# PHOTOGRAPHIC MAGNITUDES OF 201 STARS AT 2600 Å

### JEAN-PIERRE SIVAN and MAURICE VITON

Laboratoire d'Astronomie Spatiale du CNRS et Observatoire de Marseille, France

**Résumé.** Les magnitudes de 201 étoiles à 2600 Å (longueur de la bande passante: 1000 Å) ont été obtenues grâce à deux photographies de la Voie Lactée d'hiver données par une caméra à grand champ. Une estimation préliminaire du rougissement interstellaire a permis de tracer un diagramme couleur-type spectral. Il semble que les étoiles O sont plus brillantes que prévu à 2600 Å.

Abstract. The magnitudes of 201 stars at 2600 Å (1000 Å passband) were derived from two plates of the winter Milky Way obtained with a large field camera. A preliminary investigation of the interstellar reddening allowed us to plot a color-spectral type diagram. Stars of type O seem to be brighter than predicted.

#### 1. Introduction

The preliminary results, presented here, are from the second flight of a sounding rocket programme.

These experiments were proposed by G. Courtès to the Centre National d'Etudes Spatiales (CNES). They are designed to photograph the sky in an ultraviolet passband, by night, at a high altitude (200-300 km), with different cameras having large fields (actually 5700 sq deg), a high luminosity (f/1) and a low angular resolution (about 10'). These parameters allow the use of poor pointing and guiding systems.

Because of the large field of these cameras, it is theoretically possible to cover the entire sky in 10 flights.

# 2. Description of the Experiment

The experiment was launched on April 4, 1967. Despite the difficult recovery, it gave the two expected photographs.

The optical system (Figure 1) is as follows: a hyperbolic convex mirror forms a large field image of the sky, which is refocussed by a Maksutoff-Brouwers camera. This very simple design is free of astigmatism and the convex curvature of the sky image given by the hyperbolic mirror has been calculated so that the Maksutoff-Brouwers camera gives a flat field. This field was 82° radius and was limited to a sector of about 120°.

The ultraviolet passband, which we call U', was produced by a multilayer coating on the spherical mirror of the Maksutoff-Brouwers camera. The transmission curve is shown in Figure 2.

The exposure times were successively 20 sec and 210 sec, with Kodak 103 a0-UV film.

#### 3. Description of the Photographs

The shorter exposure (Figure 3) shows only about 50 stars but during this time the

Houziaux and Butler (eds.), Ultraviolet Stellar Spectra and Ground-Based Observations, 120–129. All Rights Reserved. Copyright © 1970 by the IAU.



Fig. 1. The optical layout.



Fig. 2. Camera transmission for a flat energy spectrum.

guiding was very good and the optical resolution is reached. The brightest stars, particularly the Orion's Belt stars, are available for measurements. The individual stars of Pleiades are almost separated.

On the longer exposure (Figure 4), more than 700 stars were identified. The visual limit V-magnitude is about 8 for type O5 stars and about 6 for type F0 stars.

The thin distribution of population I stars in the Milky Way is to be seen and the Zodiacal Light (bottom right) is detectable up to the Milky Way (58° from the sun).

The high contrast of these two phenomena shows that the night UV brightness of the very high atmosphere (more than 200 km high) is not detectable in our instrument



Fig. 3. 20 sec exposure photograph.



Fig. 4. 210 sec exposure photograph. Extreme galactic longitudes (*l*<sup>11</sup> system) are given. Constellations of Orion (bottom center), Auriga (top right) and Canis Major (bottom left) are easy to identify. Among the Zodiacal Light (bottom right) are the Pleiades, much over-exposed, as for Jupiter (top center).

