LOGAL SPACES WITH THREE CELLS AS H-SPACES

NANCY L. HAGELGANS

1. Introduction. The question of which finite $C W$-complexes are H-spaces has been studied for many years. Since a finite $C W$-complex is an H-space if and only if its localization at each prime p is an H-space [21], an examination of finite local cell complexes as H-spaces yields results concerning $C W$-complexes. On the other hand, if it is known that a particular $C W$-complex is not an H-space, one would like to know for which primes p its localization at p fails to be an H-space. The main result of this paper gives a condition equivalent to a three cell local $C W$-complex's being an H-space for a prime $p>3$.

An H-space of rank one has the homotopy type of an odd-dimensional sphere S^{r}. An odd-dimensional sphere S^{r} is an H-space if and only if $r=1,3$ or 7 . Its localization S_{p}^{τ} at a prime p fails to be an H-space only for the prime $p=2[\mathbf{1}]$.

The 2 -torsion free rank two H-spaces have been classified up to homotopy. The only types (q, n) which occur are those such that $\{q, n\} \subset\{1,3,7\}$ or $(q, n)=(1,2)$ or $(3,5)$. There are exactly sixteen homotopy types of torsionfree 1 -connected H-spaces. Again the results depend on the prime 2 behaving differently from the other primes [2], [9], [5], [14].

A 1-connected torsion-free $C W$-complex X which is an H-space of rank two and type (q, n) has the same homotopy type as the total space of an S^{q}-fibration over the sphere $S^{n}[\mathbf{1 6}]$. Such a total space is homotopically equivalent to a $C W$-complex $S^{q} \cup e^{n} \cup e^{n+q}$ [4]. Localization at a prime p yields another fibration $S_{p}^{q} \rightarrow X_{p} \rightarrow S_{p}^{n}$ [19]. These are the fibrations which will be studied here. Always we assume that q, n and p are odd and that $n>q>2$.

The main purpose of this paper is to carry through the results of I. M. James and J. H. C. Whitehead [12] for local spherical fibrations over spheres without assuming the existence of a cross-section. James and Whitehead considered fiber bundles $S^{q} \rightarrow B \rightarrow S^{n}$ and showed that B is a cell-complex of the form $S^{q} \cup_{\alpha} e^{n} \cup e^{n+q}$. For bundles $S^{q} \rightarrow B_{i} \rightarrow S^{n}$ with cross-section (i.e. with $\alpha=0$), there are elements $\lambda\left(B_{i}\right)$ in $\pi_{n+q-1}\left(S^{q}\right)$ such that $\lambda\left(B_{1}\right)= \pm \lambda\left(B_{2}\right)$ if and only if (B_{1}, S^{q}) and (B_{2}, S^{q}) have the same homotopy type. Also, for a bundle with cross-section, $\lambda(B)=0$ if and only if B and $S^{q} \times S^{n}$ have the same homotopy type. Furthermore, B is an H-space if and only if $\lambda(B)=0$ and the spheres S^{q} and S^{n} are H-spaces.

In Section 2, it will be shown that the total space of a local spherizal fibra-

[^0]tion $S_{p}{ }_{p} \rightarrow E \rightarrow S^{n}{ }_{p}$ is homotopically equivalent to a local cell complex $S_{p}{ }_{p} \cup_{\alpha} e^{n}{ }_{p} \cup e^{n+q}{ }_{p}$.

Section 3 is devoted to fibrations with fixed α and to the construction of an element $\lambda_{\alpha}(E)$ in $\pi_{n+q-1}\left(S_{p}^{q} \cup_{\alpha} e_{p}^{n}\right)$ for each of these fibrations. If a crosssection exists, then the injection $i: S_{p}^{q} \rightarrow S_{p}^{q} \bigcup_{\alpha} e_{p}$ induces a monomorphism in homotopy, and the element $i_{*}{ }^{-1} \lambda_{\alpha}(E)$ in $\pi_{n+\ell-1}\left(S_{p}^{q}\right)$ is uniquely defined; this element corresponds to James and Whitehead's $\lambda(B)$. Certain subsets of Im i_{*} in $\pi_{n+q-1}\left(S_{q}^{q} \cup e_{p}^{n}\right)$ will be defined in such a way that $\lambda_{\alpha}\left(E_{1}\right)$ and $\lambda_{\alpha}\left(E_{2}\right)$ are in the same subset if and only if (E_{1}, S_{p}^{q}) and (E_{2}, S_{p}^{q}) are homotopically equivalent. Each subset for fixed α corresponds to James and Whitehead's set $\{ \pm \lambda(B)\}$ for fixed $\alpha=0$.

In Section 4, again α in $\pi_{n-1}\left(S_{p}^{q}\right)$ is a fixed element. The main result is:
Theorem 4.4. Suppose that q and n are odd integers and that p is an odd prime. Let $S^{q}{ }_{p} \rightarrow E \rightarrow S^{n}{ }_{p}$ be a fibration such that E has first attaching map α. If $p>3$, then $\lambda_{\alpha}(E)=0$ if and only if E is an H-space. For $p=3$, if E is an H-space, then $\lambda_{\alpha}(E)=0$.

I would like to thank James Stasheff for his help and encouragement in writing this paper.
2. The total space as a local $C W$-complex. In this section it will be shown that the total space of a fibration $S_{p}^{q} \rightarrow E \rightarrow S_{p}^{n}$ is homotopically equivalent to a local $C W$-complex. First, some notation and definitions are needed.

The local sphere S_{p}^{r} can be considered as the suspension of $S^{r-1}{ }_{p}$ for $r>2$ because the localization of the suspension of a simply-connected space X has the homotopy type of the suspension of X localized, i.e., $\left(\sum X\right)_{p} \simeq \sum\left(X_{p}\right)$ [19]. Let

$$
\begin{array}{r}
S_{p}^{\tau}=\left\{[x, t] \mid x \in S_{p}^{r-1},-1 \leqq t \leqq 1 ;\left[x_{1}, 1\right]=\left[x_{2}, 1\right] \text { and }\left[x_{1},-1\right]\right. \\
\left.=\left[x_{2},-1\right] \text { for all } x_{1}, x_{2} \in{S^{r-1}}_{p}\right\}
\end{array}
$$

and let the base point a_{r} of S_{p}^{r} be $[x, 1]$, where $x \in S^{r-1}{ }_{p}$. The local r-cell e_{p}^{r} is defined to be the cone on $S^{r-1}{ }_{p}$ with vertex $b_{r}=[x, 0]$, where $x \in S^{r-1}{ }_{p}$. As defined by Sullivan [19], a local $C W$-complex is a space constructed inductively from a point or local sphere $S^{m}{ }_{p}$ by attaching local cells $e^{\tau}{ }_{p}$ by maps of local spheres $S^{r-1}{ }_{p}$ into the cells of lower dimension.

