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Abstract

A method is proposed to search for an identifier in a functional program library by using its
Hindley-Milner type as a key. This can be seen as an approximation of using the specification
as a key.

Functions that only differ in their argument order or currying are essentially the same, which
is expressed by a congruence relation on types. During a library search, congruent types are
identified. If a programmer is not satisfied with the type of a found value, he can use a
conversion function (like curry), which must exist between congruent types, to convert the
value into the type of his choice.

Types are congruent if they are isomorphic in all cartesian closed categories. To put it more
simply, types are congruent if they are equal under an arithmetical interpretation, with
cartesian product as multiplication and function space as exponentiation. This congruence
relation is characterized by seven equational axioms. There is a simple term-rewriting
algorithm to decide congruence, using which a search system has been implemented for the
functional language Lazy ML, with good performance.

The congruence relation can also be used as a basis for other search strategies, e.g. searching
for identifiers of a more general type, modulo congruence or allowing free type variables in
queries.

Capsule review

Many functions in a polymorphic language such'as ML, Miranda or Haskell may be identified
by their type. For example, there are very few common functions with the type (r ->• s) -> (list
t^-lists); most readers familiar with polymorphic typing will immediately think of the map
function when they see this type expression. However, the map function has alternate names,
such as apply-to-all. Therefore it seems very natural to search a program library by examining
function types instead of function names.

One obvious problem is that functions of several arguments might be written with the
parameters listed in any order. Therefore, when searching a library, we do not simply want to
see all functions of a given type, but all functions that could have this type if the order of
parameters is changed. Moreover, functions may be 'curried' or 'uncurried'. This difficulty is
treated by identifying a natural equivalence relation on types that comes from cartesian closed
categories, and examining the relevant algorithmic problems of equivalence, unification and
expression matching.
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1 Introduction

As a functional programmer, I often want to know whether some function I need
exists in a program library. Usually, the only way to find out is to read the library,
which may be alphabetical or coarsely sorted by subject matter. In either case, it is
tedious to search. There are other systems where one can give a regular expression
and get a list of all command names that it matches. This could be useful in a
functional programming system, too, but names are hard to guess. Ideally, one would
like to search by specification, but even if library functions were formally specified,
it would be undecidable whether two specifications were equivalent. Still, a type can
be seen as a skeleton of a specification. Types are easy to compare, and libraries
normally contain the types of their identifiers.

In some cases, types work well as search keys. For instance, the function that
concatenates a list of lists is known under as various names as concat, flat, and
link, but in the usual Hindley-Milner type system it can only have the type Va.
List(List(o)) => List{a). [About notation: I will use ' =>' to denote function space,' x '
to denote binary cartesian product, and ' 1' to denote the empty cartesian product.
Syntactically, => associates to the right and binds less tightly than x. Greek letters
a, p, y,...are type variables; capital letters A, B, C, ...stand for types. Bound type
variables will be quantified explicitly. (The pronoun 'he' will stand for 'he or she'
when it refers to a hypothetic person.)]

Suppose the sought function takes more than one argument; for instance, I might
be looking for a function to print a real number x with n significant digits. I would
then want to search among functions that take a real number and an integer and
return a character list, but since I do not know the argument order, nor whether the
function is curried, there are four possible types:

Real => (Int => List(Char))
Int => {Real => List(Char))
(Real x Int) => List(Char)
(Int x Real) => List(Char)

The number of possibilities increases rapidly if the function has more than two
arguments, or if it has arguments that are functions.

What I want, then, is an equivalence relation on types, which abstracts from
argument order, currying, etc. I could then query a library by giving a type, and get
information about all identifiers that have this or an equivalent type. I would still have
to check whether anything found satisfies my specification, but the number of
possibilities will be reduced to a handful rather than a whole library. If I find an
identifier with the required semantics, whose type is only equivalent, not identical, to
my query, I can either change my program to accept the library type, or else convert
the library identifier to the query type by means of a higher order function.

If the type system is polymorphic, I need to decide what to do when a query and
a library type differ in generality, but this decision is orthogonal to the choice of
equivalence relation. In the main part of this article, I will use the simplest way to
handle polymorphism, which is to insist that a retrieved identifier has a type
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equivalent to the query (allowing renaming of bound type variables, of course). Other
possibilities have been presented in Runciman and Toyn (1989) and Rittri (1990 a),
which are reviewed in section 6.

It may also be possible to use types as search keys in program libraries that are not
functional, but I have not investigated that, as I think the idea is simpler and more
useful in a functional setting.

In section 2 of this article, I define the equivalence relation. Some examples of usage
are given in section 3. Section 4 discusses algorithms, and an efficient term-rewriting
algorithm is given. A search system using this algorithm has been implemented in and
for Lazy ML; the performance is good, as is described in section 5. Related work is
reviewed in section 6. Possibilities for further research are discussed in section 7.

