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Abstract

We prove the existence and regularity of the solution of an initial boundary value
problem for viscous incompressible non-homogeneous fluids, using a semi-Galerkin
approximation and so-called compatibility conditions.

1. Introduction

In [4] A. V. Kajikhov proved, via a Galerkin-type approximation, the ex-
istence in the large of at least one weak solution of the equations of the
motion of viscous incompressible non-homogeneous fluids. In other words,
he proved the existence of a weak solution of the following initial-boundary
value problem

pdtu + pu • VM - ^AM = -Vp + pf,
0, inQT

V w = 0, ( ' '
M = 0 onT; u(0) = «0; p(0) = pQ in ft.

Here QT = ft x [0, T] with ft a bounded domain in R3, 0 < T < oo, T
the boundary of ft, dt = d/dt; moreover u = u{t) = u(x, t) = {ux{x, t),
u2(x, t), M3(x, t)) is the velocity, p = p{t) = p(x, t) the pressure, p =
p(t) = p(x,t) the density, / = f{t) = f(x,t) = (f^x^), f2(x,t),
f3(x,t)) the external force, and n the viscosity. In addition, uQ, p0 are
the initial velocity and density respectively, and p0 is assumed to satisfy
1 Dipartimento di Mathematica, Politecnico di Milano, Italy.
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[2] Viscous fluid existence and regularity 95

0 < a < pQ < ft with a and fi positive constants.
Furthermore, in [4], the existence of at least one strong solution, in the

small, is proved; i.e., p e L°°(QT), u € L2{0, T; H2(Q.)); dtu e L2(QT).
However one does not know whether strong solutions are unique. Concern-
ing the uniqueness problem O. A. Ladyzhenskaya and V. A. Solonnikov
in [6] prove the solvability of (1.1) in a class of smoother functions; i.e.
M e W2' \QT), V/7 € Lq{QT), p e CX{QT) with q > 3 by linearisation and
potential theory. In this class, a uniqueness theorem holds. The solvability
is proved in the small if u0 and / are arbitrary, and in a given interval
[0, T], T < oo, if M0 and / are sufficiently small. In [2], J. G. Heywood
showed how the Galerkin approach for the existence of the Navier-Stokes
equations can be pushed further to give regularity properties of the solutions
directly and elegantly. In [2], it is pointed out that norm bounds of higher
time derivatives of the Galerkin approximations cannot be obtained without
non-local compatibility conditions of various orders for the data at t = 0.
Heywood avoids, partially, this difficulty by estimating the norms of the
time derivatives of any order of the Galerkin approximations in t = e with
e > 0, and considers the solution in the interval [e, T]. We notice that Raut-
mann in [8] gives an answer to the question, how smooth a Navier-Stokes
solution can be at time t = 0 without compatibility conditions.

The aim of this paper is to consider regularity properties of solutions of
(1.1) in the context of the Heywood results. Continuing the existence the-
orem, we obtain norm bounds of some time and spatial derivatives of the
Galerkin approximations. It seems, however, that the Heywood's norm esti-
mates for the times derivatives of any order cannot be obtained. This is due
to the presence of the density.

Consequently, if we are interested in the study of higher regularity we have
to introduce the so-called compatibility conditions (see [3], [11]).

The plan of the paper is as follows. Section 2 is devoted to notation
and well-known results on differential inequalities. In Section 3, we give
preliminaries. In Section 4, we obtain the best possible regularity via Galerkin
approximation, without compatibility conditions, and we give a uniqueness
theorem.

In Section 5, we consider the cause of the breakdown of the regularity
and we derive the compatibility conditions for the solution {u, p, p) to be
smooth; so we extend to system (1.1) the compatibility conditions derived in
[11], [12] for the Navier-Stokes equations.

We notice that the results of Section 3 are important to the study of error
estimates of the Galerkin approximations in terms of the eigenvalues of the
Stokes operator (see [9]). Regarding the problem (1.1) with 0 < p0 < /?, see
[5] and [10].
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96 Rodolfo Salvi [3]

2. Statements and notations

Let ft be an open bounded set of R3 with boundary T and QT =
Qx[O, T] with T a finite positive number. The motion of a viscous incom-
pressible non-homogeneous fluid of viscosity 1 and subject to the external
force / is governed by the system

pdtu + pu • Vw - AM = -Vp + pf,

dtp + u-Vp = 0, inQT (2.1)

V • u = 0.