Define a map $u_{r}: e_{p}{ }_{p} \rightarrow S_{p}^{r}$ by $u_{\tau}([x, t])=[x, 2 t-1]$ for $x \in S^{r-1}{ }_{p}$ and $0 \leqq t \leqq 1$. Then, on the boundary $S^{r-1}{ }_{p}$, we have that $u_{\tau}([x, 1])=a_{r}$.

The following is a special case of the local form of Proposition 1 in [17] with a modification of the proof [11].

Proposition 2.1. Let $F \rightarrow E \rightarrow S^{n}{ }_{p}$ be a fibration, and suppose that the fiber F is a local CW-complex. Then the total space E has the homotopy type of a local $C W$-complex $K=F \cup\left(e_{p}^{n} \times F\right)$.

Proof. Let χ be the map $u_{n}: e_{p}{ }_{p} \rightarrow S_{p}^{n}$, and let $\pi: E \rightarrow S_{p}^{n}$ be the fiber map. Consider the induced fibration $\pi_{x}: E_{x} \rightarrow e^{n}$. Since the cone $e^{n}{ }_{p}$ is contractible, the induced fiber space E_{χ} is fiber homotopy equivalent to the product $e^{q}{ }_{p} \times F$. Let $\phi: e^{n}{ }_{p} \times F \rightarrow E_{\chi}$ and $\psi: E_{\chi} \rightarrow e^{n}{ }_{p} \times F$ be fiber homotopy inverses of each other such that the map

$$
\phi \mid b_{n} \times F: b_{n} \times F \rightarrow \pi_{x}^{-1}\left(b_{n}\right)
$$

is homotopic to the identity mapping of the fiber F. Also, let $\zeta: E_{x} \rightarrow E$ and $\rho: e^{n}{ }_{p} \times F \rightarrow e_{p}{ }_{p}$ be the natural projections. Let $\bar{F}=\pi^{-1}\left(a_{n}\right)$. Then, for $x \in S^{n-1}$ and $y \in F$, we have that $\zeta \phi(x, y) \in \bar{F}$. Let $\nu=\zeta \phi \mid S^{n-1}{ }_{p} \times F$, and use the map ν to construct the complex $K=\bar{F} \cup_{\nu}\left(e_{p}{ }_{p} \times F\right)$. The following lemma completes the proof.

Lemma 2.2. The spaces E and K are homotopically equivalent.
Proof. Let $\theta: K \rightarrow E$ be the map induced by $\zeta \phi$. A map $\beta: E \rightarrow K$ will be defined such that θ and β are homotopy inverses of each other.

Let $h_{t}: E_{\chi} \rightarrow E_{\chi}$ be a homotopy such that $h_{1}=1$ and $h_{0}=\phi \psi$. Using the definition of e_{p}^{n} as the cone on $S^{n-1}{ }_{p}$, define a map s: $e_{p}^{n} \rightarrow e_{p}{ }_{p}$ by:

$$
\begin{aligned}
s([x, t]) & =[x, 2 t] \quad \text { if } 0 \leqq t \leqq 1 / 2, \quad x \in S^{n-1_{p}} ; \\
& =[x, 1] \quad \text { if } 1 / 2 \leqq t \leqq 1, \quad x \in S^{n-1}{ }_{p} .
\end{aligned}
$$

Then the map s is homotopic to the identity on $e^{n}{ }_{p}$ under a homotopy G which keeps each point of $S^{n-1}{ }_{p}$ fixed; assume that $G \mid e_{p}^{n} \times 0=1$ and $G \mid e_{p}^{n} \times 1=s$. Since $e^{n}{ }_{p}$ is a metric space, the fibration $\pi_{\chi}: E_{\chi} \rightarrow e^{n}{ }_{p}$ is regular [10]. This means that any homotopy into $e^{n}{ }_{p}$ that keeps certain points stable can be lifted to a homotopy which keeps the same points stable. Then, since $G\left(\pi_{x} \times 1\right)(x, t)=$ $G\left(\pi_{\chi} \times 1\right)\left(x, t^{\prime}\right)$ for $0 \leqq t, t^{\prime} \leqq 1$ and $\pi_{\chi}(x) \in S^{n-1}{ }_{p}$, there is a homotopy $H: E_{\chi} \times 1 \rightarrow E$ such that $\pi_{\chi} H=G\left(\pi_{\chi} \times 1\right), H \mid E_{\chi} \times 0$ is the identity on E_{χ}, and $H(x, t)=H\left(x, t^{\prime}\right)$ for $0 \leqq t, t^{\prime} \leqq 1$ and $x \in E_{x}$ such that $\pi_{x}(x) \in S^{n-1}{ }_{p}$.

Define a map $v: E_{\chi} \rightarrow E_{\chi}$ by $v=H \mid E_{\chi} \times 1$. Then, by the properties of the map H listed above, we have that $\pi_{\chi} v=s \pi_{\chi}$, the map v is homotopic to the identity on E_{χ}, and $v(x)=x$ for all $x \in E_{\chi}$ such that $\pi_{\chi}(x) \in S^{n-1} p$.

Let e be a point of $E-\bar{F}$. Then $\pi(e) \in S^{n}{ }_{p}-a_{n}$, and there is exactly one point $x \in e^{n}{ }_{p}$ such that $\chi(x)=\pi(e)$. Then the set $\zeta^{-1}(e)$ consists of the one point $(x, e) \in E_{\chi}$. Let $j: \bar{F} \rightarrow K$ be the inclusion, and let $\eta: e^{n}{ }_{p} \times F \rightarrow K$ be the map induced by ν. Define a map $\beta: E \rightarrow K$ extending the identity on \bar{F} by: if $e \in E-\bar{F}$ such that $\pi_{\chi} \zeta^{-1}(e)=[y, t]$,

$$
\begin{aligned}
\beta(e) & =\eta \psi v \zeta^{-1}(e) & & \text { if } 0 \leqq t \leqq 1 / 2 \\
& =j \zeta h_{2 t-1} v \zeta^{-1}(e) & & \text { if } 1 / 2 \leqq t \leqq 1 .
\end{aligned}
$$

Then β is a continuous map because the two definitions for $t=1 / 2$ agree, and $\zeta h_{2 t-1} v \zeta^{-1}(e)$ lies in \bar{F} for $t \geqq 1 / 2$ and equals e for $t=1$.

