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LOCAL SPACES WITH THREE CELLS AS //-SPACES 

NANCY L. HAGELGANS 

1. Introduction. The question of which finite CW-complexes are if-spaces 
has been studied for many years. Since a finite CW-complex is an //-space if 
and only if its localization at each prime p is an //-space [21], an examination 
of finite local cell complexes as //-spaces yields results concerning CW-com-
plexes. On the other hand, if it is known that a particular CW-complex is not 
an //-space, one would like to know for which primes p its localization at p fails 
to be an //-space. The main result of this paper gives a condition equivalent 
to a three cell local CW-complex's being an //-space for a prime p > 3. 

An //-space of rank one has the homotopy type of an odd-dimensional sphere 
Sr. An odd-dimensional sphere Sr is an //-space if and only if r = 1, 3 or 7. Its 
localization S\ at a prime p fails to be an //-space only for the prime p = 2 [1]. 

The 2-torsion free rank two //-spaces have been classified up to homotopy. 
The only types (q, n) which occur are those such that {q, n) C {1, 3, 7} or 
(qf n) = (1, 2) or (3, 5). There are exactly sixteen homotopy types of torsion-
free 1-connected //-spaces. Again the results depend on the prime 2 behaving 
differently from the other primes [2], [9], [5], [14]. 

A 1-connected torsion-free CPF-complex X which is an //-space of rank 
two and type (q, n) has the same homotopy type as the total space of an 
.S^-fibration over the sphere S*[16]. Such a total space is homo topically equiva
lent to a CW-complex Sq U en \J en+q [4]. Localization at a prime p yields 
another fibration Sq

p —> Xv —•» S% [19]. These are the fibrations which will be 
studied here. Always we assume that q, n and p are odd and that n > q > 2. 

The main purpose of this paper is to carry through the results of I. M. James 
and J. H. C. Whitehead [12] for local spherical fibrations over spheres without 
assuming the existence of a cross-section. James and Whitehead considered 
fiber bundles SQ —» B —> Sn and showed that B is a cell-complex of the form 
SQ U« en yj en+q. For bundles Sq -* Bt -+ Sn with cross-section (i.e. with a = 0), 
there are elements X(Bt) in T I V ^ - I ^ ) such that X(J5i) = zbXfT^) if and only 
if (Bi, Sq) and (B2, SQ) have the same homotopy type. Also, for a bundle with 
cross-section, \(B) = 0 if and only if B and Sq X Sn have the same homotopy 
type. Furthermore, B is an TZ-space if and only if \(B) — 0 and the spheres 
Sq and Sn are //-spaces. 

In Section 2, it will be shown that the total space of a local spherical fibra-
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1294 NANCF L. HAGELGANS 

tion SQ
P —> E —• Snp is homotopically equivalent to a local cell complex 

Section 3 is devoted to fibrations with fixed a and to the construction of an 
element \a(E) in irn+Q-i(SQ

p \Ja en
v) for each of these fibrations. If a cross-

section exists, then the injection i: Sq
P —•> S \ \Ja en

v induces a monomorphism in 
homotopy, and the element i*~l\a(E) in irn+Q-i(Sq

P) is uniquely defined; this 
element corresponds to James and Whitehead's X(Z?). Certain subsets of 
Im 4 in Tn+Q-i(Sq

Q U en
P) will be defined in such a way that Xa(Ei) and 

Xa(£2) are in the same subset if and only if (£i, 5%) and (£2, 5%) are homo
topically equivalent. Each subset for fixed a corresponds to James and White
head's set {zhX(^)} for fixed a = 0. 

In Section 4, again a in 7rn_i(5ff
p) is a fixed element. The main result is: 

THEOREM 4.4. Suppose that g and n are odd integers and that p is an odd prime. 
Let SQ

P—>E-^ Sn
p be afibration such that E has first attaching map a. If p > 3, 

then \a(E) = 0 if and only if E is an H-space. For p = 3, if E is an H-space, 
then \a(E) = 0. 

