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How far does turbulence spread?
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How locally injected turbulence spreads in space is investigated with direct numerical
simulations. We consider a turbulent flow in a long triply periodic box generated by
a forcing that is localized in space. The forcing is such that it does not inject any
mean momentum into the flow. We show that at long times a statistically stationary
state is reached where the turbulent energy density in space fluctuates around a mean
profile that peaks at the forcing location and decreases fast away from it. We measure
this profile as a function of the distance from the forcing region for different values
of the Reynolds number. It is shown that, as the Reynolds number is increased, it
converges to a Reynolds-number-independent profile, implying that turbulence spreads
due to self-advection and not due to molecular diffusion. In this limit, therefore, turbulence
plays the simultaneous role of cascading the energy to smaller scales and transporting it to
larger distances. The two effects are shown to be of the same order of magnitude. Thus a
new turbulent state is reached where turbulent transport and turbulent cascade are equally
important and control its properties.
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1. Introduction

A drop of dye in a fluid will spread so that at long times it is uniformly distributed in
the entire space. This is not necessarily true for a turbulent puff introduced locally in
an otherwise still fluid. Turbulent energy will also spread either by viscous diffusion or by
self-advection but at the same time will dissipate. At long times, if constantly injected, will
the spreading of turbulence be able to overcome the dissipation so that turbulence spreads
throughout the domain or will dissipation limit its presence to be only near its source?
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The answer to this question is not a priori obvious and is fundamental for understanding
inhomogeneous turbulent flows.

Inhomogeneous flows have been the subject of various recent studies (Valente
& Vassilicos 2011; Gomes-Fernandes, Ganapathisubramani & Vassilicos 2015;
Alves-Portela, Papadakis & Vassilicos 2020; Araki & Bos 2022; Berti, Boffetta &
Musacchio 2023) that have all emphasized the effect of inhomogeneity in the cascade
process which can make it deviate from the classical homogeneous case. In particular,
it has been shown that inhomogeneity can alter the scale-by-scale balance of the
cascade (Apostolidis, Laval & Vassilicos 2022, 2023) and change its scaling properties.
Furthermore, inhomogeneity is an indispensable ingredient of many classical canonical
flows, such as the spreading of a turbulent jet (List 1982; Carazzo, Kaminski & Tait 2006;
Ball, Fellouah & Pollard 2012; Cafiero & Vassilicos 2019) and the spreading of turbulence
from the boundaries in wall-bounded flows (Jiménez 2012; Gomes-Fernandes et al. 2015;
Cimarelli et al. 2016).

In these cases, however, along with the injection of energy, there is also a mean injection
of momentum. Momentum, unlike energy, is not dissipated by viscosity and it can only
be transferred in space (by viscosity or advection) or out of the domain through the
boundaries by viscous forces. Thus, much like the example of the drop of dye, the injected
momentum will spread throughout the space, carrying along energy. The same holds if
the injected energy has a mean angular momentum that is also conserved by viscous
forces. Therefore, in the case that there is mean momentum injection, the answer to the
question posed in the first paragraph is that momentum and energy will occupy the entire
domain. The present work investigates the spreading of turbulence in the absence of mean
momentum and angular momentum injection, which is fundamentally different from the
cases mentioned before.

To do that, we consider turbulence generated in a long triply periodic box. The flow
is forced homogeneously in the two short directions of the box and locally in the long
direction. The forcing is such that no mean momentum is injected. We study the behaviour
of the flow inside and outside the forcing region at long times, measuring the energy
distribution and energy fluxes in real and spectral space.

2. Formulation

2.1. Mathematical set-up
A triply periodic domain of size 2πL × 2πH × 2πH is considered, as shown in figure 1,
with L � H being along the x direction and x = 0 taken to be the midplane of the box.
The flow inside the domain satisfies the Navier–Stokes equation

∂tu + u · ∇u = −∇P + ν∇2u + f , (2.1)

where u is the divergence-free velocity field (∇ · u = 0), P is the pressure, ν is the
viscosity and f is the forcing, with ∇ · f = 0. The functional form of the forcing is given
by

f (t, x) =
⎡
⎣ 0
∂z[ψ(t, x/�)− ψ(t,−x/�)]
∂y[ψ(t,−x/�)− ψ(t, x/�)]

⎤
⎦ exp

[
L2

�2

(
cos

( x
L

)
− 1

)]
, (2.2)
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z
y

xx = 0

2πL 2πH

2πH

Figure 1. The computational domain considered. The length L was chosen to be eight times the height,
L = 8H, and x = 0 is taken to be at the middle of the box. The colours indicate visualizations of the enstrophy
(∇ × u)2, with red indicating high values while blue represents small values from the Reε = 230 run.