The maps $\beta \theta$ and $\theta \beta$ are homotopic to the appropriate identities. This completes the proof of the lemma.

Corollary 23 Let $S_{p}^{q} \rightarrow E \rightarrow S_{p}^{n}$ be a fibration. Then the total space E is homotopically equivalent to a local $C W$-complex K with decomposition $S_{p}^{Q} \cup e^{n}{ }_{p} \cup e^{n+Q}{ }_{p}$.

Proof. The total space E is homotopically equivalent to a complex $K=S_{p}^{q} \cup_{\nu}\left(e_{p}^{n} \times S_{p}^{q}\right)$ by Proposition 2.1. Let $h: e_{p}{ }_{p} \times S_{p}^{q} \rightarrow K$ be the map determined by ν; let $k=h\left(1 \times u_{q}\right): e_{p}^{n} \times e_{p}^{q} \rightarrow K$. (This notation, which will be used throughout the rest of this paper, is that used by James and Whitehead [12] in discussing the cellular decomposition of the total space of a bundle.)

Then we have that

$$
\begin{aligned}
k\left(S^{n-1}{ }_{p} \times e_{p}^{q}\right) \subset \bar{S}_{p}^{q}, k\left(\operatorname{Int} e_{p}^{n} \times S_{p}^{q-1}\right) \subset & e_{p}^{n} \times a_{q}=e_{p}^{n}, \text { and } \\
& k\left(a_{n-1} \times S^{q-1}{ }_{p}\right)=\text { a point } e^{0} .
\end{aligned}
$$

This yields a decomposition of K as the local $C W$-complex $e^{0} \cup e^{q}{ }_{p} \cup_{\alpha} e^{n}{ }_{p} \cup$ e^{n+q} p, where

$$
\begin{aligned}
e^{0}=k\left(a_{n-1}, a_{q-1}\right), S_{p}^{q}=e^{0} \cup e_{p}^{q}, e_{p}^{n}=k\left(e_{p}^{n} \times a_{q-1}\right), \alpha & =\nu \mid S^{n-1}{ }_{p} \times a_{q}, \\
\text { and } e^{n+q}{ }_{p} & =k\left(e^{n}{ }_{p} \times e^{q}{ }_{p}\right),
\end{aligned}
$$

which is attached by the map $k \mid\left(e_{p}{ }_{p} \times e_{p}^{q}\right)$.
3. Homotopy type of $\left(E, S_{p}^{q}\right)$. Let $\alpha \in \pi_{n-1}\left(S_{p}^{q}\right)$ be a fixed homotopy class. We will consider only those fibrations $S^{q}{ }_{p} \rightarrow E \rightarrow S^{n}{ }_{p}$ such that E has the homotopy type of a local $C W$-complex K with first attaching map α. Then K has the form:

$$
K=S^{q}{ }_{p} \cup_{\alpha} e^{n}{ }_{p} \cup e^{n+q_{p}}
$$

Let L denote the subcomplex of K defined by: $L=S^{q}{ }_{p} \cup_{\alpha} e^{n}{ }_{p}$. Certain subsets of $i_{*} \pi_{n+q-1}\left(S_{p}^{q}\right) \subset \pi_{n+q-1}(L)$ will be designated in such a way that each subset corresponds to a homotopy class of pairs ($E, S^{q}{ }_{p}$).

The map k of the preceding section determines particular generators i_{n} of $\pi_{n}\left(L, S_{p}^{q}\right)$ and i_{q} of $\pi_{q}\left(S_{p}^{q}\right)$. Let $i_{n}=\left[k \mid e_{p} \times a_{q-1}\right]$, and let $i_{q}=\left[k \mid a_{n-1} \times e_{p}^{q}\right]$.

In order to study the homotopy class of the boundary of the map k, maps f and g of the boundary of $e^{n}{ }_{p} \times e^{q}{ }_{p}$ into itself will be defined. Composing the boundary of k with these two maps will lead to expressing the homotopy class of the boundary of k as a sum of two elements. One of these elements determines the homotopy type of the pair (E, S_{p}^{q}), and the other element is similar to a Whitehead product of i_{q} and i_{n}. We first define this product in general.

Suppose that A is an H-space and a subspace of a space X. Let β in $\pi_{q}(A)$
and γ in $\pi_{n}(X, A)$ be represented by the maps:

$$
\begin{aligned}
& b:\left(e^{q}, S^{g-1}\right) \rightarrow\left(A,^{*}\right), \text { and } \\
& c:\left(e^{n}, e^{n-1}, e^{n-1}+\right) \rightarrow\left(X, A,{ }^{*}\right), \text { where } \\
& e_{1}^{n}=\left\{[x, t] \in \sum e^{n-1} \mid t \geqq 0\right\}, \\
& e^{n-1}=\left\{[x, t] \in \sum e^{n-1} \mid t=0\right\}, \text { and } \\
& e^{n-1}+=\left\{[x, t] \in \sum S^{n-2} \mid t \geqq 0\right\} .
\end{aligned}
$$

Let Y be the space $\left(e^{n} \times S^{q-1}\right) \cup\left(e^{n-1}+\times e^{q}\right) \cup\left(e^{n-1} \times e^{q}\right)$, which is homotopically equivalent to e^{n+q-1}. Consider the map $(b, c): Y \rightarrow X$ defined by:

$$
\begin{aligned}
(b, c)(u, v) & =c(u) & & \text { if }(u, v) \in e^{n}{ }_{1} \times S^{q-1}, \\
& =b(v) & & \text { if }(u, v) \in e^{n-1}+e^{q}, \\
& =c(u) \cdot b(v) & & \text { if }(u, v) \in e^{n-1} \times e^{q},
\end{aligned}
$$

where the product means multiplication in the H-space A. The first two parts of this definition give a representative of the relative Whitehead product $[\beta, \gamma]$ in $\pi_{n+q-1}(X, A)$, and the last part is the usual map for showing that any Whitehead product (and, in this case, $\partial[\beta, \gamma]=[\beta, \partial \gamma]$) is trivial for an H space. Since any homotopies b_{t} and c_{t} yield a homotopy (b_{t}, c_{t}), we can define the product:

Definition 3.1. $[\beta, \gamma]_{X}$ is the homotopy class of (b, c) in $\pi_{n+q-1}(X)$.
Alternately, the representative of the product $[\beta, \gamma]_{X}$ could be defined as follows: use the H-structure of A to deform a representative of the relative Whitehead product $[\beta, \gamma]$ to a map which is trivial on the boundary of $e^{n}{ }_{1} \times e^{q}$. The next proposition lists the properties of this product.