I would like to thank James Stasheff for his help and encouragement in 
writing this paper. 

2. The total space as a local CW^-complex. In this section it will be shown 
that the total space of a fibration SQ

P —> E -+ Sn
p is homotopically equivalent 

to a local CW-complex. First, some notation and definitions are needed. 
The local sphere ST

P can be considered as the suspension of Sr~l
P for r > 2 

because the localization of the suspension of a simply-connected space X has 
the homotopy type of the suspension of X localized, i.e., (X}X)P ^ J2(XP) 
[19]. Let 

Sr
p = {[x, t]\ x e $r~\, - 1 S t ^ 1; [xi, 1] = [x2, 1] and [xu - 1 ] 

= [#2, —1] for all Xi, x2 Ç Sr~l
p}, 

and let the base point ar of Sr
p be [x, 1], where x £ ST~1

P. The local r-cell er
p 

is defined to be the cone on Sr~1
P with vertex br = [x, 0], where x G Sr~]

P. As 
defined by Sullivan [19], a local CW-complex is a space constructed inductively 
from a point or local sphere Sm

P by attaching local cells eT
v by maps of local 

spheres Sr~l
p into the cells of lower dimension. 

Define a map ur: er
P —> ST

P by uT([x, /]) = [x, 2t — 1] for x G 'S'7"-1? and 
0 ^ / S 1- Then, on the boundary 5 r~1

p, we have that uT{[x, 1]) = ar. 
The following is a special case of the local form of Proposition 1 in [17] with 

a modification of the proof [11]. 

PROPOSITION 2.1. Let F —> E —» Sn
p be a fibration, and suppose that the fiber 

F is a local CW-complex. Theft the total space E has the homotopy type of a local 
CW-complex K = FKJ (en

p X F). 

https://doi.org/10.4153/CJM-1979-107-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-107-2


LOCAL SPACES 1295 

Proof. Let x be the map un\ en
p —> Sn

P, and let ir\ E —» Sn
p be the fiber map. 

Consider the induced fibration irx\ Ex —» en
p. Since the cone e% is contractible, 

the induced fiber space Ex is fiber homotopy equivalent to the product eQ
P X F. 

Let (f>: en
p X F —> Ex and $: Ex-> en

P X Fbe fiber homotopy inverses of each 
other such that the map 

4>\bn X F: bn X F-+irx-Hbn) 

is homotopic to the identity mapping of the fiber F. Also, let f : Ex —» E and 
p: en

P X F—> en
p be the natural projections. Let F = ir~l{an). Then, for 

x Ç 5 " - ^ and y £ F, we have that f4>(x, y) 6 ^ Let *> = f^S*"1*, X Z7, and 
use the map v to construct the complex K = F \Jv(e

n
p X F). The following 

lemma completes the proof. 

LEMMA 2.2. The spaces E and K are homotopically equivalent. 

Proof. Let 6: K —» E be the map induced by fc/>. A map 0: JE —•> K will be 
defined such that 6 and 0 are homotopy inverses of each other. 

Let ht: Ex —•» Ex be a homotopy such that Ai = 1 and ho = </>̂ . Using the 
definition of en

v as the cone on Sn~l
p, define a map s: en

v —> e% by: 

*([*, *]) = [x, 2t] if 0 ^ / ^ 1/2, x e S*-1,; 

= [x, 1] if 1/2 ^ / ^ 1, x G Sn~V 

Then the map 5 is homotopic to the identity on en
P under a homotopy G which 

keeps each point of Sn~l
p fixed; assume that G\en

p X 0 = 1 and G\en
p X I = s. 