We complete (2.1) with initial-boundary conditions

M ( X , 0 ) = M0; p(x,O) = po i n f i ,

u = 0 on T.

In (2.1)
3 3

pu • VM = ^ Pufix,
u' V - u = H dx,ur

1=1 ' i=i

Throughout the paper we need the following function spaces (we do not
distinguish in our notation whether the functions are R- or i?3-valued):

H = completion of D{Q) in L2(Cl);

Hs = usual Sobolev spaces of order s on L (Q.);

V = completion of D(O) in Hl (Q);

Wm = {<f>\4> e C([0, T];HmnV),^te C([0, 71; 7/m"2' n F)
at

with / = 1, 2 , . . . , r (r = [m/2] the integer part of m/2)}.

We set

{4>, ¥) = E / *,-M*; W' V)) = i2[ dx<t>dxWdx,
/=i • / n i=i J n

\<t>\2 = (<t>, V); M\ = no rm in H°; | | 0 | | 2 = ||^||2 = ( ( 0 , <f>)),

and

|0|g = norm in the space L9(£l)(q > 1),

\\s<q\\<f>\\s<q = norm in the Sobolev space H^ of order ^ on L9{O),

instead of L2(fi) for H5.
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[4] Viscous fluid existence and regularity 97

The spaces C(fl), Cm(fl), Co
m(fl), C°°(Q), and their vector-valued ana-

logues are denned as usual.
We assume the boundary F is uniformly of class Ck , i.e. first, it is pos-

sible to choose local coordinates (y,, y2, y3) in a neighborhood 5, of each
point £ e F such that Fnl?* is represented by a function y3 = F(yl, y2, £,)

of class Ck ; second, the neighbourhood B^ can be chosen as balls, all of the
same size, with respective centers £ and that the derivatives up to order k
of each function F{-, •, <jf) are bounded by a constant independent of £.

Now we state our results. For simplicity we assume ft < 1.

THEOREM 1. Let Q be any bounded domain in R* with boundary F uni-
formly of class C3. Let uo€V and p0 e L°°(Q.) with O<a<po<0, and
f e L2{QT). Then there exists an interval (0, T) and functions u{x, t),
p{x, t), p(x, t) defined in Qf and satisfying the system (2.1) a.e. such that

ueLoo(0,r;V)nL2(0,T';H2); (2.3)

dtu,VpeL2(Qr); (2.4)

peL°°(QT,); dtPzL°°{Q,f;H-X); (2.5)

(p(t)u(t)-p0uo,v)^0 ast-+0+
 VVGF; (2.6)

with T' <T(<T). Further, T is greater than or equal to a positive number
T{\\uo\\, F) which depends on \\uo\\, a, fi, f, and the C3-regularity of F.

THEOREM 2. Let u0 e H2 n V, and p0 e Cl (Q) with 0<a<p0<p. F is
as in Theorem 1, and f £ L2{QT), dtf 6 L2(QT). Then, the solution (u, p)
of Theorem 1 satisfies

MeL2(0,r';//3); peCl(Qr)

and it is unique.

THEOREM 3. We assume F of class C°° and poeC°°(Ci) with 0<a<p0<

P, uQeHm(Sl)nV, |^f eL2(0,T';V), i= 1 , 2 , . . . ,r, and (u,p,p)

is a solution of {I.I) in the sense of Theorem 2 in the interval [0, T1]. Then
a necessary and sufficient condition for u to belong to Wm is that

c vdtl

with i = 1, 2, ... , r and m>3 (r = integer part of m/2).
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3. Preliminaries

Let P be the projection operator from L2(Q.) in H. In the following we
need some preliminary results (see [2]).