Proposition 3.2. Suppose that A is an H-space and subspace of a space X. Consider homotopy classes β, β_{1} and β_{2} in $\pi_{q}(A)$ and γ, γ_{1} and γ_{2} in $\pi_{n}(X, A)$. Then:

1. $j_{*}\left([\beta, \gamma]_{X}\right)=[\beta, \gamma]$, where $j:(X, *) \rightarrow(X, A)$ is the inclusion.
2. $\left[\beta_{1}+\beta_{2}, \gamma\right]_{X}=\left[\beta_{1}, \gamma\right]_{X}+\left[\beta_{2}, \gamma\right]_{X}$.
3. $\left[\beta, \gamma_{1}+\gamma_{2}\right]_{X}=\left[\beta, \gamma_{1}\right]_{X}+\left[\beta, \gamma_{2}\right]_{X}$.
4. Suppose that B is an H-space and subspace of a space Y and that $f:(X, A) \rightarrow$ (Y, B) is a map. Then $f_{*}\left([\beta, \gamma]_{X}\right)=\left[f_{*} \beta, f_{*} \gamma\right]_{Y}$.

Proof. The first three properties follow immediately from the definition of the product. We now prove the last property.

Let the maps b and c represent β and γ. Then

$$
\begin{aligned}
f(b, c)(u, v) & =f c(u) & & \text { if }(u, v) \in e^{n} \times S^{q-1}, \\
& =f b(v) & & \text { if }(u, v) \in e^{n-1}+\times e^{q}, \\
& =f(c(u) \cdot b(v)) & & \text { if }(u, v) \in e^{n-1} \times e^{q} .
\end{aligned}
$$

The only difficulty lies in the third line; here we know that

$$
f(c(u) \cdot b(v))=f m(c(u), b(v))=f m(c \times b)(u, v)
$$

where m is the multiplication in A. We want to show that $f m(c \times b)$ is homotopic to $m^{\prime}(f c \times f b)$, where m^{\prime} is the multiplication in B. For $[a]$ in $\pi_{r}(A \times A)$, projections $p_{i}: A \times A \rightarrow A$, and diagonal map $\Delta: S^{r} \rightarrow S^{r} \times S^{r}$, we have that

$$
\begin{aligned}
{[f m a]=f_{*}\left[m\left(p_{1} a \times p_{2} a\right) \Delta\right]=} & f_{*}\left(\left[p_{1} a\right]+\left[p_{2} a\right]\right)=\left[f p_{1} a\right]+\left[f p_{2} a\right] \\
& =\left[m^{\prime}\left(f p_{1} a \times f p_{2} a\right) \Delta\right]=\left[m^{\prime}(f \times f) a\right] .
\end{aligned}
$$

Then, letting $a=c \times b$, we find that

$$
[f m(c \times b)]=\left[m^{\prime}(f \times f)(c \times b)\right]=\left[m^{\prime}(f c \times f b)\right]
$$

and thus $f m(c \times b)$ is homotopic to $m^{\prime}(f c \times f b)$. Therefore,

$$
f_{*}[\beta, \gamma]_{X}=\left[f_{*} \beta, f_{*} \gamma\right]_{Y}
$$

and the proposition is proved.
Since $e^{r}{ }_{p}$ is the cone on $S^{r-1}{ }_{p}$ and S_{p}^{r} is the suspension of $S^{r-1}{ }_{p}$, local spheres and cells are related in ways analogous to those of the usual spheres and cells. For example, the boundary $\left(e^{n}{ }_{p} \times e^{q}{ }_{p}\right)$ of $e^{n}{ }_{p} \times e^{q}{ }_{p}$ is

$$
\left(S^{n-1}{ }_{p} \times e_{p}^{q}\right) \cup\left(e_{p}^{n} \times S^{\varphi-1}{ }_{p}\right)
$$

and $e^{n}{ }_{p} \times e^{q}{ }_{p}$ is homeomorphic to $e^{n+q}{ }_{p}$. The following notation will be used (Figure 1):

$$
\begin{aligned}
& e^{r}{ }_{+}=\left\{[x, t] \in \sum S^{r-1}{ }_{p} \mid t \geqq 0\right\} \quad \text { and } \quad e^{r}-=\left\{[x, t] \in \sum S^{r-1}{ }_{p} \mid t \leqq 0\right\} \subset S_{p}^{r} ; \\
& e^{r}{ }_{1}=\left\{[x, t] \in \sum e^{r-1}{ }_{p} \mid t \geqq 0\right\} \quad \text { and } \quad e^{r}{ }_{2}=\left\{[x, t] \in \sum e^{r-1}{ }_{p} \mid t \leqq 0\right\} \subset e^{r} .
\end{aligned}
$$

Define a map $f:\left(e^{n}{ }_{p} \times e^{q}\right)^{*} \rightarrow\left(e^{n}{ }_{p} \times e^{q}{ }_{p}\right)^{\cdot}$ as follows (Figures 1 and 2): for $[x, t] \in e^{n}{ }_{p}=\sum e^{n-1}{ }_{p}, x \in e^{n-1}{ }_{p}, y \in e^{q}{ }_{p}$,

$$
\begin{aligned}
f([x, t], y) & =([x, 2 t+1], y) & & \text { if }-1 \leqq t \leqq 0 ; \\
& =([x, 1], y) & & \text { if } 0 \leqq t \leqq 1
\end{aligned}
$$

The map f is homotopic to the identity on $\left(e^{n}{ }_{p} \times e^{q}{ }_{p}\right)$.
The points of $e^{n}{ }_{p}$ can be parametrized in the unusual form $([x, r], t)$, where $x \in S^{n-2} p,[x, r] \in e^{n-1}{ }_{p}=C S^{n-1}{ }_{p}, 0 \leqq r \leqq 1$, and $r-1 \leqq t \leqq 1-r$. In this representation, boundary points of $e^{n}{ }_{p}$ have the form $([x, r], \pm(1-r)$). We refer to lines where $[x, r]$ is fixed and t varies as lines orthogonal to $e^{n-1}{ }_{p}$. Define a map $g:\left(e_{p}^{n} \times e_{p}^{q}\right)^{\cdot} \rightarrow\left(e_{p}^{n} \times e_{p}^{q}\right)^{\cdot}$ by (Figures 1 and 2):

$$
\begin{array}{rlrl}
g([x, r], t, y) & =([x, r], r-1, y) & & \text { if } r-1 \leqq t \leqq 0, y \in S^{q-1}{ }_{p} ; \\
& =([x, r], 2 t-1+r, y) & \text { if } 0 \leqq t \leqq 1-r, y \in S^{q-1} p ; \\
& =([x, r], t, y) & & \text { if } y \in e_{p}^{q},([x, r], t) \in S^{n-1} .
\end{array}
$$

The map g is homotopic to the identity on $\left(e^{n}{ }_{p} \times e^{q}\right)^{\circ}$, and $g \mid S^{n-1}{ }_{p} \times e^{q}$ is the

Figure 1. Subsets of e_{p}; the maps f and g.