Since en
p is a metric space, the fibration irx: Ex —> en

p is regular [10]. This means 
that any homotopy into en

p that keeps certain points stable can be lifted to a 
homotopy which keeps the same points stable. Then, since G(irx X l)(x, t) = 
G(TTX X l)(x, /') for 0 ^ /, tf ^ 1 and TX(X) £ 5W_1

P, there is a homotopy 
H: EXX l-> E such that TTX# = G(?rx X 1), H\EX X 0 is the identity on Ext 

and H(x, t) = # (x , /') for 0 ^ /, /' ^ 1 and x 6 £ x such that TTX(X) 6 S1*-1,. 
Define a map z;: £ x —> £ x by v = H\EX X 1. Then, by the properties of the 

map H listed above, we have that TXV = S7rx, the map */ is homotopic to the 
identity on Ex, and v(x) = x for all x £ Ex such that 7rx(x) £ 5n~"V 

Let e be a point of E — F. Then ir(e) £ 5% — an, and there is exactly one 
point x G e% such that x(#) = *•(<?)• Then the set Ç~l(e) consists of the one 
point (x, e) £ Ex. Let j : F —> K be the inclusion, and let -q\ en

P X F —* K be 
the map induced by p. Define a map 0: £ —» K extending the identity on F by: 
if e G E - F such that -Kxl~

l{e) = [y, /], 

j8(g) = vM~l(e) if 0 ^ / ^ 1/2 

= J ^ i - i v r 1 ^ ) if 1/2 ^ / ^ 1. 

Then ft is a continuous map because the two definitions for t — 1/2 agree, and 
Çh<it-\vÇ-l{e) lies in F for t ^ 1/2 and equals 6 for t = 1. 
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The maps /3d and 00 are homotopic to the appropriate identities. This com
pletes the proof of the lemma. 

COROLLARY 2 3 Let SQ
P —> E —> 5% fre a fibration. Then the total space E is 

homotopically equivalent to a local CW-complex K with decomposition 
S\ U e\ U en+V 

Proof. The total space £ is homotopically equivalent to a complex 
# = S% \Jv{en

v X 55
p) by Proposition 2.1. Let A: e% X Sq

p-> K be the map 
determined by v\ let & = A(l X w^): e% X e% —» i£. (This notation, which will 
be used throughout the rest of this paper, is that used by James and Whitehead 
[12] in discussing the cellular decomposition of the total space of a bundle.) 

Then we have that 

WS*-1, X e\) C S%, k(lnt e\ X S«-\) C e\ X aQ = e\ and 

k(an-i X 5?_1p) = a point e°. 

This yields a decomposition of i£ as the local CW-complex e° U <?% U« <?% ^ 
ew+V where 

e° = k(an-h aff_i), 5% = ^ ° U g«Pl e% = k(en
p X <V-i), a = H ^ _ 1 P X ag, 

and ew+(Z
p = k(en

p X e*p), 

which is attached by the map K\ [e p X e p) . 

3. Homotopy type of (E, SQ
P). Let a £ 7rw_i(5%) be a fixed homotopy class. 

We will consider only those fibrations SQ
P —> £ —• 5% such that £ has the homo

topy type of a local CW-complex K with first attaching map a. Then i£ has 
the form: 

K = S% U* en
p U ere+V 

Let £ denote the subcomplex of K defined by: L = SQ
P U« en

p. Certain subsets 
of i*irn+g-i(S

Q
p) C irn+q-i(L) will be designated in such a way that each subset 

corresponds to a homotopy class of pairs (E, SQ
P). 

The map k of the preceding section determines particular generators in 

of 7rn(L, S%) and iff of irQ(S%). Let in = [&|e% X aff_J, and let ^ = [&K-i X £%]. 
In order to study the homotopy class of the boundary of the map k, m a p s / 

and g of the boundary of en
p X e% into itself will be defined. Composing the 

boundary of k with these two maps will lead to expressing the homotopy class 
of the boundary of k as a sum of two elements. One of these elements deter
mines the homotopy type of the pair (E, Sq

p), and the other element is similar 
to a Whitehead product of iq and in. We first define this product in general. 