2 The equivalence relation

To be able to motivate a particular equivalence relation, we must find good semantics.
If we look at the example in the introduction, it is natural to say that two types should
be equivalent if it is easy to convert back and forth between them. For instance, the
reason why the types A => (B => C) and (A x B) => C should be equivalent, is that the
functions curry and uncurry can translate values of one type into values of the other.
The two functions are total and each other's inverses, which makes the types
isomorphic. This isomorphism means that a library programmer has to make an
arbitrary choice, and a user cannot know which one was made, which is why his query
must be treated as denoting an isomorphism class.

We should now try to find an exact definition of isomorphism. It is possible to
make a definition based on a concrete interpretation of types. For instance, we can
interpret types as sets, and say that sets are isomorphic if and only if there are bijective
functions (in the sense of set theory) between them. But we would then get that Int
is isomorphic with Int x Int, since both are countably infinite. Although it is true that
two integers can be encoded as one, and vice versa, this is hardly a fact we wish to
use for our search system. To avoid such unwanted isomorphisms, we will stipulate
that we only use isomorphisms that come from the properties of pairs and functions.

From the example in the introduction, we can see that would at least want to use

the axioms AxB ^ BxA

Ax(BxQ s (A x B) x C
A^(B=>C) S (AxB)^>C

which allow us to ignore argument order and currying. The question is whether these
are all axioms of their kind. In fact, since a function that returns a pair can be
translated to two functions that return the components, there is a similar axiom

A => (B x C) =* (A => B) x {A => C)

that cannot be derived from the others.
To state some sort of completeness result, we must be more explicit about what the

equivalence relation means. The basic idea of bijective functions can be expressed
simply:
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Definition 1
If A and B are types, and there is a function/of type A=> B and a function g of type
B=> A, such that .̂x,,.g(fx) = ^.x,,.xand XyB.f{gy) = XyB.y, then we say that A and
B are isomorphic, and write ,4 ^ fi or sometimes f.A^B and g =/~1.

To interpret what it means, we must specify which functional language, or ^.-calculus,
we work in. There are several degrees of freedom here, e.g. strict or lazy evaluation,
lifted or non-lifted pairing, monomorphic or polymorphic typing, etc. We will choose
typed X-Pn-calculus with surjective pairing, that is, a monomorphic .̂-calculus where
the equality of ^.-expressions consist of 0- and ^-convertibility together with some
laws for pairing and the empty tuple:

A, yB) = xA

snd(xA,yB)=yB

(fst xAxB, snd xAXB) = xAXB

This choice will allow us to borrow a soundness-and-completeness result from
category theory. It turns out that the four axioms we have listed earlier, together with
three simple axioms for the empty product, indeed characterize the isomorphic types,
if we disregard the need to make arbitrary H-tuples isomorphic to nested pairs.

The particular choice of ^.-calculus means that the axioms need not hold exactly for
other .̂-calculi or functional languages, but they do hold in an approximate sense,
which should be enough for the purpose of searching a function library.

2.1 Cartesian closed categories
We will in this section briefly describe cartesian closed categories, and give both a
semantic and an axiomatic characterization of the isomorphisms we are interested in.
For a more detailed introduction to category theory, the reader is referred to
Goldblatt (1979).

A category consists of a collection of objects and arrows. Each arrow must have a
domain and a codomain, which are objects. There must also be an associative
composition operator on arrows, and for each object there must be an arrow which
has that object as both domain and codomain, and which is an identity under arrow
composition. Two objects in a category are isomorphic if there are arrows between
them that compose to identity arrows. An example of a category is the one with sets
as objects and total functions between sets as arrows, and ordinary function
composition as the associative operator. In this category, the isomorphism criterion
is that there are bijective functions between two sets, so sets in this category are
isomorphic if they have the same cardinality.

Some categories have binary operators ' =>' and ' x ' on objects that behave as
function space and binary cartesian product, and an object ' 1' that behaves as an
empty cartesian product. These are known as cartesian closed categories, or CCCs,
and can be seen as models for typed X$r\ -calculus with surjective pairing.

It is possible to translate arrows in a CCC into closed ^.-expressions in a typed X-
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calculus, and vice versa, and also to show that the CCC-definition of isomorphism
is equivalent to the definition in terms of the Xfir\ -calculus described earlier
(definition 1). The relation between CCCs and typed .̂-calculus is described in
Lambek (1980), Solov'ev (1983) and Huet (1985).