LEMMA 1. Let fl be an open set of R3, the boundary T of which is uniformly
of class C 3 . Suppose ueV is a generalised solution of the Stokes problem

/ , VM = 0

i.e. ((M, <t>)) = {f ,4>) holds V<£ € V. Then u possesses second derivatives in
L2(£l), and the inequalities

\\u2\\2<cir(\Pf\ + \\u\\);
1/2IMr/2 + IMI); (3.1)

hold with constants depending only on the regularity of F .

(Throughout the paper the letter c denotes different constants.)
In the following Lemmas, we assume that <j>(t), y/(t), f{t), h{t) are

smooth non-negative functions denned for all t > 0.

LEMMA 2. Suppose 4>(0) = <f>0 and ^f- + y/(t) < g((j>{t)) + f{t) for t>0,
where g is a non-negative Lipschitz continuous function defined for <j> > 0.
Then </>(t) < F(t; <f>0) for t e [0, T(<f>0)) where F(-; <p0) is the solution of
the initial value problem ^ = g(F(t)) + f{t); F(0) = 4>Q and [0, T(<f>0))
is the largest interval to which it can be continued. Also, if g is nondecreasing,
then

I W(T)dr<F(t;4>0)
o

with

L E M M A 3. Suppose 0 (0 ) = (f>0 and ^f- + y/{t) < h(t)<t>(t) + f(t) for t>0.
Then

</>(t)<F(t;<t>0); f y/{x)dx<T{t;<f>Q) W > 0
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[6] Viscous fluid existence and regularity 99

where

f h(x)di
Jo

and

; 4>o) = <f>o+ A * ( T ) F ( T ; <t>Q) + f(x))dx.
JO

Thus estimates for 4>{t), and ^\(/{x)dx are obtained from estimates for (j>Q,
fo'f(x)dxand fQ'f(x)dx.

4. Proofs of Theorems 1 and 2

PROOF OF THEOREM 1. We assume for simplicity / = 0. Let a1, A* be,
respectively, the eigenfunctions and the eigenvalues of the Stokes operator
A = -PA in Vr\H2 . We take as nth approximation for t > 0, the solution

:(t)ae; p"(x,t)

of the initial value problem for the system of ordinary differential equations

(p"dtu
n, ae) + (pnun • VM" , a1) - (AM" , a1) = 0 (4.1)

and for the partial differential equation (the continuity equation)

dtp
n + u • Vpn = 0 (4.2)

with initial conditions

At first, assuming M" is known, we can obtain the solution of (4.2) by using
the method of the characteristics (see [6]), satisfying

0<a<pn<p. (4.3)

Now we consider the approximation un . By standard techniques there exists
a solution un of (4.1). Now we multiply (4.1) through by $-tc" , sum on (.
and obtain

(p"dtu
n, dtu

n) + ( / « " • VM" , d,u") - (AM" , &tu
n) = 0. (4.4)

Moreover, we multiply (4.1) through by A'c" , sum on £ , and obtain

(p"dtu
n , Au") + {pnu" • VM" , Au) + \Au"\2 = 0. (4.5)
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We sum (4.5) to (4.4) and get

9tu
n +~\\un\\2 + \Aun\2

+ (p"un • Vu", Au" + dtu") + (p"dtu
n, Au) = 0 ;

whence
n,2^ t dy\2 +d\Aun\2 <cs\uX\\un\\],, (4.6)

(S = suitable constant). Thanks to Lemma 1, we have

I^ | |«" | | 2 + S\Aun\2 < C,>r||«'1||2(|^'I|1/2||M'I||1/2 + ||«"||)2
 (4 ?)