Suppose that A is an 77-space and a subspace of a space X. Let 0 in Tq(A) 
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and y in irn(X} A) be represented by the maps: 

blie'tS9-1)-* ( 4 , * ) , and 

c: (en
u e

n~\ en'\) - » (X, A, *) , where 

^in = {[*,*] € E ^ - 1 ! * > o}, 

^ - ! - {[x, /] £ E ^ _ 1 l * = 0}, and 

en-\ = {[*,*] G Z 5 W - 2 | * è 0}. 

Let F be the space (en
1 X S*"1) U {en~l+ X e«) U (e71-1 X eQ), which is 

homotopically equivalent to en+Q~l. Consider the map (b, c):Y-* X denned 
by: 

(6, c)(u, v) = c(u) if O , v) G eni X S9-1, 

= b(v) if (u,v) G ^ " V X e?, 

= c(tt) •&(») if (w,v) e en~l X eff, 

where the product means multiplication in the / / -space A. The first two par t s 
of this definition give a representative of the relative Whitehead product 
[/3, 7] in irn+Q-i(X, A), and the last par t is the usual map for showing t ha t any 
Whitehead product (and, in this case, d[/3, 7] = [/3, dy]) is trivial for an H-
space. Since any homotopies bt and ct yield a homotopy {bt,ct), we can 
define the product : 

Definition 3.1. [0, 7 ] ^ is the homotopy class of (b, c) in 7rn+ff_i(X). 

Alternately, the representative of the product [/3, 7 ] ^ could be defined as 
follows: use the jff-structure of A to deform a representative of the relative 
Whitehead product [(3,7] to a map which is trivial on the boundary of 
eni X eQ. The next proposition lists the properties of this product. 

PROPOSITION 3.2. Suppose that A is an H-space and subspace of a space X. 
Consider homotopy classes 0, pi and (32 in rq(A) and 7, 71 and y2 in irn(X} A). 
Then: 

1- i*([0, y]x) = [P> 7]» where j : (X, *) —•» (X, ^4) is /fee inclusion. 

2. [fr + 02, 7 ] x = [ft, y]x + IJ82, 7]x. 
3. [0, 7i + 72]x = [ft 7i]x + [0, T 2]x. 
4. Suppose that B is an H-space and subspace of a space Y and thatf: (X, A ) —-» 

( F , 5 ) is a wa£ . ThenMiP, y]x) = [j*ft J * 7 ] F -

Proof. The first three properties follow immediately from the definition of 
the product . We now prove the last property. 

Let the maps b and c represent fi and 7. Then 

/(&, c)(u, v) = fc(u) if (u, v) 6 A X SQ-\ 

= fb(v) if (« ,») G en~\ X e«, 

= /(c(w) -b(v)) if (w, 1/) G en~l X eff. 
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The only difficulty lies in the third line; here we know that 

f(c(u)-b(v)) = frn(c(u),b{v)) = fm(c X b)(u, v), 

where m is the multiplication in A. We want to show tha t /w(c X b) is homo-
topic torn'(fc X fb), where m' is the multiplication in B. For [a] in wr(A X A), 
projections pi'. A X A —> A, and diagonal map A: Sr —> 5 r X 5 r , we have that 

[/wa] =/ , [m(Pia X £2a)A] = /*([/>ia] + M ) = [fpKi] + [ / M 

= [ « ' ( / f i a X / ^ A ] = [rn'ifXfhl 

Then, letting a = c X bf we find that 

[ /m(cXA)] = [ ^ ( / X / ) ( a & ) ] = [m'(fcXfb)], 

and thus/m(c X b) is homo topic to m'(/c X fb). Therefore, 

and the proposition is proved. 
Since eT

v is the cone on Sr~l
v and 5% is the suspension of Sr~1

p, local spheres 
and cells are related in ways analogous to those of the usual spheres and cells. 
For example, the boundary {en

p X eq
p)' of en

p X eQ
p is 

(Sn-ip X e%) \J (e% X S'-1,) 

and en
p X £% is homeomorphic to en+q

p. The following notation will be used 
(Figure 1): 

e\ = {[x,t] G ZSr~l
P\t ^ 0} and er„ = {[*,/] G ES'"1 , !* ^ 0} C Sr

p; 

eri = {[x, t] G Zer-\\t è 0} and e\ = {[x, t] G E ^ " 1 ^ ^ 0} C er„. 