A particular CCC may have isomorphisms that we do not wish to exploit for our
search system, such as the isomorphism between Int and Int x Int in the CCC of sets.
We will therefore use the canonical isomorphisms only, that is, those that hold in all
CCCs. To express this formally, we let object expressions be generated by the
grammar

e::= l\exe\e=>e\ variable.

Given a cartesian closed category #, a ^-assignment y is a mapping from variables
to "^-objects. It is extended to a mapping from object expressions to "^-objects in the
obvious way. If for every cartesian closed category CS, and every ^-assignment y, we
have that yfo) s v|/(e2), we write CCC 1= e1 ̂  e2.

,4x5
A x (B x C)
=>(B^C)

i=>(BxC)
IxA

\=>A
A=>\

£ BxA
£ (A x B) x C
S (A x B) => C
2 (A => B) x (A
£ A
= A
— 1

Fig. 1. The axiom set F.

S. V. Solov'ev (1983) has shown that C C C ^ £ e2 if and only if T\-e1 s e2,
where 'h-' denotes equational reasoning, and F is the axiom set in fig. 1. The
soundness of F is well known; the completeness less so. For his completeness proof,
Solov'ev uses the fact that the natural numbers are objects in a CCC, with x as
multiplication, 1 as the number 1, and A=>B as B\A = BA. The arrows in this
category are the total set theoretic functions between the numbers when viewed as the
finite ordinals: 0 = 0 , 1 = {0}, 2 = {0, {0}},..., and numbers are isomorphic if and
only if they are equal. This leads him to consider the equational theory of natural
numbers under 1, x and j-, which can be noted (^J,l, x,f). Solov'ev shows the
equational completeness of F for this equational theory, which implies its
completeness for isomorphisms that hold in all CCCs. Actually, C. F. Martin (1973)
had already shown that the first four axioms of F are equationally sound and
complete for (N, x , | ) , from which it is easy to derive the corresponding result for F
and (N, 1, x , f). Solov'ev does not refer to Martin, but provides his own proof, which
seems shorter than Martin's; I think this is because Martin gets his result as a
corollary of another theorem, which also concerns the operator +. A different proof
of Solov'ev's result, based on work in Dezani-Ciancaglini (1976), was announced
recently in Longo, Asperti and Di Cosmo (1989).

It is easy and instructive to verify the soundness of F. We will use the notation / :
A ^ B introduced in definition 1; we will also use pattern matching on pairs, with the
understanding that it can be translated to applications of fst and snd, and we will
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omit type restrictions in ^.-expressions, since they can be inferred from context. Using
these conventions, we give in fig. 2 ̂ .-expressions that show that the axioms of T are
valid in any CCC. To verify equational reasoning, we should verify that S is a stable
congruence relation. Its stability, i.e. the fact that isomorphisms remain true when
type expressions are consistently substituted for variables, is clear from the semantics
of CCC t=ex s e2. To see that ^ is an equivalence relation, it is enough to verify the
inferences in fig. 3. To see that it is a congruence relation over x and =>, it is enough
to verify the inferences in fig. 4.

(̂JC, y). (y, x): Ax B = BxA
X(x,(y,Z)).((x,y),z): Ax(BxC) S (AxB)xC

Xf. X(x,y). fxy:A^{B=>C) s (AxB)=>C
Xf. (kx. fst(fx), Xx. snd(fx)): A=>(BxC) S (A => B) x {A => C)

snd: \xA S A
Xf.JiY \=>A ^ A
Xf.Q: y4=> 1 s 1

Fig. 2. The axioms of T hold in a CCC.

f-.A^B f.A^B g.B^C

x.x-.A^A f~l:B^A Xx.g(fx):A s C

Fig. 3. Isomorphism is an equivalence relation.

Xg. Xx

Fig. 4. Isomorphism is a congruence relation over x and =>.

It is not hard to use the axioms of T as a tool to decide isomorphism. We will show
how to do this in section 4. [A finite axiomatization is in fact not needed for
decidability. Neither of the theories (N, +, x, f) or (N, 1, +, x, f) has a finite
axiomatization (Martin, 1973; Gurevic, 1989), but both are decidable (see Macintyre,
1981).]

2.2 Other type operators
The grammar we have used for type expressions is restrictive, since it only allows the
type operators 1, x and =>. If we have a modern functional language, in which the
programmer can define his own types, it is clear that we must allow type operators
of any arity, and the possibility, for example, to derive List(A) ^ List(B) from
A^B.

In equational theories, it is common to add an arbitrary number of operators to the
language, and simply say that they can be used to build terms, but that there are no
particular axioms concerning them. To ensure that this is sound in our case, we must
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convince ourselves that all type operators preserve isomorphism. We showed explicitly
in fig. 4 that x and => do so, but we would like a general argument for all type
operators. To be precise, if F is an /j-ary type operator, we must know that the
following inference is valid:

Now, any categorical semantics for a programming language defines things only up
to isomorphism; this is the whole spirit of category theory. Since we expect most
languages to have categorical semantics, we assume that all type operators preserve
isomorphism. It is outside the scope of this article actually to give such semantics, but
one treatment, using categories of complete partial orders, can be found in Plotkin
(1980).