| TABLE | I |
|-------|---|
|-------|---|

| HD       | Chart<br>No. | Name             |            | Spectral   | Туре     | v    | B-V     | U-B     | U′    | Remarks      |
|----------|--------------|------------------|------------|------------|----------|------|---------|---------|-------|--------------|
| 20.005   | 3420         |                  |            | B9.5       | v        | 5.62 | - 0.03  | 0.16    | 5.31  |              |
| 20995    | 3414         |                  |            | R1         | v        | 5.88 | - 0.06  | - 0.86  | 3.69  |              |
| 21 850   | 2804         | 7                | Тан        | Δ3         | v        | 5 90 | +0.13   | 0.000   | 6.19  | doub.        |
| 22091    | 2004         | 40               | Der        | B0 5       | v        | 4 99 | -0.02   | 0.84    | 2.76  |              |
| 22951    | 2806         | 13               | Тан        | B8,5       | Ve       | 5 56 | -0.01   |         | 5.07  |              |
| 23010    | 2000         | 30               | Tau        | B3         | v        | 6.00 | 0.01    |         | 2.99  | doub, var.?  |
| 23795    | 2113         | 50               | Tau        | R9         | П-Ш      | 616  | 0.06    | -0.48   | 5.66  |              |
| 24133    | 3/22         | 11 1             | Per        | B1         | Ih       | 2 84 | +0.12   | -0.77   | 1.32  | mult. var.?  |
| 24 590   | 3413         | 775              | 1 01       | B2         | V        | 5 48 | -0.03   | ••••    | 3.19  | var.?        |
| 24040    | 3408         | 45 c             | Der        | B0 5       | III-V    | 2.89 | -0.18   | 0 99    | +0.53 |              |
| 24/00    | 2412         | 45 C<br>16 F     | Dor        | 07         | 1        | 4 03 | +0.01   | 0.77    | 2 05  | var?         |
| 24912    | 2112         | 40 Ç             | 101        | D9         | 1        | 5.67 | -1.0.02 | -041    | 4 67  | doub         |
| 25 3 30  | 2112         | 25 3             | Tau        | D0<br>D3   | V        | 3.07 | 0.02    | 0.41    | 1.61  | 38-41 var    |
| 25 204   | 2105         | 33 A             | Tau        | DJ<br>Aci  | v        | 5.0  | -013    | 0.48    | 4 10  | 5.0 4.1 Val. |
| 25825    | 2/01         | 41               | Tau<br>Den | ASI<br>D2  | Vno      | 1.02 | 0.13    | 0.40    | 2 70  | var?         |
| 25940    | 3904         | 48               | Per        | D)<br>90   | vpe      | 4.05 | - 0.03  | 0.30    | 5.81  | val.:        |
| 27026    | 3302         | 60               | D          | B0<br>D6   | V<br>111 | 0.10 | - 0.08  | - 0.50  | 2.61  | vor?         |
| 2/396    | 3808         | 53               | Per        | B0<br>D0 5 |          | 4.00 | - 0.02  | 0.54    | 4.02  | daub         |
| 27638    | 2704         | 39 X             | Tau        | B9.5       | V        | 5.30 | - 0.02  | 0.26    | 4.92  | uoub.        |
| 27742    | 2712         |                  |            | B3         | V        | 5.90 | +0.03   | 0.20    | 4.80  | daub         |
| 28217    | 2106         |                  |            | B/         | 111      | 5.83 | +0.05   |         | 5.55  | doub.        |
| 28929    | 3315         |                  | _          | Ap         |          | 5.70 | -0.05   |         | 5.00  | doub.        |
| 29140    | 2107         | 88               | Tau        | Am         |          | 4.25 | +0.18   | -+ 0.09 | 5.10  | doub. var.?  |
| 29 365   | 2710         |                  |            | B8         | V        | 5.72 | - 0.05  | -0.34   | 4.80  |              |
| 29 499   | 2108         |                  |            | dA9        |          | 5.39 | +0.25   | +0.12   | 6.16  |              |