Define a m a p / : (e% X £%)' —> (en
p X £%)' as follows (Figures 1 and 2): for 

[x, /] G **, = Zen~l
P, x G g»-1,,, y G eV 

/ ( [* , ' ] , ? ) = ([x, 2 / + Il y) if - 1 ^ * S 0; 

= ([x, 1], y) if 0 ^ / ^ 1. 

The m a p / is homo topic to the identity on (en
p X <?%)'. 

The points of en
p can be parametrized in the unusual form ([x, r], /), where 

x G Sn~2
Pf [x, r] G e*-1* = CSn-\, 0 ^ r ^ 1, and r - 1 ^ / ^ 1 - r. In this 

representation, boundary points of en
p have the form ([%, r], ± (1 — r)). We 

refer to lines where [x, r] is fixed and / varies as lines orthogonal to en~1
p. Define 

a map g: (en
p X eq

p)' —> ( ^ X e%)' by (Figures 1 and 2): 

g([x, r], *»?) = ([*, r ] , r - 1 , 3 0 iff - 1 ^ / ^ 0,;y G 5 f f-1
p; 

= ([x, r],2t - l + r,y) ifO g / S 1 - r, y 6 S*-1,; 

= ([x, r], /, y) if y G *V ([x, r], /) G S*"1,. 

The map g is homotopic to the identity on (en
p X <?%)', and g\Sn~l

p X e% is the 
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e'-\ 

e"p X F, y e S*"1, «%X F, y 6 S"-1, 

FIGURE 1. Subsets of e'p; the maps / a n d g. 
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(P) 
fog {h) 

FIGURE 2. The map fg on en
p X y, y G 5«_1

P. 
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identi ty. If the points (xi, y) and (x2j y) of en
2 X SQ~\ lie on a line orthogonal 

to en~\ X 3>, then g(xh y) = g(x2, y). 

Define a map F: (en
p X eQ

p)' —>L to be the composition fe/g. Then F i s homo-
topic to k since g a n d / are homotopic to the identities. Let a be the homotopy 
class of k in the group irn+q(K, L). This group is isomorphic to Z{p)r the integers 
localized a t p, and a is a generator. The map F represents dia in 7rn+î_i(L, 5%), 
where di'. Tn+q(K, L) —* 7rn+(Z_i(L, 5%) is the boundary homomorphism. Let G 
be the restriction of F to ( A X Sa~\) U ( ^ - ^ X e%). Then the m a p G 
represents the re la t ive Whitehead product [iq, in] in 7rn+(Z_i(L, Sq

p). 

Let H be the restriction of F to (ew
2 X S 5 - ^ ) U (^- 1 _ X eff

p). Then the 
image of i f lies in Sq

P. The restriction of F to the boundary of en~l
p X e% is a 

map which represents the Whitehead product [a, i j in irn+q-2(S
q
p). Since S ^ 

is an H-sps.ce, the Whitehead product [a, iq] is trivial. Use the 77-structure to 
deform the map F to a new map which is trivial on (en~l

p X eq
p)\ Now call th is 

new map F, and use the names H and G for the same restrictions of the new F. 
Then i f maps (en~1

p X <?%)' to the point e°, and [if] £ 7rra+ff_i(5ff
p.). 

Let d: 7rn+q(K, L) —> irn+q-i(L) be the boundary homomorphism,, and let 
i: SQ

P —> L be the inclusion. 

Definition 3.3. \a(E) = i*[ii] in 7rn+ff_i(L). 

The next proposition follows immediately from the définitions of the maps 
G and i i as restrictions of the map F (Figure 3) . 