with 0 < a < S. One clearly has ||M"(0)|| < ||MO||, then, from Lemma 2,
we conclude there exist on some interval [0, T) , continuous functions F(t)
and F(t) such that

f
./o
f\Au"\2dr<F(t). (4.8)
o

Moreover, it can be assumed T > r(| |«0| |, T) and

f ( 0 <*"( ' ; I K H . O ; F(t)<F(t-\\uo\\,r)
for / e [0 , r ( | |M 0 | | , n ) where T(\\uQ\\,T), F(f,\\uo\\,D and F{t;\\uo\\,T)
are obtained by integrating (4.7) in the manner of Lemma 2. !T(||tto||.r)
is determined solely by ||MO||, a , /? and C3-regularity of T. In view of
Lemma 2, the inequalities (4.8) imply /„' ||Mn||2^T < F(t). Now from (4.6)
we obtain

f\dy\2dx<G{t) (4.9)
Jo

(of course G{t) is a continuous function). Thanks to the above estimates,
we can choose a subsequence of ({/?"}, {«"}) still denoted by ({/?"}, {un})
such that with 0 < T1 < T

un-*u weakly in L2(0, f; Vf\H2);

dtu -f dtu weakly in L2{Qr);

pn->p weak'inZ-°°((2r,);

ay - dtp weakly in L2(0, f ' ; H~l).

By virtue of the compactness theorem in [7] (page 58), one has

un -* u strongly in L2{Qr);

/ -+ p strongly in L2(0, t , H~')
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[8] Viscous fluid existence and regularity 101

and consequently
p"un -* pu weakly in L {QT>).

Now, if 4>m is any function of the form </>m = Y%Li bt{t)al{x) with contin-
uous coefficients in [0, T'], (4.1) implies

/ (p dtu - AM + p u • Vw ,(j> )dt = 0.
Jo

for all n> m . One can easily pass to the limit for n —> oo obtaining

T'

0,K -Au + pu-Vu, (j>m)dt = 0.

Now
pdtu - AM + pu • Vu e L2(Qr)

since the functions </>m are dense in L2(0, T'; H); furthermore there exists
a function p = p(x, t) with Vp G L2(QT,) such that

/>9rM - AM + pu • VM = —Vp almost everywhere in QT>.

Now, from the continuity equation, we get V<£ e C0'(O, T'; H1)

[ x
o

and passing to the limit for n -» oo we obtain

To complete the proof, we need only show

(p(t)u(t)-p0u0,<f>)-+0

for each function <$> e F , or equivalently,

for each basic function a1. This requires several observations.
First, notice that

\(p"(t)u"(t) - pn(0)un(0),a)\ =

= \f\{AuH - p"u" • VM" - V • ( A V ) . a

uniformly in n as t -+ 0+ .

(4.11)
0
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Next, thanks to (4.10), we have dt(p"u") e L2(0, T; H~x) uniformly with
respect to n ; consequently, for any fixed t e [0, T']

((p(t)u(t)-pn(t)un(t),ae)^O as«^oo. (4.12)

And finally, we note

( / ( 0 ) K " ( 0 ) - P0u0, a) = (po(u
n(O) - uQ), a1) ^ ^ 3 )

= (M"(0) - M0 , poa
e) -»0 as n -> oo.

Then (4.11), (4.12), (4.13) imply (2.6). This completes the proof.
PROOF OF THEOREM 2. Now, we shall prove further estimates for the approx-
imations u" , p" given in Theorem 1. We will show there exist continuous
functions F,(/, e), Fx(t, e) of t e [e, T1] such that

\dtu
n\<Fx{t,e)\ \Aun{t)\<F{{t,e)

for t G [e, T'\ and every e > 0. The function Fl (t,e), Fi (t, e) will depend
on given functions as in the Lemma 2.

Differentiating (4.1) with respect to t, we obtain

^ t f ' " ' f l J + ^ ' f l ) (4.14)

- («,AM" , fl') + (a,(/>V • V«"), a') = 0.

Multiplying (4.14) through by $-tc" and summing on / , one obtains

- ( A " • V0,«", dtu") + \{dtP
ndtu

n, a/M").

Using the relation

(i/2)(dtP
ndtu

n, d/) = -(i/2)(«" • v / a , M " , a<M")

and bearing in mind Lemma 1, we have

hit \^d'u"\2+lld<u^2 *l(v • ( / M " ) M ' ' •VM" • d'u"^

+ \(p"dtu
n-Vun,dtu

n)\

< c\un\JVu"\ \\u\j\dy\\ + c\Vun\2\Au"\ \\dtu
n\\ (4.15)

M\vun\5\Aun\ + \yfp~ndtu
n

https://doi.org/10.1017/S0334270000008651 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008651
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Now from (4.9), we deduce that for each approximation u" , there exists a
number xn satisfying e < xn < 2e such that (e is a positive number)

\dtu
n(rn)\

2< e~lG(e,0). (4.16)

Thanks to Lemma 3 and (4.16), (4.15) implies

\dtu
n\ <F{{t,e); f'wdiU'

Je

for t e [e, T1] where F{(-, t), F{(-, t) are continuous functions of t, and
T' is as in Theorem 1.