| 29 646   | 3316         |                  |            | A2         | V        | 5.58 | -0.02   |         | 5.79  | doub.        |
| · 29 722 | 3814         | 59               | Per        | Al         | V        | 5.26 | + 0.01  | + 0.02  | 5.80  |              |
| 29763    | 2706         | 94 τ             | Tau        | B3         | V        | 4.31 | -0.13   | 0.56    | 2.25  |              |
| 29 866   | 3305         |                  |            | B7e        |          | 6.07 | +0.10   | - 0.29  | 5.93  |              |
| 30652    | 2009         | $1 \pi^{3}$      | Ori        | F6         | V        | 3.19 | + 0.45  | 0.01    | 4.99  | doub.        |
| 30739    | 2008         | $2 \pi^2$        | Ori        | A0         | V        | 4.34 | + 0.01  | - 0.01  | 4.08  |              |
| 30780    | 2711         | 97               | Tau        | dA5        |          | 5.11 | +0.21   | +0.12   | 6.11  |              |
| 30836    | 2017         | $3 \pi^{-1}$     | Ori        | B2         | IV-III   | 3.69 | -0.17   | - 0.81  | 1.42  | var.?        |
| 30870    | 2004         |                  |            | A0-B5n     |          | 6.09 | + 0.08  | - 0.45  | 5.14  |              |
| 31 2 37  | 2025         | $8 \pi^5$        | Ori        | B2         | III      | 3.71 | - 0.19  | 0.82    | 1.40  | var. 0.05    |
| 31 295   | 2003         | 7 π <sup>1</sup> | Ori        | A0p        |          | 4.68 | +0.08   | + 0.09  | 4.66  |              |
| 31 331   | 2027         |                  |            | B5         |          | 5.92 | - 0.13  | -0.55   | 4.83  |              |
| 31 373   | 2643         |                  |            | <b>B8</b>  | III      | 5.71 | - 0.08  | - 0.46  | 4.54  |              |
| 31 592   | 2606         | 98               | Tau        | B9.5       | V        | 5.54 | 0.00    |         | 5.79  | doub.        |
| 31 647   | 3308         | 4                | Aur        | A0         | V        | 4.93 | +0.02   |         | 5.28  | doub.        |
| 32 301   | 2619         | 102 ı            | Tau        | A7         | V        | 4.65 | +0.15   | +0.14   | 6.05  |              |
| 32 549   | 2641         | 11               | Ori        | A0si       |          | 4.66 | -0.07   | - 0.09  | 4.46  |              |
| 32630    | 3816         | 10 ŋ             | Aur        | B3         | V        | 3.17 | -0.18   | - 0.67  | 1.17  | var.?        |
| 32977    | 2620         | 106              | Tau        | A3         |          | 5.17 |         |         | 6.44  |              |
| 32990    | 2607         | 103              | Tau        | B2         | V        | 5.41 |         |         | 4.06  | doub.        |
| 32991    | 2618         | 105              | Tau        | B2         | Vp       | 5.87 | +0.20   | -0.55   | 4.60  |              |
| 33641    | 3306         | 11 µ             | Aur        | Am         | -        | 4.80 | +0.18   | +0.10   | 5.10  |              |
| 34029    | 3806         | 13 α             | Aur        | G8         | III + F  | 0.09 | +0.80   |         | 2.62  | doub var.?   |
| 34203    | 2644         | 18               | Ori        | A0         | Ш        | 5.48 | - 0.02  | + 0.05  | 5.60  |              |
| 34656    | 3206         |                  |            | 07         |          | 6.71 | + 0.01  |         | 4.74  |              |
| 34759    | 3711         | 20 <i>q</i>      | Aur        | B5         | V        | 5.09 | -0.18   |         | 3.24  |              |
| 34989    | 2005         | -                |            | <b>B</b> 1 | V        | 5.78 | -0.13   | - 0.88  | 3.39  |              |