Figure 2. The map fg on $e_{p} \times y, y \in S^{q-1}{ }_{p}$.
identity. If the points $\left(x_{1}, y\right)$ and $\left(x_{2}, y\right)$ of $e^{n}{ }_{2} \times S^{q-1}{ }_{p}$ lie on a line orthogonal to $e^{n-1}{ }_{p} \times y$, then $g\left(x_{1}, y\right)=g\left(x_{2}, y\right)$.

Define a map $F:\left(e_{p}^{n} \times e^{q}{ }_{p}\right)^{\cdot} \rightarrow L$ to be the composition $k f g$. Then F is homotopic to k since g and f are homotopic to the identities. Let σ be the homotopy class of k in the group $\pi_{n+q}(K, L)$. This group is isomorphic to $Z_{(p)}$, the integers localized at p, and σ is a generator. The map F represents $\partial_{1} \sigma$ in $\pi_{n+q-1}\left(L, S_{p}^{q}\right)$, where $\partial_{1}: \pi_{n+q}(K, L) \rightarrow \pi_{n+q-1}\left(L, S^{q}{ }_{p}\right)$ is the boundary homomorphism. Let G be the restriction of F to $\left(e^{n}{ }_{1} \times S^{q-1}{ }_{p}\right) \cup\left(e^{n-1}+\times e^{q}{ }_{p}\right)$. Then the map G represents the relative Whitehead product $\left[i_{q}, i_{n}\right]$ in $\pi_{n+q-1}\left(L, S_{p}^{q}\right)$.

Let H be the restriction of F to $\left(e^{n}{ }_{2} \times S^{q-1}{ }_{p}\right) \cup\left(e^{n-1}-\times e_{p}^{q}\right)$. Then the image of H lies in $S^{q}{ }_{p}$. The restriction of F to the boundary of $e^{n-1}{ }_{p} \times e^{q}{ }_{p}$ is a map which represents the Whitehead product $\left[\alpha, i_{q}\right]$ in $\pi_{n+q-2}\left(S_{p}^{q}\right)$. Since $S^{q}{ }_{p}$ is an H-space, the Whitehead product $\left[\alpha, i_{q}\right]$ is trivial. Use the H-structure to deform the map F to a new map which is trivial on $\left(e^{n-1}{ }_{p} \times e^{q}\right)_{p}$. Now call this new map F, and use the names H and G for the same restrictions of the new F. Then H maps $\left(e^{n-1}{ }_{p} \times e^{q}{ }_{p}\right)^{\cdot}$ to the point e^{0}, and $[H] \in \pi_{n+q-1}\left(S_{p}^{q}\right)$.

Let $\partial: \pi_{n+q}(K, L) \rightarrow \pi_{n+q-1}(L)$ be the boundary homomorphism, and let $i: S_{p}^{q} \rightarrow L$ be the inclusion.

Definition 3.3. $\lambda_{\alpha}(E)=i_{*}[H]$ in $\pi_{n+q-1}(L)$.
The next proposition follows immediately from the definitions of the maps G and H as restrictions of the map F (Figure 3).

Proposition 3.4. $\partial \sigma=\lambda_{\alpha}(E)+\left[i_{a}, i_{n}\right]_{L}$ and $\partial_{1} \sigma=\left[i_{q}, i_{n}\right]$.
Definition 3.5. $\Psi_{\alpha}(E)=\left\{\psi \in \pi_{n+q-1}(L) \mid \psi=c \lambda_{\alpha}(E)\right.$ for some unit c of $\left.Z_{(p)}\right\}$.

Theorem 3.6. Let q and n be odd integers, and let p be an odd prime. Assume that $S_{p}^{q} \rightarrow E_{i} \rightarrow S^{n}{ }_{p}$ is a fibration for $i=1$ and 2 and that the first attaching maps in the local cellular decompositions of the total spaces are the same. Call the common map α. Then $\left(E_{1}, S_{p}^{q}\right)$ and $\left(E_{2}, S_{p}^{q}\right)$ have the same homotopy type if and only if $\Psi_{\alpha}\left(E_{1}\right)=\Psi_{\alpha}\left(E_{2}\right)$.

Proof. Suppose first that $\Psi_{\alpha}\left(E_{1}\right)=\Psi_{\alpha}\left(E_{2}\right)$. Then, since $\lambda_{\alpha}\left(E_{1}\right) \in \Psi_{\alpha}\left(E_{2}\right)$, there exists a unit c of $Z_{(p)}$ such that $\lambda_{\alpha}\left(E_{1}\right)=c \lambda_{\alpha}\left(E_{2}\right)$, i.e., $i_{*}\left[H_{1}\right]=c i_{*}\left[H_{2}\right]$.

Let $\beta=c j: S_{q}^{q} \rightarrow S^{q}{ }_{p}$, where j is the identity mapping. We will apply the local form of the right distributive law: $(\mu+\eta) \gamma=\mu \gamma+\eta \gamma$ for $\gamma \in \pi_{i}\left(S^{r}\right)$ and $\mu, \eta \in \pi_{r}(X)$ such that the Whitehead product $[\mu, \eta]=0[7$, Lemma 6.5, p. 166]. Since all Whitehead products in the H-space $S^{q}{ }_{p}$ are trivial, we have that $\beta \gamma=(c j) \gamma=c(j \gamma)=c \gamma$ for $\gamma \in \pi_{i}\left(S^{q}{ }_{p}\right)$. It follows that $\beta \alpha \simeq c \alpha$. Also, we have that β induces isomorphisms in the homotopy groups, and thus β is a homotopy equivalence. Then the map β can be extended to a homotopy equivalence $\nu: L \rightarrow L$ such that $\nu_{*}\left(i_{n 1}\right)=c i_{n 2}$.