Now, if the initial velocity u0 possesses second derivatives in L2(Q.) i.e.
«0 e V r\H2, then there exist continuous functions Fx{i), F^t) such that

(4.17)
o

for t G [0, T1]. The functions F{(t), Fx(t) depend on the functions F(t),
F(t) appearing in (4.7), and on M0 , p(0).

In fact, first we note \Aun(0)\ < \Auo\. By (4.1) we have

|d(u"(0)|2 < car||Mo||(MMo|1/2||Mo||1/2 + IIMQIDI^U^O)! + ca\dtu
n(0)\\Aun(0)\

< caJ.\dtu
n(0)\(\Aun(0)\2 + ||M"(0)||2 + ||M

n(0)||3).

Now we reconsider (4.14) in the following form

1 U I ^ n M Q «,|2 - .__ n,4, . «,2

1 (4.18)

Integrating (4.18) in the manner of Lemma 3, we have Vf G [0, r ' ]

|a,«"| < f , (0; / ' ||a,u"||2rfT < F{(t). (4.19)
JO

Multiplying (4.14) through by Xtc" and summing on / , we have

I^M"!2 = {pndtu , Aun) + {pnu • Vw" , Au").

By
/1113

b « • VM | < ^ l^" I + cr||u ||

we get

cr||u || + cr||«

n,,2
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whence
\Au"\ < (7(0 for t € [0, T1}. (4.20)

Now let Pn and Qn be the orthogonal projection of L2(il) onto spans of
( a l ( x ) , . . . , an(x)) a n d o f {an+l{x), a"+2(x),...) respect ively . F o r <f> e H
let us w r i t e <f> = Pn<j> + QJ> = <f>n + QJ>. Also for <f> e V

Thanks to (4.1), we have, for any <f) e D(Sl),

(Vu" , V<£) = -{Pn{pndtu + / > V • V«") , <t>) = (g" , 4>) (4-21)

with gn = -Pn{pndtu
n + pnu" • VM") . From (4.19) and (4.20), gn belongs

to L2(0, T'; L6(Q)), uniformly with respect to n . Whence, by Cattabriga's
results (see [1]), one has

rtI \\un\\2
26<cG(t). (4.22)

o
The function G{t) depends on the functions Fx{t) and G{t) appearing in
(4.19) and (4.20) respectively.

From Sobolev's embedding theorems, we have

(4.23)

where the function K(t) depends on G{t).
From the continuity equation, we have (see [6])

where, of course, the function K(t) depends on K{t).
Now, the approximations {un,p") satisfy (4.19), (4.20), (4.22), . . . ,

(4.24); a subsequence can be chosen, which we again denote by («", p")
so that u" and dtu" converge to u and dtu weakly in L2(0, T* \ V V\H\)
and L2(QT>) respectively, and p" converges to p weakly in HX(QT>). So
u G L2(0, T; Hi n V) n Hl(Qr), and consequently p e C\Qr) (see [6]).
Now (M , p) satisfies

pdtu-Au + pu-Vu + Vp = 0 almost everywhere in QT.;

dtu + u-Vp = 0. (4.25)

Now, we consider the equation

AM = pdtu + pu-Vu + Vp. (4.26)
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Given any <j> e D(ii), we can multiply (4.26) for cj> and integrate over Q, we
have (AM,4>) = {g,4>) where g = pdtu + pu-Vu. From (4.19),... ,(4.24),
we have g£L2(0, t ; Hl).