| (Tabl | le I, | continued | ) |
|-------|-------|-----------|---|
|-------|-------|-----------|---|

| HD                 | Chart<br>No.      | Name            | •   | Spectra    | ll Type  | v     | B-V           | U-B            | U′    | Remarks        |
|--------------------|-------------------|-----------------|-----|------------|----------|-------|---------------|----------------|-------|----------------|
| 35149              | 2016              | 23              | Ori | <b>B</b> 1 | v        | 4.99  | -0.16         | - 0.86         | 2.53  |                |
| 35239              | 3224              |                 |     | B9         | III      | 5.92  | +0.04         | -0.12          | 5.88  |                |
| 35439              | 2020              | 25              | Ori | B1.5       | Vpe      | 4.94  | - 0.21        | - 0.91         | 2.33  | var.?          |
| 35468              | 2010              | 24 γ            | Ori | B2         | Ш        | 1.64  | -0.24         | - <b>0.87</b>  | -0.26 | var.?          |
| 35497              | 3234              | 112 B           | Tau | <b>B</b> 7 | III      | 1.66  | -0.13         | - 0.49         | 0.50  |                |
| 35671              | 2628              | 115             | Tau | B5         | V        | 5.30  |               |                | 3.67  | doub.          |
| 35708              | 2608              | 114             | Tau | B3         | V        | 4.83  |               |                | 2.61  | doub.          |
| 36351              | 2014              | 33              | Ori | B1.5       | V        | 5.44  | -0.19         | -0.81          | 2.85  | doub.          |
| 36408              | 2627              |                 |     | B7         | IV       | 5.42  | -0.04         |                | 4.73  | doub.          |
| 36486              | 2029 <sup>1</sup> | 34 <i>δ</i>     | Ori | O9.5       | V-II     | 2.21  | -0.21         | - 1.06         | 0.02  | trip. var.     |
| 36576              | 2622              | 120             | Tau | Bp         |          | 5.52  |               |                | 3.80  |                |
| 36653              | 2636              | 35              | Ori | <b>B</b> 3 |          | 5.56  |               |                | 3.76  |                |
| 36741              | 2022              |                 |     | B2         | V        | 6.58  | - 0.20        | - 0.77         | 4.97  |                |
| 36819              | 2603              | 121             | Tau | B3         | V        | 5.25  | - 0.06?       |                | 3.57  |                |
| 37 <b>09</b> 8     | 3232              |                 |     | <b>B</b> 8 | III      | 5.69  | - 0.05        |                | 4.92  | doub.          |
| 37128              | 2029 <sup>2</sup> | 46 ε            | Ori | <b>B0</b>  | Ia       | 1.69  | -0.19         | - 1. <b>04</b> | -0.40 |                |
| 37202              | 2609              | 123 ζ           | Tau | B2         | IVp      | 2.99  | - 0.15        | -0.68          | 0.91  | var.?          |
| 37320              | 2006              | •               |     | <b>B</b> 8 | •        | 5.88  | - 0.08        | -0.37          | 4.63  |                |
| 37339              | 3202              |                 |     | B9?        |          | 6.89? |               |                | 5.37  |                |
| 37438              | 3231              | 125             | Tau | B2         | v        | 5.07  | -0.16         | - 0.69         | 3.04  |                |
| 37490              | 2012              | 47 ω            | Ori | B3         | IIIe     | 4.52  | - 0.09        | -0.78          | 2.80  |                |
| 37519              | 3215              |                 |     | <b>B</b> 7 | v        | 6.01  | +0.03         | - 0.20         | 5.57  |                |
| 37711              | 2625              | 126             | Tau | B3         | IV       | 4.85  |               |                | 2.77  | doub.          |
| 37742)             |                   |                 |     | 09.5       | Ib )     |       |               |                |       |                |
| 37743              | 2029 <sup>3</sup> | 50 ζ            | Ori | <b>B</b> 3 |          | 1.75  | -0.21         | - 1.06         | -0.48 | trip. var.?    |
| 38478 <sup>′</sup> | 2624              | 129             | Tau | <b>B</b> 7 | IIIp     | 5.90  | - 0.06        | - 0.44         | 5.10  |                |
| 38622              | 2635              | 133             | Tau | B2         | v        | 5.15  | -0.18         |                | 3.10  | doub.          |
| 38670              | 2610              |                 |     | <b>B</b> 7 | v        | 5.92  | 0.09          |                | 4.52  | doub.          |
| 39317              | 2531              | 137             | Tau | Ар         |          | 5.54  | - 0.04        |                | 5,20  |                |
| 39357              | 3222              | 136             | Tau | ÂÔ         | Ш        | 4.52  | - 0.02        |                | 4,74  | doub.          |
| 39698              | 2612              | 57              | Ori | B2         | V        | 5.86  |               |                | 3.51  |                |
| 39777              | 1945              |                 |     | B2         | V        | 6.55  | -0.19         | - 0.80         | 4.80  |                |
| 39970              | 2601              |                 |     | A0         | Ia       | 6.02  | +0.39         |                | 5.52  |                |
| 39985              | 1906              |                 |     | B9         |          | 5.98  | - 0.06        | -0.14          | 5.64  |                |
| 40005              | 2524              |                 |     | B3?        |          | 6.91? |               |                | 5.07  |                |
| 40111              | 3229              | 139             | Tau | B1         | Ib       | 4.80  | - <b>0.07</b> | - <b>0.93</b>  | 2.61  |                |
| 40183              | 3706              | 34 β            | Aur | A2         | V        | 1.90  | +0.03         |                | 1.40  | doub. var.     |
| 40312              | 3201              | 37 <del>θ</del> | Aur | B9.5pv     |          | 2.69  | - 0.08        |                | 2.18  | doub. var.?    |
| 40446              | 1936              | 60              | Ori | A1         |          | 5.22  | +0.01         | +0.01          | 5.18  |                |
| 40932              | 1905              | 61 µ            | Ori | Am         |          | 4.12  | +0.15         | +0.10          | 5.00  | doub. var.?    |
| 40978              | 3704              |                 |     | B3         |          | 7.12  | -0.06         | <b>- 0.70</b>  | 6.32  |                |
| 41076              | 2539              |                 |     | B9.5       | v        | 5.94  | - 0.04        |                | 6.37  |                |
| 41 335             | 1302              |                 |     | B2         | IV-Vne   | 5.22  | - 0.08        | - 0.84         | 3.37  | var.?          |
| 41 692             | 1946              |                 |     | B5         | IV       | 5.37  | -0.15         | -0.53          | 4.03  |                |
| 41753              | 2530 <sup>2</sup> | 67 v            | Ori | B3         | <b>V</b> | 4.42  | -0.27         |                | 2.30  | doub. spectro. |
| 42 509             | 2514              | 68              | Ori | B9.5       | v        | 5.67  | - 0.09        |                | 5.21  | •              |
| 42545              | 2525              | 69              | Ori | B5         | v        | 4.92  | -0.15         | -0.60          | 3.13  |                |
| 42560              | 2530 <sup>1</sup> | 70 <i>ξ</i>     | Ori | B3         | V        | 4.38  | - 0.20        |                | 2.25  |                |
| 42657              | 1947              |                 |     | B9         |          | 6.17  | - 0.09        | - 0.36         | 5.22  |                |
| 42690              | 1301              |                 |     | B2         | v        | 5.06  | -0.22         | - <b>0</b> .77 | 2.86  |                |
| 43112              | 2530 <sup>3</sup> |                 |     | <b>B</b> 1 | v        | 5.91  | -0.24         | - 0.96         | 3.27  | doub.          |
|                    |                   |                 |     | ·          |          |       |               |                |       |                |