Figure 3. The Map F. Points on the same dotted line have the same image under F. Points in the shaded area of $e_{p}^{n} \times y, y \in S^{\alpha-1} p$, are mapped to e^{0} by the map F.

Now, letting $\gamma=\left[H_{1}\right]$, we find that $\beta_{*}\left[\mathrm{H}_{1}\right]=c\left[H_{1}\right]$. Then by Propositions 3.2 and 3.4 we have that:

$$
\begin{aligned}
\nu_{*} \partial \sigma_{1} & =\nu_{*} i_{*}\left[H_{1}\right]+\nu_{*}\left[i_{q 1}, i_{n 1}\right]_{L} \\
& =i_{*} \beta_{*}\left[H_{1}\right]+\left[\beta_{*} i_{q 1}, \nu_{*} i_{n 1}\right]_{L} \\
& =i_{*} c\left[H_{1}\right]+\left[c i_{q 2}, c i_{n 2}\right]_{L} \\
& =c^{2} i_{*}\left[H_{2}\right]+c^{2}\left[i_{q 2}, i_{n 2}\right]_{L} \\
& =c^{2} \partial \sigma_{2} .
\end{aligned}
$$

This means that the second attaching map $k_{1} \mid S^{n+q-1}{ }_{p}$ of the total space E_{1} is homotopic to $c^{2}\left(k_{2} \mid S^{n+q-1}{ }_{p}\right)$. Then the map ν can be extended to a homotopy equivalence $\theta: E_{1} \rightarrow E_{2}$. Since $\theta \mid S^{q}{ }_{p}=\beta$, this yields a homotopy equivalence $\left(E_{1}, S^{q}{ }_{p}\right) \rightarrow\left(E_{2}, S^{q}{ }_{p}\right)$.

Before considering the converse, we will localize some of James's results [13]. If $f: X_{p} \rightarrow Y_{p}$ is a map, we will use $f^{\prime}: X \rightarrow Y$ to denote a map such that $\left(f^{\prime}\right)_{p}=f$. James shows that the homomorphism

$$
\left(i_{n}\right)_{*}: \pi_{n+q-1}\left(e^{n}, S^{n-1}\right) \rightarrow \pi_{n+q-1}\left(S^{q} \cup_{\alpha^{\prime}} e^{n}, S^{q}\right)
$$

is a monomorphism and that $\pi_{n+q-1}\left(S^{q} \cup e^{n}, S^{q}\right)=Z \oplus \operatorname{lm}\left(i_{n}{ }^{\prime}\right)_{*}$, where the Whitehead product $\left[i_{n}{ }^{\prime}, i_{q}{ }^{\prime}\right]$ is a generator of the infinite cyclic group Z. Then
we have that

$$
\pi_{n+q-1}\left(S_{p}^{q} \cup_{\alpha} e_{p}^{n}, S_{p}^{q}\right)=Z_{(p)} \oplus\left(\operatorname{lm}\left(i_{n}^{\prime}\right)_{*}\right)_{p}
$$

where $\left[i_{n}{ }^{\prime}, i_{q}{ }^{\prime}\right]_{p}=\left[i_{n}, i_{q}\right]$ is a generator of $Z_{(p)}$. James proves that

$$
\partial_{1} \sigma=m\left[i_{n}{ }^{\prime}, i_{q}^{\prime}\right]+i_{n}^{\prime} \rho^{\prime},
$$

where

$$
i_{q}^{\prime} \smile i_{n}^{\prime}=m \sigma^{\prime} \text { and } \rho^{\prime} \in \pi_{n+q-1}\left(e^{n}, S^{n-1}\right)
$$

Then $\partial_{1} \sigma=m\left[i_{n}, i_{q}\right]+i_{n} \rho$. But we know that $\partial_{1} \sigma=\left[i_{n}, i_{q}\right]$ by Proposition 3.4. Then $m=1$ and $i_{n} \rho=0$. Thus $i_{q} \smile i_{n}=\sigma$, where i_{q} and i_{n} correspond to the homotopy classes of the same name.

Now we assume that (E_{1}, S_{p}^{q}) and (E_{2}, S_{p}^{q}) have the same homotopy type and let $\theta:\left(E_{1}, S^{q}{ }_{p}\right) \rightarrow\left(E_{2}, S^{q}\right)$ be a homotopy equivalence. Then, since the cohomology groups $H^{n}\left(L S^{q} ; Z_{(p)}\right)$ and $H^{q}\left(S_{p}^{q} ; Z_{(p)}\right)$ are both isomorphic to $Z_{(p)}$,

$$
\theta^{*}\left(i_{q^{2}}\right)=b i_{q 1} \text { and } \theta^{*}\left(i_{n 2}\right)=c i_{n 1}
$$

for some units b and c of $Z_{(p)}$. Then

$$
\theta^{*}\left(i_{q 2} \smile i_{n 2}\right)=b c\left(i_{q 1} \smile i_{n 1}\right) \text { in } H^{n+q}\left(E_{1}\right)
$$

For $s=1$ and 2 , let $\sigma_{s}=\left(k^{*}\right)^{-1}\left(i_{q s} \smile i_{n s}\right)$, where $k^{*}: H^{n+q}\left(E_{s}, L\right) \rightarrow H^{q+q}\left(E_{s}\right)$ is the isomorphism induced by the inclusion k. Then $\theta^{*}\left(\sigma_{2}\right)=b c \sigma_{1}$ in $H^{n+q}\left(E_{1}, L\right)$. Since σ_{s} in cohomology corresponds to the original σ_{s} in homotopy, we have that $\theta_{*}\left(\sigma_{1}\right)=b c \sigma_{2}$. Also, $\theta_{*}\left(i_{q 1}\right)=b i_{q 2}$ and $\theta_{*}\left(i_{n 1}\right)=c i_{n 2}$ in homotopy. Thus,

$$
\theta_{*}\left(i_{*}\left[H_{1}\right]\right)=\theta_{*}\left(\partial \sigma_{1}-\left[i_{q 1}, i_{n 1}\right]_{L}\right)=b c \partial \sigma_{2}-b c\left[i_{q 2}, i_{n 2}\right]_{L} .
$$