Some intuition may be gained by looking at a simple example. If/: A s B, it is easy
to verify that map(f):List(A) s List{B). So the map function on lists, and similar
functions on other types, must be used to construct the bijective functions between
isomorphic types that contain arbitrary type operators. (A category theorist would
say that List and map form a functor, with List as the object part and map as the arrow
part.)

2.3 Removing products
It is worth noting that the arithmetical theory of exponentiation alone, (M, f),
is decidable and characterized by a single axiom (Martin, 1973). Translated to type
syntax, the axiom becomes

sometimes known as left commutativity, CL. The corresponding result was proved for
typed A-Pn-calculus in Bruce and Longo (1985), but from results in Dezani-
Ciancaglini (1976) rather than Martin (1973).

If we base a search system on the equational theory presented by this axiom, we
ignore the argument order of curried functions but nothing else, which may be
sufficient if all library functions are as curried as possible. (We would lose the
distributivity axiom, but that axiom is probably not crucial in practice.) An
advantage of the smaller theory is that it is known how to unify modulo CL, but not
modulo P. This will be discussed further in section 7.1.

3 Usage and examples

As mentioned in the introduction, the basic application is to search for identifiers
whose types are partially known. The user queries with a type and gets a list of all
identifiers of an equivalent type. He will also want the types of these identifiers, and
access to the source files where they are defined.

Let us look at an example. There are two higher order functions on lists, that are
always provided in functional libraries. Choosing an arbitrary argument order, we
can define them informally as

Xf.Xb.X[ai,..., aj.fa, (... (/•«„_! ifan b))...)
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and
Xf.Xb.X[au...,an].fan (... (fa2 (fa, b))...)

Fig. 5 shows what you would find if you could query some functional programming
systems with their type. The figure shows how little standardization there is in the
functional community, both of names and types. Five systems use five types (and ten
names). Even without introducing Is, the two functions can be given 144 different but
isomorphic types. If you assume that functions are always as curried as possible
(which is not true), there are still 12 possible types. This indicates how crucial it is to
take isomorphism into account when searching by type.

ML of Edinburgh LCF"

CAML"

HaskelP

SML of New Jersey"

The Edinburgh SML library (draft)6

itlist
revitlist

list-it
itJist

foldl
foldr

fold
revfold

foldJeft

VaP
VaP

VaP
Vap

VaP
VaP

Vap
VaP

VaP

• (« =
• (« =

.(o =
• (« =

• (« =
• (« =

.(a>

.(a>

.(«>

^ P =
=> P =
^ P =
=> P =

* p ) = > L i s t ( a ) ^ p = ^ p
* P) => List(a) => P => P

=> P) => List(a) => p => P
=> a) => a => List(P) => a

=> P =*• a) => a => List(P) =s> a
=> P => p) => P => List(a) => p

< P ^
<P=:

> P) => List(a) => p => p
> P) => List(a) => P => P

< P => P) => P => List(a) => p
fold^right VaP. (a x p => p) => p => List(a) => P

" Gordon, Milner and Wadsworth, 1979. Edinburgh LCF, LNCS 78.
6 Cousineau and Huet, 1989. The CAML Primer, version 2.6. Projet Formel, INRIA-ENS, France.
' Hudak, Wadler (eds.) et al., 1988. Report on the Functional Prog. Language Haskell (18 Dec).
" Appel and MacQueen, 1987. A Standard ML compiler, in: Kahn (ed.), FPCA, LNCS 274.
"Dave Berry, 1989. LFCS, U. of Edinburgh (21 Mar.). E-mail: db@lfcs.edinburgh.ac.uk

Fig. 5. Search for common list operations.

The example used only the first three axioms of F. The other four are not as
obviously useful, but note that the common way to simulate lazy evaluation of A-
values in a strict language is to represent unevaluated closures of type A by functions
of type 1 => A.

Sometimes, a user may find a value with the desired semantics in a library, and still
not be satisfied with its type. For instance, he may want to use a partial application
of a curried function, and therefore prefer a particular argument order. It is possible
to let the search system provide a conversion function (like curry, or the C
combinator), which can convert the library value into the type of the user's query. The
conversion functions are those that prove that the query type is isomorphic to the
library type, as in fig. 2. Most algorithms that decide isomorphism can be adapted to
give a conversion function as well, though there are probabilistic algorithms that
cannot; see section 4. Even if a search system does not provide conversion functions,
the most common case will simply be that a library function takes its arguments in
a different order than the user thought, and it will then be easy to figure out a
conversion function.
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More sophisticated ways to search by isomorphism are discussed in sections 6
and 7.