Given any cj> e D(Q.), one can multiply (4.26) by dx (f> and integrate over
Q(dx = derivative respect the spatial variable xt). After integration by
parts', the result is

Now utilising the results of Cattabriga in [1], we have

u(=L2(0, T;H3n V).

The function (u, p) belongs to the class of functions where the uniqueness
is proved (see [6]). This completes the proof.

5. Succesive regularity and compatibility
conditions at t = 0 and proof of Theorem 3

Now we shall study higher regularity properties of the solution of Theorem
2 assuming that the data uQ , p0, f possess further regularity properties. It
is known that, for an initial-boundary value problem for the Navier-Stokes
equations, the solution may not be smooth near t = 0 even if the data
are C°°(Q). The breakdown of the regularity is due to the presence of
the compatibility conditions (see [2]). Naturally, one expects that analogous
considerations hold also for the system (1.1); in addition, it seems that we
cannot avoid the compatibility conditions considering initial estimates in
t = e as in [2]. This is due to the presence of the density.

Now we examine the cause of the breakdown of the regularity for the
system (1.1) with the assumptions of Theorem 2. We shall show that the
problem

(/0 - u0 • Vu0) - ^ A u 0 in

= (AMO + Pofo ~ Pouo • V M O) •" o n r

determines the initial pressure p0. In (4.1), v is the outside unit normal to

r.
It is shown in [12] that the mapping u —» u • v is denned and continuous

from H={u\u€L2(Q). V-w€L2(fl)} to H-l/2(r)(H~l/2(T) is the dual
of Hl/2(T)). Furthermore AM0 e H and w0 • VM0 G HX . Then one has

(AM0 + pofo - pQu0 • VM0) • v e H~l/2(r),
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and

Po* • (/o - Mo • V«o) " ^ ^ « o e ^ 2 ( " ) .

We note that the compatibility conditions for (5.1) are satisfied i.e. the ad-
joint homogeneous problem of (5.1)

-Apo-V.(Yl!op\=O inn,

= 0 o n r

has an unique linearly independent solution: pQ = j - ; then the compatibility
conditions

Po

= I 7T( A MO + Pofo ~ Pouo • V M O) I / dT

JT PO

hold. From this, it follows that the problem (5.1) is uniquely solvable for
a generalised solution pQ € Hl/R. Thanks to (4.24), we can prove the
following proposition. In the following we shall denote T* by T.

PROPOSITION 5.1. Let u0 e V n H2 and p0, f, Y be smooth enough.
Let{u, p,p) the solution of{\.\) in the sense of Theorem 2. Then the pressure
p(x, t) tends to the solution p0 (4.1) in the sense that

0 ast^O.

For the proof, by Theorem 2, we have u € C([0, T); H1); then u(t) -»• u0

in H2(£l) as t-*0 because u{t) -> M0 at least weakly in L2(Q) from (2.6),
(4.19), (4.24). Now, p(x, t) is a generalised solution in Hl/R of

Ap P-Vp = pV-(f-u-Vu) ^AM in f i ,
^ P (5.4)

dvp = (AM + pf - pu- VM) • v on F

From what was said above, it is easily seen that

(AM + pf-pu- Vu)v -» (AM0 + p 0 / 0 - pouo • VM0) • i/

strongly in H~i/2(T), and
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strongly in L2(Cl) as t-* 0. This implies (5.4). The proof of the proposition
is completed.

From the convergence of M(- , t) to uQ and of p(-, t) to p0, it follows
that

PQ PQ

strongly in L2(Q). This suggests that, generally, dtu{-, 0 ) ^ 0 on T; con-
sequently \Vdtu\ -» oo as t —> 0, since the boundary condition implies
dtu = 0. This explains the cause for the breakdown of regularity in solutions
without additional conditions on the data.

In [2], Heywood avoids this difficulty, for the Navier-Stokes equations,
estimating the norms of the time derivatives of any order of the Galerkin
approximation in t = e, and considering as initial time t = e. This pro-
cedure, for the system (1.1), is inhibited by the presence of the density p.
In other words, to obtain estimates of time derivatives of any order of the
Galerkin approximation u" in t = e, we need time derivatives estimates of
p" in [0, e] and these last depend on time derivatives estimates of un in
[0, e]. So, to obtain more regularity for (u, p), with respect to Theorem
2, we need compatibility conditions of the data. To prove this theorem we
need, at every step, further regularity of u with respect to x to obtain more
regularity of dtp. For this reason we consider the equation (4.25) instead
of (4.1). Furthermore, to avoid tedious calculations and notations, we work
directly with the derivatives with respect to t of u instead of its differential
quotients.