Then $\theta_{*} i_{*}\left[H_{1}\right]=b c i_{*}\left[H_{2}\right]$.
Next we will show that $\theta_{*}\left[H_{1}\right]=c\left[H_{1}\right]$. Since $\theta_{*}\left(i_{q 1}\right)=b i_{q^{2}}$ and each $i_{q s}$ is the homotopy class of the identity on S^{q}, we have that $\theta \mid S^{q}{ }_{p}=b i_{q 1}$. Then

$$
\begin{aligned}
& \theta_{*}\left[H_{1}\right]=\left(b i_{q_{1}}\right)\left[H_{1}\right]=b\left[H_{1}\right][7], \text { and } \\
& b i_{*}\left[H_{1}\right]=i_{*} b\left[H_{1}\right]=i_{*} \theta_{*}\left[H_{1}\right]=\theta_{*} i_{*}\left[H_{1}\right]=b c i_{*}\left[H_{2}\right] .
\end{aligned}
$$

Since b is a unit, this gives that $i_{*}\left[H_{1}\right]=c i_{*}\left[H_{2}\right]$, i.e., $\lambda_{\alpha}\left(E_{1}\right)=c \lambda_{\alpha}\left(E_{2}\right)$.
We have shown that $\lambda_{\alpha}\left(E_{1}\right) \in \Psi_{\alpha}\left(E_{2}\right)$. Therefore, we have that $\Psi_{\alpha}\left(E_{1}\right)=$ $\Psi_{\alpha}\left(E_{2}\right)$.

This completes the proof of the theorem.
4. The total space E as an H-space. Suppose that α is a fixed element of $\pi_{n-1}\left(S^{q}\right)$ and that $S_{p}^{q} \rightarrow E \rightarrow S^{n}{ }_{p}$ is a fibration such that the total space E has local cellular decomposition $S_{p}^{q} \cup_{\alpha} e^{n}{ }_{p} \cup e^{n+q_{p}}$. The aim of this section is to show that, for p greater than $3, E$ is an H-space if and only if $\lambda_{\alpha}(E)=0$. In the case $\alpha=0$, Curtis [4] shows that E is an H-space if and only if E has the
same homotopy type as $S^{q}{ }_{p} \times S^{n}{ }_{p}$. For $\alpha \neq 0$, there is a space E_{α} which plays the role of $S^{q}{ }_{p} \times S^{n}{ }_{p}$. The space E_{α} is defined to be the local $C W$-complex $S^{q}{ }_{p} \cup_{\alpha^{\prime}}\left(e^{n}{ }_{p} \times S_{p}{ }_{p}\right)$, where $\alpha^{\prime}(x, y)=\alpha(x) \cdot y$, the product \cdot is multiplication in the H-space S^{q}, and $x \in S^{n-1}{ }_{p}, y \in S^{q}{ }_{p}$. Stasheff [18] proves that E_{α} is an H-space if $n<(1 / 2)(p-2)(q+1)$.

Proposition 4.1. If α is nontrivial, then $\lambda_{\alpha}\left(E_{\alpha}\right)=0$. Also $\lambda_{0}\left(S^{q}{ }_{p} \times S^{n}{ }_{p}\right)=0$
Proof. It suffices to show that the map H (of Section 3) is homotopic to the trivial map for these spaces.

The space $S^{q}{ }_{p} \times S^{n}{ }_{p}$ can be represented as $S^{q}{ }_{p} \cup_{\gamma}\left(e^{n}{ }_{p} \times S^{q}{ }_{p}\right)$, where, for $(x, y) \in S^{n-1}{ }_{p} \times S_{p}^{q}, \gamma(x, y)=y$. Then, since $\alpha=0$, we have that $\gamma(x, y)=$ $\alpha(x) \cdot y$. Thus, the map γ corresponds to α^{\prime} in the definition of E_{α}, and it will be called α^{\prime}.

Both spaces $S^{q}{ }_{p} \times S^{n}{ }_{p}$ and E_{α} can be decomposed as local $C W$-complexes $S^{q}{ }_{p} \cup e^{n}{ }_{p} \cup e^{n+q}{ }_{p}$. The first attaching map of E_{α} is α since, on $S^{n-1}{ }_{p} \times S^{q}{ }_{p}$,

$$
\alpha^{\prime}\left(x, a_{q}\right)=\alpha(x) \cdot a_{q}=\alpha(x) .
$$

The second attaching map is β, where

$$
\begin{aligned}
\beta(x, y) & =\alpha(x) \cdot u_{q}(y) & & \text { if }(x, y) \in S^{n-1}{ }_{p} \times e^{q}{ }_{p} ; \\
& =x & & \text { if }(x, y) \in e^{n} \times S^{q-1}{ }_{p} .
\end{aligned}
$$

The map H, as defined in Section 3, is the composition $\beta f g$ restricted to $\left(e^{n}{ }_{2} \times S^{q-1}{ }_{p}\right) \cup\left(e^{n-1}-\times e_{p}^{q}\right)$. Then, for $([x, t], y) \in e^{n-1}-\times e^{q}{ }_{p}, x \in\left(e^{n-1}{ }_{p}\right)^{\cdot}$, $-1 \leqq t \leqq 1$, we have that

$$
H([x, t], y)=(\beta f g)([x, t], y)=\alpha([x, 2 t+1]) \cdot u_{q}(y)
$$

For $(z, y) \in e^{n}{ }_{2} \times S^{q-1}{ }_{p}$ such that $g(z, y)=([x, t], y)$, we have that $H(z, y)=$ $[x, 2 t+1]$.

The map H can be extended to a map $J: e^{n}{ }_{2} \times e^{q}{ }_{p} \rightarrow S^{q}{ }_{p}$ by defining

$$
J(z, y)=\alpha([x, 2 t+1]) \cdot u_{q}(y),
$$

where $z \in e^{n}{ }_{2}, y \in e^{q}{ }_{p}$ and $g(z, y)=([x, t], y)$. Since H can be extended to $e^{n}{ }_{2} \times e^{q}{ }_{p}, H$ is homotopic to the trivial map, and thus $\lambda_{\alpha}(E)=i_{*}[H]=0$.

Proposition 4.2. Suppose that p is an odd prime and that q and n are odd. Let $S^{q}{ }_{p} \rightarrow E \rightarrow S^{n}{ }_{p}$ be a fibration such that the total space E has first attaching map α. If E is an H-space, then the spaces E and E_{α} have the same homotopy type.