4 Algorithms to decide CCC-isomorphism

At first, it is not obvious that F-equality is decidable. But we can use the arithmetical
interpretation of the operators and reason like this:

• If two arithmetical expressions are equal, the proof can be found by exhaustive
search through all proofs, since the axiom system is complete.

• If they are not equal, they will have instances that are unequal. These can be
found by exhaustive search through all natural numbers.

These two searches can be conducted in parallel, and one of them must terminate.
Equality tests for expressions often use one of the two approaches. Algorithms that

rewrite expressions to normal forms (see e.g. Peterson and Stickel, 1981) correspond
to a proof search. There are also probabilistic algorithms that replace variables with
large random numbers and then check equality, since it is improbable to get equal
results by chance (Gonnet, 1984; Schwartz, 1980; Martin, 1971). This is a counter-
example search.

When you regard the expressions as types, it is possible that you are not satisfied
with just a yes/no answer. You may also want a bijective function whenever the types
are isomorphic. The probabilistic methods cannot be used for this version of the
problem.

As it turns out, there is a simple term-rewriting algorithm to decide F-equality.
Before we describe it, we note that the probabilistic algorithms of Gonnet (1984) can
also be used. The probability of error of the algorithms can be made arbitrarily small,
and their complexity is random polynomial. If a program library is very large, and
seldom changes, one can preprocess it and build a hash table, and it is likely that
probabilistic algorithms provide a good means to compute hash values. Their
advantage is that they give a wide range of values. If a smaller hash table size is
enough, it is easier to hash on some other properties which are invariant under
isomorphism, such as the number of arguments to a function, or the number of
distinct type variables. Furthermore, linear search with the term-rewriting algorithm
is often fast enough.

4.1 A term-rewriting algorithm
A term-rewriting algorithm to decide F-equality has been given in Solov'ev (1983); a
similar one has been sketched in Henson and Rubel (1984, p. 26). We can describe the
algorithms in the style of Peterson and Stickel (1981) by singling out the associative
and commutative laws into a subtheory AC, and directing the other axioms into a
rewrite system R.

f AxB = BxA
AC

[(AxB)xC = Ax(BxC)
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•=>o-
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l x ^ -»
,4x1 -»

1=>^ ->
/*=>! -»

Rittri

{AxB)
(A=>B]

A
A
A
1

=>C
)x(A • C )

If terms are simplified as far as possible by the rules of R, the normal forms will be
unique up to AC-equality. Thus, the products in the normal forms are seen as bags
(multisets) of factors, and some bag equality algorithm is used (e.g. by sorting by
some arbitrary ordering).

The normal forms can be exponentially large, as is always the case when a
distributive law is used to distribute. The worst case is expressions of the form

(• ••(<LA=>B1x CJ=>Bt x C 2 ) - • • ) = > * „ x Cn.

That is, a pair-returning function is an argument to a pair-returning function, which
is an argument to a pair-returning function, etc. Such nesting is not likely to be very
deep among commonly occurring types. Furthermore, the duplication of sub-
expressions can be implemented by shared components in a graph, so the isomorphism
test can be done in polynomial space. I do not know if it can be done in polynomial
time. The algorithm I have used takes exponential time in the worst case, but
performs well in practice.

I give a Standard ML (Harper and Mitchell, 1986) program to decide isomorphism
in fig. 6. For simplicity, I have assumed that the only type operators are 1, x and =>,
but it would not be hard to handle free operators like List. Note that I have not
explained how to rename bound type variables; this is discussed in section 5.1.

Most of the ML program should be clear, but it is necessary to show that the
function red' returns an irreducible expression whenever all proper subexpressions of
its input are irreducible. For the first four clauses, this is obvious. For the fifth clause,

red'{r =>(s=> t)) = (rxs)=>t

note that by assumption, r, s, t and s=>t are irreducible, and that the clause is
overlapped by a previous one when r = Unit. This means that when the fifth clause
is used, r cannot be Unit, s cannot be Unit, and t cannot have Unit, x or => as its main
operator. These constraints rule out all possibilities of reducing (r x s) => t. For the
sixth clause,

red'{r =>(sx t)) = red\r =>s)x red{r => 0

a similar reasoning shows that none of r, s and t can be Unit. This implies that neither
of the expressions (r => s) or (r => /) can be reduced to Unit. If we use an induction
hypothesis and assume that red'(r => s) and red'{r => t) are irreducible, the fact that
neither is Unit means that their product is irreducible. (The induction is not
structural, but can be over the number of symbols in the expressions.) Finally, the
default last clause of red' is safe to use, since we assume that proper subexpressions
are irreducible, and since all possibilities to reduce at top level are captured by the
other clauses.
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(* We assume a signature for bags (multisets), with the obvious semantics. (bag-equal eq bl b2
tells whether bl and b2 are equal bags, using eq to determine equality on elements.) *)