PROPOSITION 3.4. da = \a(E) + [iff, v U and dxa = [iq, in]. 

Definition 3.5. ^a(E) = \\[/ £ 7rw+<7_i(L)|^ = c\a{E) for some uni t £ of 

T H E O R E M 3.6. Le£ g and n be odd integers, and let p be an odd prime. Assume 
that Sq

p —> Ei—> Sn
p is a fibration for i = 1 and 2 and that the first attaching 

maps in the local cellular decompositions of the total spaces are the same. Call the 
common map a. Then (Ei, SQ

P) and (E2, Sq
p) have the same homotopy type if and 

only if ^(E,) = ^« (E 2 ) . 

Proof. Suppose first tha t ^a(Ei) = ^a(E2). Then, since A«(£i) £ ^ a ( £ 2 ) , 
there exists a unit c of Z(p) such tha t X a(£i) = c\a(E2), i.e., i*[Hi] = a*[ i f 2 ] . 

Let fi = cj: SQ
q —> 5%, where 7 is the identi ty mapping. We will app ly the 

local form of the right distr ibutive law: (/x + v)l = MY + TV for y £ iri(Sr) 
and jit, 77 G 7rr(X) such tha t the Whitehead product [/x, r?] = 0 [7, Lemma 6.5, 
p. 166]. Since all Whitehead products in the i i -space Sq

p are trivial,, we have 
t h a t fiy = {cj)y = c(Jy) = cy for y Ç Ti(Sq

p). I t follows tha t /3a ~ ca. Also, 
we have t ha t /3 induces isomorphisms in the homotopy groups, and thus fi is a 
homotopy equivalence. Then the map /3 can be extended to a homotopy 
equivalence v'.L —> L such tha t v*{ini) = cin2. 
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FIGURE 3. The Map F. Points on the same dotted line have the same image under F. Points 
in the shaded area of en

v X y, y (z Sq~1
p, are mapped to e° by the map F. 

Now, letting 7 = [Hi], we find tha t ft*[Hi] = c[H\\. Then by Propositions 
3.2 and 3.4 we have tha t : 

v*dvi = v*i*[Hi] + v*[iQu KI]L 

= i*fi*[Hi] + [jft^i, v*inl]L 

= i*c[Hi] + [ciq2, cin2]L 

= c%[H2] + c2[iq2, i„2]L 

= c2da2. 

This means t ha t the second a t tach ing m a p ki\Sn+Q l
v of the total space K\ is 

homotopic to c2(k2\S
n+q~1

p). Then the map v can be extended to a homotopy 
equivalence 0\E\ —> E2. Since 6\Sq

p = /3, this yields a homotopy equivalence 
(EUS%)-+ (E2,S%). 

Before considering the converse, we will localize some of James ' s results 
[13]. If/: Xv —•> Yv is a map, we will u s e / ' : X —•» F to denote a map such t h a t 
( / ' ) ? = /• James shows t ha t the homomorphism 

is a monomorphism and tha t irn+q-i(S
q VJ en, Sq) = Z © lm ( i / ) * , where the 

Whitehead product [in', iq] is a generator of the infinite cyclic group Z. Then 
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we have tha t 

Trn+q-i(S
q
p Uaen

p,S
Q

p) = Z(p) ® (lm ( i / )* ) P , 

where [in
f, iq']p = [in, iq] is a generator of Z{p). James proves tha t 

did = m[in', iq] + in'p, 

where 

û' w in = m<r' and p £ Kn+q-i{en, Sn~l). 

Then dia = m[in, iq] + inp. But we know tha t dia = [in, iQ] by Proposition 
3.4. Then m = 1 and i„P = 0- Thus iq ^ in = cr, where iff and in correspond to 
the homotopy classes of the same name. 