| HD     | Chart<br>No. | Nam          | e    | Spectra    | al Type | v     | B-V    | U-B            | U′   | Remarks     |
|--------|--------------|--------------|------|------------|---------|-------|--------|----------------|------|-------------|
| 43153  | 2526         | 72           | Ori  | B7         | v       | 5.24  | - 0.14 | - 0 46         | 3 86 |             |
| 43247  | 2536         | 73           | Ori  | B9         | 11-111  | 5.34  | - 0.03 | 0.10           | 5 37 |             |
| 43285  | 1916         |              | 0    | B5e-B6     | s v     | 6.00  | -0.12  | -0.53          | 4 60 |             |
| 43 362 | 1306         |              |      | R9         | , ,     | 6 10  | -0.08  | 0.30           | 5.07 | doub        |
| 43819  | 2521         |              |      | An         |         | 6.16  | - 0.08 | - 0.34         | 5.50 | uouo.       |
| 44 092 | 3107         |              |      | Δ1         | v       | 6 27  |        | $\pm 0.01$     | 5 74 |             |
| 44112  | 1305         | 7            | Mon  | B2         | v       | 5 24  | - 0.00 | -0.74          | 3.09 |             |
| 44173  | 2541         | ,            | Mon  | R5n        | •       | 6.10  | 0.20   | 0.74           | 5.08 |             |
| 44 700 | 1921         |              |      | B3         | IV      | 6 32  | -016   | 0.62           | 4 55 |             |
| 44 701 | 1943         |              |      | B5?        | 1 4     | 6 582 | 0.10   | -0.02          | 4.55 |             |
| 44 769 | 1920         | 8            | Mon  | Δ5         | IV      | 1 18  | + 0.21 | 0.00           | 5 20 | dauh        |
| 14 783 | 1902         | 0            | wion | A0         | 1 *     | 6 25  | 0.21   | + 0.09         | 5.20 | doub.       |
| 15 517 | 2500         | 18           | Gam  | AU<br>D7   | IVa     | 4.15  | - 0.08 | 0.30           | 3.24 | doub.       |
| 16052  | 2104         | 10 /         | A    | D/         |         | 4.15  | -0.13  |                | 2.79 | doub.       |
| 16 200 | 1007         | 12           | Mon  | AIII-A/    | V<br>Ih | J.80  | 0.01   | 0.25           | 5.98 | var.        |
| 16 300 | 1020         | 15           | wion |            | ID<br>V | 4.40  | +0.01  | -0.25          | 4.37 |             |
| 1040/  | 1939         | 40           | •    | BO         | V       | 5.07  | -0.14  | -0.56          | 3.65 |             |
| 10 333 | 3110         | 49           | Aur  | B9.5       | V       | 5.07  | -0.03  | -0.08          | 5.16 |             |
| 10/09  | 1934         |              |      | B8         | 10      | 5.72  | 0.00   | - 0.46         | 4.81 |             |
| 1/054  | 1950         | 6 <b>0</b> % |      | Bone       |         | 5.51  | -0.10  | -0.39          | 4.57 |             |
| 17100  | 3601         | 52 ψ°        | Aur  | B8         |         | 5.25  | -0.07  | -0.40          | 4.05 |             |
| 4/105  | 2522         | 24 γ         | Gem  | A0         | IV      | 1.93  | 0.00   | +0.04          | 2.07 |             |
| 1/129  | 1914         |              |      | 08         | 09      | 6.04  | +0.05  | -0.90          | 3.02 | var.?       |
| 47152  | 3111         | 53           | Aur  | A0p        |         | 5.53  | -0.01  | - 0.08         | 5.81 |             |
| 17 395 | 3112         | 54           | Aur  | B6         | III     | 5.86  | - 0.09 |                | 4.67 | doub.       |
| 47432  | 1929         |              |      | 09.5       | II      | 6.18  | +0.15  | -0.85          | 4.42 |             |
| 17839/ | 2544         | 15           | Mon  | 07         |         | 4.65  | -0.25  | - 1.06 )       | 1 66 | doub. var.  |
| 7887 \ |              |              |      | B2.        | III     | 7.02  |        | 5              | 1.00 |             |
| 7964   | 1933         |              |      | <b>B</b> 8 | Ш       | 5.78  | 0.10   | 0.35           | 4.82 |             |
| 8099   | 1913         |              |      | 06-07      |         | 6.36  | -0.05  | - 0.96         | 3.34 |             |
| 8434   | 1919         |              |      | BO         | Ш       | 5.83  | - 0.02 | - 0.90         | 3.84 |             |
| 8977   | 1901         | 16           | Mon  | B3         | V       | 5.91  | -0.18  | - 0.68         | 3.76 |             |
| 9147   | 1218         |              |      | A0         | IV      | 5.65  | - 0.06 | - <b>0.10</b>  | 5.68 |             |
| 9567   | 1832         |              |      | B3         | II-III  | 6.14  | -0.14  | — <b>0.6</b> 7 | 4.32 |             |
| 9606   | 2523         | 33           | Gem  | <b>B</b> 8 | III     | 5.71  | -0.13  | -0.52          | 4.75 |             |
| 9643   | 1848         |              |      | <b>B</b> 8 | V       | 5.70  | -0.10  | -0.46          | 4.65 | doub.       |
| 9908   | 2501         | 36           | Gem  | A2         | V       | 5.18  | -0.02  |                | 5.72 | doub.       |
| 0019   | 3101         | 34 <i>θ</i>  | Gem  | A3 III-A   | A2 I    | 3.59  | +0.10  | +0.13          | 3.98 | doub.       |
| 0635   | 2417         | 38           | Gem  | F0         | Vp      | 4.63  |        |                | 6.23 | doub. var.? |
| 0820   | 1847         |              |      | B3 Ve +    | - K2 II | 6.22  | +0.56  | -0.36          | 4.70 |             |
| 1104   | 2422         |              |      | B7         | V       | 5.88  | 0.08   | -0.35          | 4.88 |             |
| 2266   | 1850         |              |      | 09         | V .     | 7.23  | -0.01  | -0.90          | 5.47 |             |
| 2312   | 1207         |              |      | B9         | III     | 5.84  |        |                | 4.97 | doub.       |
| 2559   | 1817         |              |      | B2s        |         | 6.52  | -0.02  | -0.64          | 5.35 |             |
| 2721   | 1215         |              |      | B3?        |         | 6.52? |        |                | 4.66 | doub.       |
| 2918   | 1846         | 19           | Mon  | <b>B</b> 1 | v       | 4.93  | -0.21  | -0.93          | 2.77 | var.?       |
| 3 205  | 1828         |              |      | B9         |         | 6.52  | +0.02  | -0.05          | 6.61 |             |
| 3244   | 1233         | 23 γ         | СМа  | <b>B</b> 8 | II      | 4.10  | -0.12  | -0.48          | 3.08 |             |
| 3257   | 3017         | 44           | Gem  | B9.5       | V       | 5.89  | -0.03  | -0.08          | 6.05 |             |
| 3744   | 3009         |              |      | B9         | v       | 6.22  | -0.10  | -0.26          | 5.77 |             |
| 3755   | 1214         |              |      | B0         | v       | 6.48  | - 0.05 | 0.40           | 4.28 | triple      |
|        |              |              |      |            |         |       | 0.00   |                |      |             |