type 'a bag
empty-bag: 'a bag
singleton-bag :'a-+'a bag
bag-union: 'a bag ->• 'a bag -»• 'a bag
bag-equal: ('a ->• bool) ->• 'a Z?ag -»• 'a bag -» 600/

type variable = s/nng

(* Abstract syntax for arbitrary type expressions *)
infix x infixr =>
datatype texp = Unit |op x of texp * texp | op => of texp * /ex/? | V of variable
(* Abstract syntax for irreducible type expressions (normal forms) *)
infixr «>
datatype factor = op «> of product * variable
withtype product = factor bag
type normalform = product

(* red: /ex/? ->• /ex/?. Reduce an expression to normal form. *)
fun red (Unit) = Unit
| red (V var) = V var
| red (sxt) = red'(red s x red t)
| red (5 => /) = red! (red s => red /)

(* red': texp -*• texp. Reduce an expression to normal form, assuming that all of its
proper subexpressions are irreducible. *)
and red'(Unit x /) = /
I red'(t x Unit) = t
I red'(t => Unit) = Unit
I red'(Unit => t) =t
I red'(r => s => /)) = (r x 5) => /
I red'(r => (s x /)) = red'(r =>s)x red'(r => t)
I red {t) = t

(* chtype: texp -> normalform. Change the type of a reduced ' texp' to
'normalform'. *)
exception Not-normal
fun chtype (V var) = singleton-bag (empty-bag *=> var)
I chtype (t => V var) = singleton-bag (chtype t «> var)
I chtype (t => _) = raise Not-normal
I chtype (Unit) = empty-bag
I chtype (sxt) = bag-union (chtype s) (chtype t)

(* eq-p: product-+product->• bool
eq-f: factor ->factor ->• 600/ *)

fun e(7_/? /?7 /?2 = bag-equal eq-f pi p2
and eq-f (pi ^>varl) (p2^> var2) = (varl = var2) andalso (eq-p pi p2)

(* equivalent: texp -*• texp -»• Z?oo/ *)
fun equivalent s t = eq-p (chtype (red s)) (chtype (red /))

Fig. 6. A Standard ML program for deciding isomorphism. The keyword withtype should be
using in some systems. See also section 5.1 on variable renaming.
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5 Implementation and performance

To check the practicality of the term-rewriting algorithm, I have implemented a
search system for, and in, Lazy ML (Augustsson and Johnsson, 1988, 1989). In short,
my conclusion is that it is fast enough. (The search system is distributed with version
0-95 of the Lazy ML compiler; a user manual is included, which can also be obtained
as Rittri, 1989.)

The primary reason for choosing Lazy ML as object language is that no knowledge
about the compiler is needed. Lazy ML is designed for separate compilation, and for
each source file that contains a module, the compiler writes a 'type-file', which
contains the identifiers that are exported, together with their types. Thus, the search
system need only read the type-files, and we can search any program, except that we
cannot find identifiers that are local to a module. For an interactive functional system,
the search program would either have to use the system's internal type environment
or do its own type-derivation from the source files.

The search system parses type-files, and searches linearly for identifiers with a type
equivalent to a query. For the type-files of the Lazy ML standard library, with 194
identifiers, a search takes typically 3-6 cpu seconds, 1-5 of which are due to the
parsing. The measurements were made on a Sequent Symmetry computer (its cpu is
about as fast as that of a Sun-3). The parsing time indicates that the program cannot
be speeded up very much while keeping the linear search. Experience from the Lazy
ML compiler (Augustsson and Johnsson, 1989) and the parser generator (Uddeborg,
1988) suggests that not much more speed-up than a factor of 2-4 can be expected by
switching to an imperative implementation language. On the other hand, it should be
simple to preprocess the library and search in a hash table, which ought to improve
performance significantly.

5.1 Implementation details
The equivalence test for types is as described in section 4.1, though it can handle free
type operators like List. Bag equality is decided by a simple quadratic algorithm.

To handle equivalence of type-schemes, where renamings of variables are allowed,
the program first checks whether the two type-schemes have the same number of
distinct variables. If they do not, they are not equivalent, but if they do, all possible
renamings are generated and tested in turn. Thus, if both type-schemes have n
variables, n\ tests may be performed. This method is clearly dangerous, but type-
schemes have hardly ever more than three distinct variables, so it has worked well in
practice. It would be better if the equivalence test only generated renamings that
might be useful; I think this can be done with a complexity better than factorial.