PROOF OF THEOREM 3. Now we prove that, if d'u(0)/dtl £ V {i = 1, 2,
. . . , r ) , we have ueWm. First we prove that, if u e L2(0, T; Hm(£l) n V),
and d'u/dt' G L2(0, T : Hm~2i{Q) n V) for i = 1, 2, . . . , [m/2], then

p € L°°(0, T; Hm(n)), ^ G L°°(0, T; Hm~2i+l)nL2(0, T; H"1'2*2),
dt

ol+l -

- ^ j - G L (0, 7 \ t f ).
(5.6)

In fact, applying the operator Dy
x to the continuity equation

dtp + u-Vp = 0 (5.7)

and multiplying through by Dy
xp and integrating over Q,, we obtain

(here y = (y,, y2, y3) is a multi-index with

\y\<m and Dy
x = dr/d
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By adding for |y| < m and bearing in mind (M • V D7
xp, Dy

xp) = 0, one gets

j^iipiii < cii^niiiuiu.
Then, from Gronwall's lemma, we have p e L(0, T; Hm(Cl). From (5.7),
we have immediately dtp e L°°(0, T; ifm"'(Q)). Now differentiating with
respect to t (5.7), we have

Bearing in mind that

we have

uVdtp,dtu-VpeL°°(0, T;Hm~\Q))nL2(0, T;Hm~2)

f € L°°(0, T; Hm~\Q))r\L2(0, T; Hm~2).
dt

Continuing, for every / e (3, 4, . . . , r), we have

eL°°(
and, from (5.7), we get

, T; Hm-2M(il))nL2(0, T;

Now we pause to consider the derivatives of u. For / = 1, the equation

dtpd,u + pdt{dtu) + dt(pu • Vp) + Vdtp - Adtu = dt(pf) (5.8)
together with dtu(0) e V allows us to show that

dtu G L2(0, T; H2 n V) nC([0, T); V); dtp € L°°{0, T; Hx).

In fact, we multiply (5.8) with Adtu in L2(ii) and obtain

(dtpdtu, Ad,u) + (pj~ , Adtu\ + \Adtu\2 + {dtpu • Vu, Ad,u) {$

+ (pdtu • Vu, Adtu) + {pu • Vdtu, dtu) = (Ot(pf), Ad(u).

Now, multiplying (5.8) with ^ in L2(Cl), we get

(5.10)
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Adding (5.10) to (5.9) and after some calculations, we have

dlu

dt1

1 d

= -{dtpu • Vudt(Au + dtu)) + (pdtu • VM , dt{dtu + Au))

+ (pu • Vdtu, dt{dtu + Au)) + (dt(pf), dt(d,u + Au))

which can be reduced to

d'u

at'
\_d_
2dt

Now, from Lemma 1, we have

\pd,u

Thanks to (4.19), (4.20), and (5.6) we have

d,u 6 L2(0, T; H2 n V) n C([0, T], V), ^ e L2(QT).
dt

Now using the Cattabriga's results [1], one has

MGL2(0, T;H*nV).

We continue by induction; once we establish

^ t GL2(0, T;H2nV)n C([0, T] ; K) for i = 1,2, . . . , r- 1
5f

dt i+l

we consider the equation

dr-\

Now

s ' - l

ar
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Then, repeating the arguments used for (5.8), we obtain

^ € L2(0, T; H2 D V) n C(0, T; V).

Now, by Cattabriga's results [1], we have

and so on up to ue L2(0, T; HmnV).
About the proof of the necessary condition, one can proceed, inductively

on d'u(0)/dt', applying at every step the arguments used in Proposition
(5.1), and in the proof of (5.5). This completes the proof of the theorem.
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