where ψ(t, x/�) is a random function including only Fourier modes with wavevectors k
satisfying 0 < |k�| ≤ 2 and kx /= 0:

ψ(t, x/�) =
∑

0<|k�|≤2, kx /= 0

ak exp(i[k · x + φk(t)]). (2.3)

The phases φk of these modes are delta-correlated in time (change randomly every
time step �t in the simulation) while the amplitudes ak ∝ 1/

√
�t are fixed in time and

independent of k. The randomness and the infinitesimal correlation time lead to a mean
energy injection rate I0 independent of the flow. The forcing injects zero momentum at
every instant of time. For |x| � L the exponential factor to the right of (2.2) scales like
exp(−x2/�2) so that the forcing is limited to being only around the range |x| ∼ � and zero
outside. In the numerical simulations that follow, we have picked � = H and L = 8H,
which was proven (a posteriori) to be long enough so that the effect of the periodicity
along the x direction does not play a role. Periodicity here is used only as a means to reduce
computational cost, and in principle other boundary conditions could also be considered.

2.2. Energy balance relations and fluxes in space
The primary quantity of interest in this work is the time- and volume-averaged energy
density of the system, which is given by

E0 = 1
2 〈〈|u|2〉V〉T , (2.4)

where the angular brackets 〈·〉T stand for time average and 〈·〉V for volume average, which
are defined as

〈 f 〉T = lim
T→∞

1
T

∫ T

0
f dt and 〈 f 〉V = 1

V

∫
V

f dx dy dz, (2.5a,b)

with V = (2π)3H2L being the system volume.
The averaged rate I0 at which energy is injected is balanced by the averaged rate D0 at

which energy is dissipated, leading to

I0 ≡ 〈〈u · f 〉T〉V = 2ν〈〈|S|2〉T〉V ≡ D0, (2.6)

where S stands for the strain tensor Si,j = 1
2 [∂iuj + ∂jui].

However, neither the time-averaged energy nor its injection and its dissipation are
uniform along the x direction. It is thus appropriate to consider the mean energy density
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in a subdomain of the periodic box,

E(X) = 1
2 〈〈|u|2〉T〉X, (2.7)

where 〈·〉X stands for the average confined in the sub-box from x = −X to x = X:

〈 f 〉X = 1
(2πH)2

∫ 2πH

0

∫ 2πH

0

∫ X

−X
f (x, t) dx dy dz. (2.8)

For X = πL the entire box is considered, so clearly E(πL) = 2πLE0. We also define the
local energy density averaged over the planes x = ±X:

E(t,X) = 1
2(2πH)2

∫ 2πH

0

∫ 2πH

0
|u(t,X, y, z)|2 + |u(t,−X, y, z)|2 dy dz. (2.9)

The two energy densities are related by 〈E(X)〉T = ∂XE(X).
A generalization of (2.6) for E(X) can then be obtained by taking the inner product

of the Navier–Stokes equation with u, time averaging and integrating over y, z and from
x = −X to x = X to obtain

I(X) = D(X)+ F(X), (2.10)

where I(X) and D(X) are the energy injection rate and the energy dissipation rate within
the considered volume defined respectively as

I(X) ≡ 〈〈 f (t, x) · u(t, x)〉X〉T and D(X) ≡ 2ν〈〈|S(t, x)|2 dx〉X〉T . (2.11a,b)

The third term F(x) in (2.10) is a flux that expresses the rate at which energy is
transferred outside the considered volume (Landau & Lifshitz 2013). It can be decomposed
into three terms

F = FU + FP + Fν, (2.12)

where FU is the energy flux due to advection, FP is the flux due to pressure and Fν is the
flux due to viscosity. They are defined explicitly as

FU(X) = 1
2(2πH)2

〈∫
x=X

ux|u|2 dy dz −
∫

x=−X
ux|u|2 dy dz

〉
T
, (2.13)

FP(X) = 1
(2πH)2

〈∫
x=X

uxP dy dz −
∫

x=−X
uxP dy dz

〉
T
, (2.14)

Fν(X) = ν

(2πH)2

〈∫
x=−X

ui∂iux + ui∂xui dy dz −
∫

x=X
ui∂iux + ui∂xui dy dz

〉
T
, (2.15)

where the integrals are taken at the two planes x = ±X and summation over the index i is
assumed in the last one.