The parsers for queries and type-files were made with the functional parser
generator FPG (Uddeborg, 1988), which generates efficient LR(1) parsers and is easy
to use.

6 Related work

I know of two other papers that deal with types as search keys.
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6.1 Runciman's and Toy it's work
Independently, Colin Runciman and Ian Toyn at the University of York have had the
idea of using types as search keys (Runciman and Toyn, 1989), and they support their
approach with a statistical investigation of some typical functional libraries. They
propose that the search system should find all identifiers whose types are unifiable
with the query. This is to handle a method where the queries are not necessarily
formulated by hand, but perhaps derived from programs with free variables, or from
specification laws, etc. The authors do not abstract away from argument order or
currying.

Runciman and Toyn also handle the situation when a library function has an extra
argument, which corresponds to a value that is constant in the user's application.

We can say that whereas my search method is based on the user's ignorance of
argument order and currying, Runciman's and Toyn's is based on the user's
ignorance of extra arguments.

They define a generality order on types, which is a combination of the usual
generalization (co-instance) and the idea that a type A => B is more general than B.
The most natural combination turns out to be a preorder, and to get a partial order,
i.e. anti-symmetry, the authors forbid the instantiation of type variables to function
types. As an example, they point out that the type of the function map2,

. (a => p => y) => List(a) => Lwr(P) => List(y)

becomes more general than the type of map,

VpY. (P=>y)

Thus, their search system will sometimes find interesting things that mine would not
(and vice versa).

In the same vein, I think it possible to regard a product type as more general than
its components. Then we could show, for instance, that the type of 'mapstate',

. (oc=>P=>ocxy)=>a=>List{$) =>axList(y)

is more general than both the type of map,

(P => Y) => Zisf(P) => List(y)
and the type offoldl,

. (a => P => a) => a => List(fi) => a

which confirms the description (in Augustsson and Johnsson, 1988) of mapstate as a
hybrid between map and foldl. So it appears to be useful to allow extra arguments and
extra results from library functions.

6.2 Matching modulo isomorphism
Since Runciman and Toyn retrieve unifiable types but do not take isomorphism into
account, we may wonder if we could not unify modulo isomorphism; such questions
are studied in unification theory. It is as yet an open question whether unifiability
modulo isomorphism is decidable (see section 7).
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In Rittri (1990a), I have presented an algorithm for matching (or one-way
unification) modulo isomorphism. To be precise, a type A is said to match a type B
modulo isomorphism if and only if A has a generic instance B' (see Damas and
Milner, 1982) which is isomorphic to B. I use the algorithm to retrieve library
identifiers of types that are at least as general as the query, modulo isomorphism. My
algorithm is based on one by Bernard Lang (1978) for a similar problem. Matchability
modulo isomorphism was recently shown to be NP-complete (Narendran, Pfenning
and Statman, 1989), but the prototype implementation described in Rittri (1990a)
gives access times that are usually around 2 CPU seconds when searching the Lazy
ML library.

Runciman's and Toyn's reason to retrieve unifiable types is that they want to derive
queries automatically from specification laws, context of use, etc. In Rittri (1990 a),
I have still explicitly formulated queries in mind, but I have another reason to allow
library identifiers that are more general than the query, namely that it can be hard to
figure out the most general type of a function. If we have the code, we can derive the
most general Hindley-Milner type automatically, but a user of a search system will
have to figure out a type just from the specification he has in mind. See for instance
fig. 6. There we requested a bag equality test of type

Va. (a => a => Bool) => Bag(a) => Bag(a) => Bool

but many implementations will have the more general type

(a => p => Bool) => Bag(a) => Bag($) => Bool

David Turner (1985, p. 5) has reported a similar experience with the function foldr;
it is not obvious that the function argument to foldr can take arguments of different
type.

7 Future work

7.1 Unification modulo isomorphism
Two types are (generically) unifiable modulo isomorphism is they have generic
instances that are isomorphic. In Narendran et al. (1989), it is reported as an open
question whether such unifiability is decidable, but it is shown that by removing the
distributivity axiom from F, one gets an equational theory in which unification is NP-
complete, and therefore decidable. This result is stated for the case where there are no
free type operators (like List) in types to be unified, except constants (like Int). It does
not follow immediately that the algorithm can be extended to arbitrary free
operators, but possibly the methods in Schmidt-Schauss (1989) apply.

