »*(*,*) I < 36. 
Since the left member of (6.2) is independent of (u, v) 

£ ( 1> 2 )M) = V >*($,{). 
The lemma follows similarly for other values of JJL and v. 
Since the relation (6.0) holds on the edges of Q by definition of jfe(" 'v) in (2.2), 

the following theorem is established. 

THEOREM 6.1. At each point of Q 

(6.3) *>>">(M) = F ' " ( M ) \JJL,V=±1,±2,\V\9£\V\]. 
LEMMA 6.2. On the edges of Q 

(6.4) W'is, t) = k9'"(s,t) |M1 * M . 
The existence of the limit functions follows from Lemmas 3.1 and 3.3. 
For points on the lower and left edges of Q 

0 = k(s, t) = k?(s, t) = kv(s, t) = F '"(s , t) = kv*M(s, 0 . 

On the right and upper edges of Q respectively 

hr(a',t) = k(a',t), U l = 1, 
V*(s,b') = k(s,V), I M I = 2 , 

by definition of ¥" in 2. Applying these relations one finds for | /x | 9^ \v\, that 

k»>v{a',t) = kv(a',t)f | F | * 2 , 

since | /i | is then 1, and feM(a', t)=k(a', t). 
Similarly 

F ' V , 0 = # V , * ) , | M | = 2 , 
#"'(*,&') = *'(*,&'), l ^ | = l , 

The last four relations establish (6.4) on the right and upper edges of Q. 
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THEOREM 6.2. At each point (s, t) of Q 

(6.5) F ' " M ) = kw-*(s,t) [ M = ± 1, ± 2 , U l *\v\]. 
At each interior point (s, t) of Q 

k(lx'v)(s,t) = ^ ( s , *) 
by definition of k(fl,v) and fe(v,,x) in 2. At such a point of Q, (6.5) accordingly 
follows from (6.3). On the edges of Q, (6.5) follows from Lemma 6.2. 

THEOREM 6.3. The points at which k fails to be continuous can be covered by 
a countable set of lines parallel to the coordinate axes. 

Given e > 0, let Se be a set of points p of Q with the following properties. 
At p, k shall be discontinuous with a jump exceeding e, and no two points of S0 

shall have the same 5 or t coordinate. The maximum number iVe of points in 
such sets Se is finite. Otherwise there would exist a set Se containing an 
infinite set of points p, and these points would have some point (c, r) of Q as 
a limit point. In one at least of the four open quadrants defined by the lines 
5 = <r, t = r, there would be an infinite subset of points of Se- This is im
possible if the limits k^'p) (<r, T) exist. Hence Ne is finite. 

A countable set 12 of lines parallel to the coordinate axes on which all points 
of discontinuity of k lie can be enumerated as follows. 

With e = 1, let Si be a set of points of Q defined as above with Si maximal 
in that Si contains just Ni points. In 12 take first the lines s = sx, t = h 
determined by points (51, £1) of Si. Let S.i be a second maximal set. To 12 
now add all lines s = s2» t = U corresponding to points of S.i at which the 
jump of k does not exceed 1. Let 5.01 be a third maximal set, and add to 12 
all lines s = s%, t = t^ corresponding to points (53, £3) of 5.01 at which the jump 
of k does not exceed .1 , etc. The resulting set of lines is at most countable 
and will cover the points of discontinuity of k. 

THEOREM 6.4. The value of 

(6.6) P[k^>v)] [»,v = ±l,±2f\n\9£\v\] 

is independent of /* and v, and at most P{k). 
We begin by proving Lemma 6.3. 

LEMMA 6.3. Let Qu, v) be a pair admitted in (6.6) and ( / , J/) a second such 
pair. On setting k(li ,v,) = h one has the relation 

(6 .7 ) ^ ' y ) = fc(M'r). 
In accordance with the preceding theorem the points at which h and k are 

continuous and equal are everywhere dense on G. Hence (6.7) holds at each 
interior point of G. On the lower and left edges of G both members of (6.7) 
vanish and so are equal. The proof that (6.7) holds on the edge of G on which 
s = af is as follows. 

Of the members /x, v one, say 0-, is ± 2, and of the members pt', vr one, say r, 
is ± 2. In accordance with the equalities used in proving Lemma 6.2, 

^ ' • " V , t) = kr(a', t) h^\a\ t) = h'(a', t). 
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Using these relations and Lemma 6.1 

V' V , 0 = ft'(a'. 0 = [*"' ' "V, t)Y 
= [kT(a',t)Y= k'(a',t) = W'}), 

from which (6.7) follows on the right edge of Q. The validity of (6.7) on the 
upper edge of Q is similarly proved. 

Proof of Theorem 6.4. Set 

In accordance with (6.7), h(lx,v) = g so that it follows from Theorem 6.1 and 
Theorem 3.1 that 

P(h) ^ P(g) g P(k). 
Similarly g(At' ' ̂  = & so that 

P{g) â P(A) ^ P(*). 
Hence P(A) = P(g) ^ P(A). 
This completes the proof of the theorem. 
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