Now we assume tha t (Ei, S%) and (E2, 5%) have the same homotopy type 
and let 6: (Ei, S%) —> (£ 2 , «5%) be a homotopy equivalence. Then, since the 
cohomology groups Hn(LSq

p; Z(p)) and Hq(Sq
p] Z(p)) are both isomorphic to 

Z(p), 

6*(iq2) = bigi and 6*(in2) = cinl 

for some units b and c of Z ( p ) . Then 

0*^2 w in2) = bc(igl w i„i) in Hn+q(Ei). 

For .9 = 1 and 2, let <r5 = {k*)-l(iQS w iws), where k*:Hn+q(ES} L) -> Hq+q(E5) 
is the isomorphism induced by the inclusion k. Then 0*(<r2) = bca\ in 
Hn+a(E1, L). Since (7S in cohomology corresponds to the original as in homo
topy, we have tha t 0*(<ri) = 5ccr2. Also, #*(%) = biq2 and d*(ini) = cin2 in 
homotopy. Thus , 

0»(4L#i]) = M ^ i - foi, iii]z,) = bcda2 - bc[iq2, in2]L. 

Then 0^[Hi] = bci*[H2]. 
Next we will show tha t d*[Hi] = c[H{\. Since 0*foi) = biq2 and each iQS is 

the homotopy class of the identi ty on SQ
P, we have tha t 6\Sq

p = £foi. Then 

0*[#i] = (KIYLHI] = 6[ffJ [7], and 

fo*[#i] = i*&[#i] = *»0»[#i] = Q*i*[Hi\ = bci*[H2]. 

Since b is a unit, this gives tha t i*[Hi] = ci*[H2], i.e., Xa(Ei) = c\a(E2). 

We have shown tha t Xa(jEi) G ^ ( £ 2 ) . Therefore, we have tha t >Fa(£i) = 

¥«(£2) . 
This completes the proof of the theorem. 

4. T h e t o t a l space E as a n i7 - space . Suppose tha t a is a fixed element of 
Tn-i(S%) and tha t S% —• E —̂  S% is a fibration such tha t the total space E 
has local cellular decomposition Sq

p Ua en
p W ^w +^. The aim of this section is 

to show tha t , for p greater than 3, E is an H-sps.ce if and only if \a(E) = 0. In 
the case a = 0, Curt is [4] shows tha t E is an i /-space if and only if E has the 
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same homotopy type as Sq
p X Sn

p. For a ̂  0, there is a space £ a which plays 
the role of Sq

p X Sn
p. The space Ea is defined to be the local CW-complex 

SQ
P Ua'(en

p X Sq
p), where a (x, y) = a(x) • y, the product • is multiplication in 

the if-space Sq
Pl and x £ <5W_1

P, y £ 5%. Stasheff [18] proves that Ea is an 
if-space if n < (1/2) (p - 2){q + 1). 

PROPOSITION 4.1. / / a is nontrivial, then \a(Ea) = 0. ^4/s0 X0(5% X 5%) = 0 

Proof. It suffices to show that the map H (of Section 3) is homo topic to the 
trivial map for these spaces. 

The space SQ
P X Sn

p can be represented as SQ
P \Jy{en

p X SQ
P), where, for 

(x, y) G .5^"^ X Sq
p, y(x, y) = 3/. Then, since a = 0, we have that y(x, y) = 

a(x) • 3;. Thus, the map 7 corresponds to a in the definition of Ea, and it will 
be called a. 

Both spaces Sq
p X 5% and £ a can be decomposed as local CW-complexes 

Sq
p U ^% W en+q

p. The first attaching map of Ea is a since, on Sn~l
p X 5ff

p, 

«'(#, aQ) = a(x) • aç = a(x). 

The second attaching map is /3, where 

P(x,y) = a(x) - ug(y) if (x, 3/) Ç 571"1,, X ^ P ; 
= x if (x, 3/) Ç en

p X 5 f f-^. 