2.3. Energy spectra and fluxes in scale space
The fluxes above describe how energy is transported in physical space. At the same time,
energy is also transferred in scale space from large to small scales. To quantify the energy
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distribution and fluxes in scale space, we use the Fourier-transformed fields ũk(t) defined
by

ũk(t) = 〈u(t, x) e−ik·x〉V and u(t, x) =
∑

k

ũk(t) eik·x, (2.16a,b)

where the inverse wavenumber k−1 gives a natural definition of a scale. The energy
spectrum, giving the distribution of energy among scales is defined as

Ẽ(k) = 1
2

∑
k<|q|<k+1

〈|ũq|2〉T . (2.17)

The energy flux gives the rate at which energy flows across k is defined as

Π(k) = −〈〈u<k · u · ∇u〉V〉T , (2.18)

where u<k stands for the velocity field filtered so that only wavenumbers with norm |k| < k
are retained (Alexakis & Biferale 2018). It is worth noting here the fact that the problem
is not homogeneous, making the spectral analysis harder to interpret, and care needs to be
taken.

2.4. Reynolds numbers
The Reynolds number in this system provides a measure of the strength of turbulence and
it is typically defined as Re = U�/ν, where U is the typical velocity of the system. In this
work, we are interested in the long-box limit, L � H, and some care needs to be taken in
order to be able to compare with homogeneous turbulence results. If we define U based on
the mean energy density E0 (given in (2.4)), then, if turbulence remains localized, E0 will
approach zero in the limit L � H. Thus defining U as the root mean square (r.m.s.) value
over the entire domain, U = (2E0)

1/2, will greatly underestimate the value of U close to
the forcing region. The same holds for the mean dissipation rate density D0.

To compensate for these, we will define the typical velocity U and the typical dissipation
rate ε as

U =
√

2E0L
H

and ε = D0
L
H
. (2.19a,b)

The factor L/H introduced makes U and ε remain finite in the L/H → ∞ limit for
localized turbulence. These definitions can be interpreted as the r.m.s. velocity and
dissipation around the forcing region.

With these definitions of U and ε, the following three Reynolds numbers typically
encountered in the literature are defined:

ReU ≡ UH
ν
, Reε ≡ ε1/3H4/3

ν
and Reλ ≡

√
5U2

(νε)1/2
. (2.20a–c)

The first one is the classical definition of the Reynolds number based on the (rescaled)
r.m.s. velocity. The second is a Reynolds number based on the energy injection or
dissipation and is the one we control in these simulations (since it is the energy injection
rate we impose). Finally, the third one is the Taylor-scale Reynolds number based on the
Taylor microscale λ = U

√
5ν/ε. The three definitions are related by

5Re4
U = Re2

λRe3
ε, (2.21)

and for large ReU it is expected that ReU ∝ Reε ∝ Re2
λ.
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Nz × Ny × Nx Reε ReU Reλ kmaxη

64 × 64 × 512 2.0 1.7 2.2 12.6
64 × 64 × 512 4.0 4.5 5.8 7.54
64 × 64 × 512 10.0 15.1 16.8 3.79
64 × 64 × 512 20.0 34.7 31.3 2.25
64 × 64 × 512 40.0 78.1 54.1 1.34
128 × 128 × 1024 110 217 92.1 1.25
256 × 256 × 2048 230 502 161 1.44
512 × 512 × 4096 500 1165 270 1.61
1024 × 1024 × 8192 1250 2990 447 1.62

Table 1. Resolution and values of the Reynolds numbers ReU , Reε and Reλ achieved in the numerical
simulations The last column gives kmaxη > 1.

2.5. Numerical set-up
The Navier–Stokes equations are solved using the pseudospectral code GHOST (Mininni
et al. 2011), which uses a 2/3 dealiasing rule and a second-order Runge–Kutta method for
time advancement. A uniform grid was used such that the grid spacings �x = 2πL/Nx,
�y = 2πH/Ny and�z = 2πH/Nz are equal, where Nx, Ny and Nz are the numbers of grid
points in each direction, with Nx = 8Ny = 8Nz.

The simulations were started from the u = 0 initial conditions and continued until
a steady state is reached, for which a mean energy profile can be calculated. The
only exception to this rule is the highest-resolution run Nx = 8192, for which the
results of the Nx = 4096 run were extrapolated to a larger grid and used as initial
conditions. This run was performed for eight turnover times, which was enough to
converge sign-definite quantities (like energy) but not sign-indefinite quantities (like
fluxes). A run was considered to be well resolved if a viscous exponential decrease in the
energy spectrum is observed. We also verified that kmaxη > 1, where kmax = Ny/3 in the
maximum wavenumber and η = HRe−3/4

ε is the Kolmogorov length scale. The properties
of all runs performed are given in table 1.