If we remove the axioms on 1, too, we get an even smaller equational theory
presented by just the commutativity and associativity of x and the axiom about
currying. The algorithm in Narendran et al. (1989) works for this subtheory, too, and
the methods in Schmidt-Schauss (1989) can be used to extend it to handle free
operators. We can also note that unification modulo the left commutativity of => (see
section 2.3) is known to be decidable, even in the presence of free operators (Kirchner,
1984, 1985; Jeanrond, 1980).
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So if we want to match, we can do it modulo F, but if we want to unify, we must
currently give up at least the distributivity axiom. Someone might be able to find an
algorithm for F-unification, but the problem could also be undecidable. And even
though we get decidable unification problems by removing the distributivity axiom,
it is not clear that the algorithms can be made efficient enough.

A survey of unification under equational theories and an extensive bibliography on
unification theory can be found in Siekmann (1989).

7.2 Queries with free type variables
There are search problems that cannot be handled by the method as described so far.
The search system can only find a type, if there is an identifier that has the type. If you
search for a tuple type, the search system will not tell you that the components exist,
if there is no identifier bound to the whole tuple. If you search for a function:
A=>C, the search system will not tell you that you could compose a function: A => B
with a function :B=>C. And if you search for a type B, the system will not tell you
whether there is a function: A => B, that you could apply to an /1-value to get a
B-value (see section 6.1).

Each of these cases could be handled separately, but it would be better to have one
general method for them all. One idea is worth mentioning. In the case above, where
we cannot find a function of type A => C, and suspect that there are two functions that
go via an unknown intermediate type B, it is tempting to pose a Prolog-like
conjunctive query ,4 => R B => C

which the system can answer by finding a type B to substitute for B, and two
identifiers of types A=> B and fl=> C. But what exactly is B here? It looks like a type
variable, but type variables are normally bound locally in a Hindley-Milner type.
Since we want the same B at both occurrences, we conclude that B is a free type
variable. Damas and Milner (1982) use both free and bound type variables to explain
the Hindley-Milner type system, and even if the derived type of an expression always
is closed in a closed type environment, there is no reason to demand that queries are
closed. The following definition seems natural:

Definition 2
The answer to a query containing free type variables is the union of the answers to
all closed instances of the query.

An instance here means to instantiate the free type variables, rather than a generic
instance, which means to instantiate the bound ones (Damas and Milner, 1982).

If we want to retrieve identifiers of types more general than an open query, we may
have to instantiate both the bound variables in the library types and the free variables
in the query. It is not hard to show that we can solve this problem if and only if we
can unify, which was discussed in the previous section. But note that the distinction
between free and bound variables makes the query language more expressive. In
many cases, an experienced functional programmer knows that a function is
polymorphic, and he can then use a bound type variable in his query. In other cases,
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he wants a place-holder for a type that is simply unknown to him, such as B in the
example above, and he can then use a free variable.

As another example of how free type variables can be used, not that they can be
used to imitate Runciman's and Toyn's search strategy (see section 6.1). If we search
for identifiers of a type A=> B and want to express that we accept extra arguments in
a library type, we can query with a type (a x A) => B, where a is a free type variable
that can be instantiated to a tuple type (several extra arguments), or to a single type
(one extra argument), or to 1 (no extra arguments). To allow extra arguments at any
level, such as in the function argument to map2 in section 6.1, we can traverse the
query and insert new free variables where necessary.

7.3 Searching for types
A variation of the theme is when we do not search for an identifier of a certain type,
but for a type of a certain structure. For instance, we may want to know whether there
is a standard way to add an extra element to a type. In the literature, I have seen
various names:

datatype Option(a) = Some a \ None
datatype Isit(a) = Is a | Isn't
datatype Try(a) = Succeed a \ Fail

I am not sure whether questions of this kind are common enough to warrant a special
treatment. Still, programs would certainly be easier to read if programmers used the
same names for the same constructs, and they will not do so unless there is a fast way
to find the standard names. That goes for type names as well as for function names.

8 Summary and conclusions

I have proposed two commands that a search system could execute, given a query
type A:

1. Retrieve each identifier of a type CCC-isomorphic with A.
2. Retrieve each identifier of a type more general than A, modulo CCC-isomorphism.

If queries may contain free type variables, conjunctive queries in the Prolog style
would also be useful.

I have shown in this article that when the query is closed, the first command is
simple to implement and yields efficient search.

To implement the first command for queries with free type variables, or the second
command for closed queries, it is enough to implement matching modulo CCC-
isomorphism, and this problem is decidable but NP-complete (Narendran et al.,
1989). The algorithm in Rittri (1990 a) gives acceptable access times for most queries.

To implement the second command for queries with free type variables, we need
to unify modulo CCC-isomorphism, but it is an open question whether this is
decidable. However, unification becomes decidable if we drop the distributivity axiom
(Narendran et al., 1989).
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I conjecture that unification algorithms can be made efficient enough for practical
use. It should also be possible to preprocess large libraries to get improved many-to-
one unification.
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