The map H,«as defined in Section 3, is the composition /3/g restricted to 
(en

2 X S*-1,) U (en~^ X e%). Then, for ([x, t], y) G en~^ X *V x G {en~l
v)\ 

— 1 ^ ^ ^ 1, we have that 

# ( [* , *L J) = (/%)([*, t],y) = a([x, 2t + 1]) • uq(y). 

For (0, 3/) G en
2 X ^ ~ ^ such that g(z, y) = ([x, /] , 3/), we have that 77(z, 3O = 

[ x , 2 / + 1]. 
The map if can be extended to a map / : eni X £% —> Sq

p by defining 

/ ( * , ? ) = a ( [ x , 2 / + 1]) .Ug(y), 

where z Ç ^ 2 , 3> G <?% and g(z, y) = ([x, /], y). Since if can be extended to 
en2 X <?%7 i f is homotopic to the trivial map, and thus \a(E) = i*[H] = 0. 

PROPOSITION 4.2. Suppose that p is an odd prime and that q and n are odd. 
Let Sq

p —> E —> Sn
p be a fibration such that the total space E has first attaching 

map a. If E is an H-space, then the spaces E and Ea have the same homotopy type. 

Proof. Let m\E X E—* E be the multiplication. We can assume that m 
restricted to Sq

p X Sq
v provides an if-structure for the fiber Sq

v [3], [6]. Let 

fX — m\iO p / \ iO p'. O p X O p > O p. 

In E X E define an equivalence relation ~ by: {uy v) ^ (uf, v') if and only 
if m(w, v) = m(u', v') and u, u' G Sn~l

p and p, v' £ 5%. Define the map g: 
Ea-^ E X £ / ^ to be the one induced by the product of inclusions en

p X Sq
p —• 
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EXE. This map is well-defined because m\Sq
v X Sq

p = /*.. Now define the map 
m'\ E X E/~ —> £ to be the one induced by m: E X E —> E, and let / : 
£« —•> £ be the composition of m' and g. 

We want to show tha t the map / is a homotopy equivalence. Let iQ, 
in £ H*(E) and ij, in' £ H*(Ea) be the generators corresponding to those in 
homotopy constructed from the map k (in Section 3) for the spaces E and Ea. 
Then, s i nce / |aw_i X Sg

p is the identi ty onto SQ
P a n d / \en

p X aq-i is the identi ty 
onto en

P, it follows that f*(iq) = iq' a n d / * ( i n ) = in'. Thus , we have tha t 

J \lq v»x ^n) == J ^q \^> J ^n = ^q ^, ^n • 

Since these cup products are the generators in dimension n +• q,f*' H*(E) —> 
H*(Ea) is an isomorphism. T h e n / is a homotopy equivalence. This completes 
the proof of the theorem. 

COROLLARY 4.3. If p > 3, then Ea is an H-space. 

Proof. There exists a fibration SQ —> X —> Sn such t h a t the total space X 
localized a t p > 3 is an if-space nomotopic to a local CW-complex SQ

P \Ja en
p VJ 

en+Q
p [6]. Then , by the preceding proposition, the spaces Xp and Ea have the 

same homotopy type, and, thus, Ea is an H-space. 

T H E O R E M 4.4. Suppose that q and n are odd integers and that p is an odd prime. 
Let SQ

P —» E —> Sn
p be a fibration such that E has first attaching map a. If p > 3, 

then \a(E) = 0 if and only if E is an H-space. For p = 3, if E is an H-space, 
then \a(E) = 0. 

Proof. Suppose tha t p ^ 3 and tha t E is an iif-space. Then the spaces E and 
Ea have the same homotopy type (Proposition 4.2), and thus \a(E) = \a(Ea) 
= 0 (Theorem 3.6 and Proposition 4.1). 

Now let p > 3 and suppose tha t Xa(E) = 0. Then E and Ea have the same 
homotopy type (Theorem 3.6 and Proposition 4.1). Since Ea is an H-space 
(Corollary 4.3), the space E also is an H-space. 

This concludes the discussion of iJ-spaces with three local cells. 
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