3. Results

We begin with figure 2(a), which shows the energy density E(t,X) for Reε = 500 for
different times. The black dashed line shows the forcing profile, which is limited to
|X|/(2πH) � 1/2. Energy spreads away from the forcing region but at late times it
fluctuates around a mean profile shown by the red line. Thus already at this stage it can be
testified that energy does not spread in the entire box and it remains close to the forcing
region. This mean profile is shown in figure 2(b) for different values of Reε . The different
colours indicate the different values of the Reynolds number achieved as marked in the key.
The same colours are used for all subsequent figures. The peak of the local energy density
lies close to the forcing region, x � 0, and decays fast away from it. The energy far away
from the forcing at |X|/(2πH) � 4 remains very small such that E(8πH)/E(0) � 10−6.

Before continuing with spatial properties of our flow, we perform some standard
benchmark analysis often used in homogeneous turbulence. Figure 3 shows the scaling
of global measures as a function of the Reynolds number. Figure 3(a) shows the relation
between the different Reynolds numbers where the scaling ReU ∝ Reε ∝ Re2

λ that holds
for large Re is verified. In figure 3(b) we show the non-dimensional dissipation rate (or
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Figure 2. (a) The energy density E(t,X) for different times for Reε = 500. Times are in units of H2/3/ε1/3.
(b) The time-averaged energy density 〈E(X)〉T at steady state for different values of Reε in the entire domain.
The dashed line indicates the forcing amplitude as a function of X. The inset shows the same data in log–log
scale. The same colour key is used to mark Reε in all subsequent figures.
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Figure 3. (a) Relation between the different Reynolds numbers ReU , Reε and Reλ. (b) The normalized
dissipation rate Cf as a function of Reλ.

drag coefficient) Cε defined here as

Cε = εH
U3 , (3.1)

which expresses the rate at which energy is dissipated non-dimensionalized by the
amplitude of the fluctuations.
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Figure 4. (a) The energy spectra Ẽ(k) for the different Reλ examined. (b) The energy fluxes Π(k) for the
same runs.

It is a cornerstone conjecture of homogeneous and isotropic turbulence theory that Cε
attains a finite and Re-independent value at large Re. The present data indicate that, at large
Reλ, Cε appears to converge to a Reλ-independent value but quite slowly. Only the largest
values of Reλ � 270 indicate the possibility that such a plateau is reached, with a value of
Cε � 0.06 that is rather small. In homogeneous and isotropic simulations, such a plateau
is reached after Reλ ∼ 100 and at a much larger value Cε � 0.5 (Kaneda et al. 2003). This
reflects that localized turbulence is affected by the additional freedom to expand in a larger
region, possibly suppressing its efficiency to cascade energy to the smaller scales.

Figure 4 examines spectral properties of the flow. In figure 4(a) we plot the energy
spectra for the different values of Re. Despite the strong inhomogeneity, the spectra show
similar behaviour to homogeneous turbulence flows. As the Reynolds number is increased,
more scales are excited and a power-law spectrum starts to form, with exponent close
to the Kolmogorov prediction Ẽ(k) ∝ k−5/3. In figure 4(b) the energy fluxes in Fourier
space are plotted. The energy fluxes increase with Re until, for the largest Res attained, a
constant-flux range has begun to form. It is worth noting that this constant-flux region is
obtained at much larger Re than is observed in homogeneous turbulence, reflecting a delay
in obtaining a Re-independent scaling due to the effect of spreading.

Returning to the spatial properties of the flow and the energy density profile, we note
that, as the Reynolds number is increased, the energy increases and also spreads at
larger distances. At very large values of Reλ, the energy profile appears to converge to
a Re-independent profile. This implies that at large Re the energy profile is determined by
the self-spreading of eddies due to turbulent advection and not by viscous processes. The
fast drop of E(X) can be either an exponential, E(x) ∝ exp(−αx), or a steep power law,
E(x) ∝ |X|−6 (see inset). The present data cannot exclude either option. We point out that,
since the energy density drops very fast, the local Reynolds number (defined using a local
r.m.s. velocity) is also decreasing. So it is hard to obtain a large-Re behaviour in the outer
region |X| � H.