# (Table I, continued)

| HD      | Chart<br>No. | Nam  | e          | Spectra    | al Type    | v             | B-V    | U-B    | U′                        | Remarks    |
|---------|--------------|------|------------|------------|------------|---------------|--------|--------|---------------------------|------------|
| 53974   | 1216         |      |            | B0.5       | IV         | 5.38          | + 0.05 |        | 3.31                      | mult.      |
| 54662   | 1213         |      |            | <b>O</b> 6 |            | 6.21          | +0.03  | - 0.94 | 4.50                      |            |
| 54801   | 3010         | 47   | Gem        | A4         | v          | 5.58          | +0.12  |        | 6.40                      |            |
| 55879   | 1212         |      |            | <b>B0</b>  | IV         | 6.00          | -0.18  |        | 3.55                      |            |
| 56310   | 1231         |      |            | <b>B</b> 1 | v          | 6.79          |        |        | 4.99                      |            |
| 56386   | 3004         |      |            | B9.5       | v          | 6.01          | - 0.04 | -0.11  | 6.33                      |            |
| 56446   | 1804         |      |            | B9         |            | 6.57          | -0.12  | - 0.40 | 5.57                      |            |
| 56537   | 2407         | 45 J | Gem        | A3         | v          | 3.58          | + 0.11 | +0.09  | 3.94                      | doub var?  |
| 56986   | 3016         | 55 δ | Gem        | F0         | IV         | 3.52          | +0.34  |        | 4.75                      | doub       |
| 57 5 39 | 1201         |      |            |            |            | 6.53          | -0.10  |        | 5.297                     | )          |
| 57682   | 1210         |      |            | 09         | v          | 6.42          | - 0.20 |        | 3 59                      |            |
| 57744   | 3014         | 58   | Gem        | Al         | v          | 5.96          | -0.01  |        | 6 23                      |            |
| 58050   | 2406         |      |            | B3         | ш          | 6 35          | -0.13  | -093   | 3.05                      | var?       |
| 58187   | 2419         | 1    | CMi        | A4         | III        | 5 30          | +0.10  | +0.13  | 6 27                      | val        |
| 58343   | 1229         | •    | 0          | B3         | Ve         | 5 29          | 0.05   | -0.60  | 4 10                      |            |
| 58580   | 1839         |      |            | R9         |            | 6 75          |        | -0.00  | 6.45                      |            |
| 58 599  | 2420         |      |            | B6         | IV         | 6 30          | 0.01   | - 0.11 | 0. <del>4</del> J<br>4 27 |            |
| 58715   | 1801         | 3 R  | СМі        | B8         | v          | 2 87          | -0.15  | -0.47  | 1.00                      | vor 9      |
| 58923   | 1803         | 5 n  | CMi        | aE0        | •          | 5 29          |        | + 015  | 6 40                      | val.:      |
| 50037   | 3007         | 64   | Gem        | A6         | V          | 5.01          | + 0.22 | +013   | 5.01                      | doub.      |
| 59050   | 2405         | 04   | Ucili      | R0         | v          | 5.01          | + 0.11 | +0.12  | 5.91                      |            |
| 50211   | 1221         |      |            | <b>D</b> 7 | v          | 6.05          | 0.05   | 0.11   | 2.88                      |            |
| 60107   | 2404         | 69   | Gam        | A 1        | v          | 0.02 <i>(</i> | 1 0.05 | 0.06   | 5.03?                     |            |
| 60325   | 1226         | 00   | Gem        | D1         | v          | 5.00          | +0.03  | + 0.00 | 5.03                      |            |
| 60325   | 1921         | 0    | CM:        | A0         | v          | 5.20          | - 0.04 | 0.00   | 4.05                      |            |
| 61 / 21 | 1910         | 10 ~ | CM         | AVII<br>Es | IV V       | 0.25          | -0.02  | - 0.09 | 5.29                      | J          |