Proof. Let $m: E \times E \rightarrow E$ be the multiplication. We can assume that m restricted to $S^{q}{ }_{p} \times S^{q}{ }_{p}$ provides an H-structure for the fiber $S^{q}{ }_{p}$ [3], [6]. Let

$$
\mu=m \mid S^{q}{ }_{p} \times S_{p}^{q}: S_{p}^{q} \times S_{p}^{q} \rightarrow S_{p}^{q}
$$

In $E \times E$ define an equivalence relation \sim by: $(u, v) \sim\left(u^{\prime}, v^{\prime}\right)$ if and only if $m(u, v)=m\left(u^{\prime}, v^{\prime}\right)$ and $u, u^{\prime} \in S^{n-1}{ }_{p}$ and $v, v^{\prime} \in S^{q}{ }_{p}$. Define the map g : $E_{\alpha} \rightarrow E \times E / \sim$ to be the one induced by the product of inclusions $e^{n}{ }_{p} \times S^{q}{ }_{p} \rightarrow$
$E \times E$. This map is well-defined because $m \mid S^{q} \times S^{q}{ }_{p}=\mu$. Now define the map $m^{\prime}: E \times E / \sim \rightarrow E$ to be the one induced by $m: E \times E \rightarrow E$, and let $f:$ $E_{\alpha} \rightarrow E$ be the composition of m^{\prime} and g.

We want to show that the map f is a homotopy equivalence. Let i_{q}, $i_{n} \in H^{*}(E)$ and $i_{q}{ }^{\prime}, i_{n}{ }^{\prime} \in H^{*}\left(E_{\alpha}\right)$ be the generators corresponding to those in homotopy constructed from the map k (in Section 3) for the spaces E and E_{α}. Then, since $f \mid a_{n-1} \times S^{q}{ }_{p}$ is the identity onto S_{p}^{q} and $f \mid e^{n}{ }_{p} \times a_{q-1}$ is the identity onto e^{n}, it follows that $f^{*}\left(i_{q}\right)=i_{q}{ }^{\prime}$ and $f^{*}\left(i_{n}\right)=i_{n}{ }^{\prime}$. Thus, we have that

$$
f^{*}\left(i_{q} \smile i_{n}\right)=f^{*} i_{q} \smile f^{*} i_{n}=i_{q}{ }^{\prime} \smile i_{n}{ }^{\prime} .
$$

Since these cup products are the generators in dimension $n+q, f^{*}: H^{*}(E) \rightarrow$ $H^{*}\left(E_{\alpha}\right)$ is an isomorphism. Then f is a homotopy equivalence. This completes the proof of the theorem.

Corollary 4.3. If $p>3$, then E_{α} is an H-space.
Proof. There exists a fibration $S^{q} \rightarrow X \rightarrow S^{n}$ such that the total space X localized at $p>3$ is an H-space homotopic to a local $C W$-complex $S^{q}{ }_{p} \cup_{\alpha} e^{n}{ }_{p} \cup$ $e^{n+q_{p}}[\mathbf{6}]$. Then, by the preceding proposition, the spaces X_{p} and E_{α} have the same homotopy type, and, thus, E_{α} is an H-space.

Theorem 4.4. Suppose that q and n are odd integers and that p is an odd prime. Let $S^{q}{ }_{p} \rightarrow E \rightarrow S^{n}{ }_{p}$ be a fibration such that E has first attaching map α. If $p>3$, then $\lambda_{\alpha}(E)=0$ if and only if E is an H-space. For $p=3$, if E is an H-space, then $\lambda_{\alpha}(E)=0$.

Proof. Suppose that $p \geqq 3$ and that E is an H-space. Then the spaces E and E_{α} have the same homotopy type (Proposition 4.2), and thus $\lambda_{\alpha}(E)=\lambda_{\alpha}\left(E_{\alpha}\right)$ $=0$ (Theorem 3.6 and Proposition 4.1).

Now let $p>3$ and suppose that $\lambda_{\alpha}(E)=0$. Then E and E_{α} have the same homotopy type (Theorem 3.6 and Proposition 4.1). Since E_{α} is an H-space (Corollary 4.3), the space E also is an H-space.

This concludes the discussion of H-spaces with three local cells.

References

1. J. F. Adams, The sphere, considered as an H-space mod p, Quart. J. Math. Oxford (2) 12 (1961), 52-60.
2. -H-spaces with few cells, Topology 1 (1962), 67-72.
3. G. Cooke, J. Harper and A. Zabrodsky, Torsion free $\bmod p H$-spaces of low rank, Preprint.
4. M. Curtis, H-spaces mod p (II), Lecture Notes in Mathematics 196 (Springer-Verlag, Berlin, 1970), 11-19.
5. R. R. Douglas and F. Sigrist, Sphere bundles over spheres and H-spaces, Topology 8 (1969), 115-118.
6. J. Harper, Private communication.
7. P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154-172.
8. P. J. Hilton, G. Mislin, and J. Roitberg, Localization of nilpotent groups and spaces (NorthHolland Publishing Company, Amsterdam-Oxford, 1975).
9. J. R. Hubbuck, Generalized cohomology operations and H-spaces of low rank, Trans. Amer. Math. Soc. 141 (1969), 335-360.
10. W. Hurewicz, On the concept of fiber space, Proc. Nat. Acad. Sci. 41 (1955), 956-961.
11. F. W. Kamber, Private communication.
12. I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres, I, Proc. London Math. Soc. (3) 4 (1954), 196-218.
13. I. M. James, Note on cup-products, Proc. Amer. Math. Soc. 8 (1957), 374-383.
14. M. Mimura, G. Nishida and H. Toda, On the classification of H-spaces of rank 2, J. Math. Kyoto Univ. 13 (1973), 611-627.
15. G. Mislin, H-spaces $\bmod p(I)$, Lecture Notes in Mathematics 196 (Springer-Verlag, Berlin, 1970), 5-10.
16. S. Sasao, Note on spaces with $H^{*}(; Z)=E\left[x_{1}, x_{2}\right]$, Kōdai Math. Sem. Rep. 27 (1976), 163-167.
17. J. Stasheff, A classification theorem for fiber spaces, Topology 2 (1963), 239-246.
18. -Sphere bundles over spheres as H-spaces $\bmod p>2$, Lecture Notes in Mathematics 249 (Springer-Verlag, Berlin, 1971), 106-110.
19. D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Annals of Math. 100 (1974), 1-79.
20. H. Toda, Composition methods in homotopy groups of spheres, Annals of Math. Studies 4.9, Princeton (1962).
21. A. Zabrodsky, Hopf spaces (North-Holland Publishing Company, Amsterdam-Oxford, 1976).

Ursinus College,
Collegeville, Pennsylvania;
Bryn Mawr College,
Bryn Mawr, Pennsylvania

[^0]: Received October 8, 1977 and in revised form January 17, 1979. Most of the results of this paper are contained in the author's doctoral dissertation, which was submitted to The Johns Hopkins University and supervised by James Stasheff.