The fact that the energy density reaches a Re-independent profile is not a trivial result.
It reflects a balance between the rate at which energy is transported to larger values of
|x| and the rate at which energy cascades to the small scales. If the cascade process was
weaker than the real-space transport, then in the Re → ∞ limit energy would reach the
entire domain. On the contrary, if the real-space transport was weaker, no energy would
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Figure 5. The different energy fluxes in real space as indicated in the legend for three different values of
Reε = 4 (a), 40 (b) and 500 (c).

be found outside the forcing region in the same limit. In other words, turbulent diffusion
and turbulent dissipation must be of the same order.

To quantify this assertion, we look at the fluxes in real space. In figure 5 we plot Fi for
three different values of Re, varying from the laminar to the turbulence case. In each panel,
the black line shows the total flux, the blue line the flux due to velocity fluctuations, the
green line the flux due to pressure and the red line the flux due to viscosity. The magenta
line shows the difference between I(X) and D(X). A comparison between the black and
magenta lines verifies the relation (2.10). The small differences that are observed are due
to insufficient time averaging, which is more pronounced in the large resolution runs.

A few observations need to follow. For small Re, the energy flux is dominated by
viscosity, with pressure also playing a significant part. The flux due to the velocity
fluctuations has a negative sign. As the Reynolds number is increased, the role of the
velocity fluctuations becomes more dominant, transferring energy outwards. The transfer
due to viscosity diminishes while the transfer due to pressure also takes negative values.
At the largest Re, almost the entire flux is dominated by the velocity fluctuations, with
the pressure flux being weaker and positive in the forcing region and negative away from
it. The behaviour and functional form of these fluxes remain puzzling, in particular the
negative pressure flux, which implies that high pressure fluctuations are correlated with
inner-directed velocities. A theoretical understanding of these fluxes needs to be pursued
by future theoretical work.

Finally, to compare the two dominant processes away from the forcing region, i.e.
turbulent dissipation and turbulent diffusion, we plot the dissipation rate D(X) in
figure 6(a) and the total flux F(X) in figure 6(b) for all Re. Figure 6(c) compares the two,
for Reε = 500. The black dashed lines indicate I(X), which is the same for all Re. As the
Reynolds number is increased, the dissipation is decreased while the flux is increased. For
the largest Re at the peak of the flux around X � 0.15(2πH), the two processes become
approximately equal, marking that the two processes, turbulent dissipation and turbulent
diffusion, are of the same order.

4. Conclusions

The present work has demonstrated that locally forced turbulence will not spread
throughout the domain provided that there is no mean injection of linear or angular
momentum. It will remain localized, forming an energy density profile that is
Re-independent in the large-Re limit. Away from the forcing region, the two dominant
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Figure 6. (a) The dissipation rate D(X), and (b) the energy flux F(X) for different values of Re.
(c) Comparison of the largest Reε = 500 for which the fluxes were measured. The black dashed lines indicate
I(X).

effects are turbulent dissipation and turbulent diffusion, which were found to be of the
same order. Whether the resulting profile is universal or depends on the details of the
forcing mechanisms remains to be seen.

To expand upon the understanding of the two processes involved, turbulent diffusion
and turbulent dissipation, a simultaneous scale-space and real-space analysis would be
required, either by introducing local smoothing (Germano 1992; Aluie & Eyink 2009;
Eyink & Aluie 2009; Alexakis & Chibbaro 2020) or by using two-point analysis and
the Kármán–Howarth–Monin–Hill equation (Hill 2001, 2002). The latter has been used
recently to study boundary-driven flows (Apostolidis et al. 2022, 2023) and wakes (Chen
et al. 2021; Chen & Vassilicos 2022), where the role of inhomogeneous energy injection
from the mean flow was emphasized. In the present flow, there is no mean flow and
the primary terms in balance are the inter-scale transfer rate and turbulent transport in
physical space, both of which are forcing- and viscosity-independent. Thus a new state of
turbulence is present, where two inertial effects, the energy fluxes in scale space and in
real space, compete.

Simplified models such as Reynolds-averaged Navier–Stokes and the K–ε model (Lele
1985; Speziale 1998; Yusuf et al. 2020) could also help in predicting the resulting energy
profile. Such models depend on parametrizing the energy cascade and the energy diffusion,
the two effects whose balance leads to the energy profile. Care thus needs to be taken in
this parametrization so that the correct energy profile is captured.

Finally, we would like to add that the present study was limited to a flow in an anisotropic
box elongated along one direction. This restricts the spreading of turbulence only along
this direction. Its extension to larger domains where turbulence can spread in two or
in all three directions is far from trivial and would need to be examined separately.
Here experimental investigations would become much more beneficial than numerical
simulations.
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