| 61 997  | 1920         | IVa  | CIMI       | FJ<br>A0m  | 1 * - *    | 0.33          | + 0.41 | - 0.01 | 1.40                      | doub var.? |
| 62 832  | 2200         | 11   | CM         | AUII       | V          | 5.92          | 0.04   | - 0.08 | 0.03                      | var.?      |
| 63655   | 1109         | 11   | CIVII      | DO DO      | v          | 5.20          | + 0.01 | - 0.02 | 4.94                      |            |
| 62075   | 1711         | 12 7 | CM         | D7<br>D0   |            | 0.1Z          | - 0.09 | - 0.48 | 2.35                      |            |
| 64 64 8 | 2002         | 25   | Gam        | DO S       | v          | 5.14          | -0.13  | -0.4/  | 5.77                      |            |
| 65 241  | 1702         | 05   | Gem        | D9.5<br>D0 | v          | 5.34          | - 0.04 | -0.00  | 5.29                      |            |
| 65 306  | 1706         |      |            | D9<br>D01  |            | 6 709         | 0.04   | 0.00   | 5.//                      | 4 1.       |
| 65 810  | 0606         |      |            | A 2        | v          | 0.70:         |        | 1 0 00 | 0.1/!                     | doub.      |
| 65873   | 2302         | 5    | Cno        | <b>P</b> 0 | v          | 4.01          | +0,00  | + 0.08 | 5.40                      |            |
| 65875   | 1713         | 5    | Che        | D7<br>D2   | v<br>Vn    | 5.09          | - 0,02 | 0.02   | 5.75<br>A E E             |            |
| 65900   | 1707         |      |            | A0         | ٧p         | 5.40          | 0,08   | - 0.85 | 4.55                      |            |
| 66 664  | 2202         | 0    | Cno        | A0         | TV/        | 5.04          | 0.00   | + 0.01 | 3.09                      |            |
| 66 83/  | 2303         | 0    | Dun        | AU<br>D2   | 1 V        | 5.10          | 0.00   | 0.00   | 4.80                      |            |
| 67150   | 1104         | 14   | rup        | <b>D</b> 3 | <b>v</b> . | 6.12          | 0.17   |        | 4.38                      | 41-        |
| 67707   | 0604         | 16   | Dun        | AU<br>DS   | v          | 0.00          | -0.04  | 0.50   | 2.70                      | doub.      |
| 67 880  | 1115         | 10   | rup        | DJ<br>D20  | v          | 4.40          | -0.17  | - 0.39 | 2.13                      | daub       |
| 68,000  | 2306         |      |            | DJS<br>D7  | TTT        | 5.07          | -0.18  | 0.42   | 3.38                      | doub.      |
| 69686   | 2305         |      |            | ע.<br>רסם  | 111        | 7.022         | -0.11  | -0.42  | 4.30                      |            |
| 72310   | 0601         |      |            | A0         |            | 7.02:         | 0.06   |        | 5.00                      | al         |
| 72.660  | 1608         |      |            | AU<br>A1   |            | 5 60          | 0.00   | 0.00   | J.UU<br>5 00              | uouo.      |
| 73262   | 1604         | 45   | Hva        | A0         | v          | J.09<br>A 16  | 0.00   | 0.00   | J.88<br>2 22              |            |
| 74280   | 1605         | 7 •  | нуа<br>Нур | 71V<br>122 | *<br>V     | 4.10          | 0.00   | 0.00   | 3.22                      |            |
| 74988   | 1607         | , 1  | iiya       | A 2. A 0   | ۷          | 4.30          | - 0.20 | - 0.74 | 1.42                      |            |
| 75333   | 1001         | 14   | Hva        | An         |            | 5.20          | - 0.04 | + 0.08 | 2.0/                      |            |
|         |              |      | iiya       | лγ         |            | 5.25          | - 0.09 | -0.34  | 5.00                      |            |

| /      |    |    |           | • • |
|--------|----|----|-----------|-----|
| ( I ab | le | 1. | continued | ,   |

and a second second

126

between 2000 and 3000 Å. Neither is the sky brightness to be seen far away from the Milky Way (galactic latitude up than  $40^{\circ}$ ). Isophotes and quantitative data will be published later.

### 4. Calibrations

Using a deuterium-lamp source, we made three series of calibrations with different backgrounds for the longer exposure and a single calibration with no background for the shorter one. Each series covered a range of five magnitudes for each of 13 field angles.

When comparing the different series, we found errors generally less than 0.1 magnitude.

For the flight photographs, we determined the accuracy of the magnitude measurements by comparing the stars common to both the exposures. We found a mean error of about 0.2 magnitude.

### 5. First Results

Among the 700 stars detected, only 201 were suitable for measurement. The remaining stars were either too faint or too badly defined or the background was too irregular or the part of the field was too vignetted for accurate correction.

Measurements were made with a Becker type iris photometer. The information in Table I is as follows:



Fig. 5. (U-V)<sub>0</sub> color diagram for 100 stars.

Column 1 - HD number

2 - Our code or 'Chart' number

- 3 Star names or numbers
- 4-7 Spectral type, luminosity classification of UBV data from the BSC or from Jaschek (1968) or from other sources
- 8 Our U'
- 9 Remarks, generally from the BSC.

The zero adjustment for U' magnitudes was defined such that  $(U'-V)_0=0(\pm 0.1)$  for A0 V stars.

We tried first to determine the mean interstellar reddening by comparing stars of identical type. The preliminary results thus obtained seem to show that the color excess ratio (E(U'-V))/(E(B-V)) is slightly higher than those found by Stecher (1965), Boggess and Borgman (1964) and others at 2600 Å, e.g. about 4. But because of the large scatter for this ratio, it is probably not a real effect and we think that it is due to the actual lack of accuracy of UBV and spectral type data. Nevertheless, it is probable that there is some scatter in the reddening law itself.

For this first paper, we have adopted a color excess ratio of 4 and knowing the intrinsic colors, we were able to plot two color-spectral type diagrams.



Fig. 6.  $(U'-V)_0$  color diagram for 100 stars.

128

The first one (Figure 5), a  $(U-V)_0$  diagram, shows that the 100 stars for which U, B, V, and spectral types are well known, are quite normal.

The second one (Figure 6), a  $(U'-V)_0$  diagram, shows the large scatter of O type stars and that they are brighter than theoretical models, the A type stars being fainter.

It can be seen that there is no significant difference between giant and main sequence stars. A recent rough study showed us that giant stars seem to be fainter by 0.2 or 0.3 magnitude. The Pleiades appear to be quite normal (integration in the V band was made for 13 component stars). The Orion's Belt stars ( $\zeta$ ,  $\varepsilon$  and  $\delta$ ) seem to be fainter than other O9-B0 stars, which is in agreement with a paper presented by Carruthers during the Symposium.

## 6. Conclusions

It is to be noted that we have arbitrarily adjusted the theoretical models in the linear and well-defined part of our diagram, e.g. for B4 (Morton's models) (Mihalas and Morton, 1965; Adams and Morton, 1968; Hickok and Morton, 1968), and B6 (Underhill's models) (Underhill, 1963), spectral types, because we have no absolute calibrations.

We are now trying to integrate Stecher's spectral energy measurements for  $\zeta$  and  $\varepsilon$ Persei, given in a paper presented during the session, which will give us a better adjustment of theoretical models.

More complete reductions for the interstellar reddening, intrinsic colors and Milky Way and Zodiacal Light isophotes are now in progress and will be given in a further publication.

Our next experiment, 'JANUS' (which will be launched in one year's time) will give directly and simultaneously an accurate color index between two ultraviolet bands.

#### References

Adams, T. F. and Morton, D. C.: 1968, Astrophys. J. 152, 195.

Boggess, A. and Borgman, B.: 1964, Astrophys. J. 140, 1638.

Courtès, G.: Astronomie, Juin 1952.

Courtès, G.: 1960, Ann. Astrophys. 23, 115.

Hickok, F. R. and Morton, D. C.: 1968, Astrophys. J. 152, 203.

Jaschek, M.: 1968, private communication.

Mihalas, D. M. and Morton, D. C.: 1965, Astrophys. J. 142, 253.

Stecher, T. P.: 1965, Astrophys. J. 142, 1683.

Underhill, A. B.: 1963, Space Sci. Rev. 1, 749.

Viton, M.: 1967, C. R. Acad. Sci. Paris 264, 1761.

#### Discussion

*Morton*: Why do you not see the nebulosity of the Barnard loop found in the ultraviolet by Henize and his colleagues from the Gemini photographs?

*Viton*: No, we have not detected the Barnard loop, despite of the high aperture ratio of our camera (f/1) probably because of the low angular resolution, too short exposure time, and wavelength range.