A STRUCTURE THEOREM FOR TOPOLOGICAL LATTICES

by L. W. ANDERSON and L. E. WARD, JR

(Received 4 January, 1960)

In the study of connected partially ordered spaces a problem of fundamental interest is to determine sufficient conditions to ensure the existence of chains (i.e., simply ordered subsets) which are connected. Recently [5] R. J. Koch proved that, if X is a compact Hausdorff space with continuous partial order (i.e., the partial order has a closed graph), if $L(x) = \{y : y \le x\}$ is connected for each $x \in X$, and if X has a zero (i.e., an element 0 such that $0 \le x$ for all $x \in X$), then each element of X lies in a connected chain containing zero. It is easy to find simple examples which show that this result is false if X is assumed only to be locally compact. However, if it is assumed that the partial order is that of a topological lattice then the existence of such chains can be shown by elementary methods. This solves a problem which was proposed in [3].

Recall that a *topological semilattice* can be defined to be a partially ordered Hausdorff space (S, \leq) such that the operation $x \wedge y = g.l.b.(x, y)$ is defined and continuous on $S \times S$. If, in addition, the operation $x \vee y = l.u.b.(x, y)$ is defined and continuous, then (S, \leq) is a *topological lattice*. It is known [1, 4] that the partial order is continuous in a topological semilattice. Moreover, if S is connected then so is $x \wedge S = L(x)$ for each $x \in S$.

Let a and b be elements of a partially ordered space with $a \leq b$. We say that a is chained to b provided that the space contains a connected chain C such that $a = \inf C$ and $b = \sup C$. In addition, C is said to be a *chain from a to b*. It follows from [6] that if the space is locally compact then such a chain is compact.

Finally, we recall that a subset C of a partially ordered set S is convex if, whenever x < y and y < z with x and z elements of C and $y \in S$, it follows that $y \in C$. A partially ordered space is *locally convex* provided that the topology possesses a base consisting of convex sets. A subset K of a partially ordered set is *order-dense* if, whenever a and b are elements of K and a < b, there exists an element c of K such that a < c and c < b.

LEMMA. Let S be a connected locally compact semilattice, let U be an open subset of S, and let $x \in U$. If x has arbitrarily small closed order-dense neighbourhoods, then there exists an open set V, with $x \in V \subset U$, such that if y and z are elements of V then $y \wedge z$ is chained to z.

Proof. Let W be an open set such that $x \in W \subset U$ and \overline{W} is order-dense and compact. Since \wedge is continuous there exists an open set V such that

$$x \in V \subset V \land V \subset W.$$

If y and z are elements of V then $y \land z \in W$. Let C be a chain in \overline{W} which is maximal with respect to containing $y \land z$ and z. Since \overline{W} is a compact order-dense partially ordered space, each of its maximal chains is compact [6, Lemma 4] and order-dense, and hence C is connected [6, Theorem 4]. The set $C \cap \{p : y \land z \leq p \leq z\}$ is clearly a connected chain from $y \land z$ to z.

A

THEOREM 1. Let S be a connected locally compact semilattice with zero and suppose that each element of S has arbitrarily small closed order-dense neighbourhoods. Then zero is chained to each $x \in S$.

Proof. Let P denote the set of all $x \in S$ such that 0 (zero) is chained to x. Obviously $0 \in P$ so that it is sufficient to prove that P is open and closed. Let $x \in P$ and let U and V be chosen as in the lemma. If $y \in V$, then there is a connected chain $C(x \land y, y)$ from $x \land y$ to y. If C is a connected chain from 0 to x then $(C \land y) \cup C(x \land y, y)$ is a connected chain from 0 to y. Hence $y \in P$ and P is open.

To see that P is closed let $x \in \overline{P}$ and again choose U and V as in the lemma. Let $y \in V \cap P$, let C be a connected chain from 0 to y and $C(x \land y, x)$ a connected chain from $x \land y$ to x. Then $(C \land x) \cup C(x \land y, x)$ is a connected chain from 0 to x so that $x \in P$, i.e., P is closed.

We do not know whether a connected and locally compact locally order-dense semilattice necessarily satisfies the hypothesis of Theorem 1. However, for lattices the situation is simpler.

COROLLARY 1. If L is a connected and locally compact topological lattice with zero, then zero is chained to each element of L.

Proof. It suffices, in view of Theorem 1, to show that each point of L has arbitrarily small closed order-dense neighbourhoods. Let $x \in U$, an open set in L. It is known [2] that L is locally convex and hence $x \in V \subset U$, where V is some open convex set. Let W be open and $x \in W \subset \overline{W} \subset V$; if $C(\overline{W})$ denotes the smallest convex set containing \overline{W} then $C(\overline{W}) \subset C(V) = V$. From [2] $C(\overline{W})$ is closed; hence x has arbitrarily small closed convex neighbourhoods. To see that $C(\overline{W})$ is order-dense, let a and b be elements of $C(\overline{W})$ with a < b; then $b \land (a \lor L)$ is a connected subset of $C(\overline{W})$ and hence $C(\overline{W})$ contains an element c such that a < c < b.

COROLLARY 2. If L is a connected and locally compact topological lattice and if $a \leq b$ in L, then a is chained to b in L.

Proof. Apply Corollary 1 to the lattice $a \lor L$.

There exists a connected and locally compact topological semilattice with zero such that zero is not chained to each point. In the cartesian plane let

$$A_{-1} = \{(1, y) : 0 \le y \le 1\},$$

$$A_n = \{(1 - 2^{-n}, y) : 0 \le y \le 1\} \quad (n = 0, 1,),$$

$$B = \{(x, 0) : 0 \le x \le 1\},$$

$$L' = B \cup \bigcup_{n=-1}^{\infty} \{A_n\}.$$

If $L = L' - \{(1, 0)\}$ is partially ordered by $(a, b) \leq (c, d)$ if and only if $a \leq c$ and $b \leq d$, then it is easy to verify that L is a connected and locally compact topological semilattice with zero. However, there is no connected chain from zero to (1, 1).

If the topological semi-lattice is also locally connected, then it is not known whether zero is chained to each point. However, there exists a locally compact and locally connected partially ordered space X satisfying these conditions: the partial order is continuous and there exists a zero, $L(x) = \{y: y \le x\}$ is connected for each $x \in X$, and there is a point $p \in X$ such that zero is not chained to p. To see this, let X be the product of the closed unit interval with itself,

with the point (1, 0) deleted. Define $(a, b) \leq (c, d)$ if and only if the following condition is satisfied: if c < 1 then either a = c and $b \leq d$ or $a \leq c$ and b = 0; if c = 1 then either a = 1 and $b \leq d$, or $a \leq 1$ and b = 0, or a = (n-1)/n for some positive integer n and $b \leq d$. It is a tedious but elementary exercise to verify that this relation is a continuous partial order, that L(x) is connected for each $x \in X$, and that (0, 0) is the zero of X. Moreover, there is no connected chain from (0, 0) to (1, 1).

Let I denote the closed unit interval of real numbers. An arcwise connected space X is said to be simply connected if, given a point $a \in X$ and a continuous function $f: I \to X$ with f(0) = f(1), there is a homotopy $g: I \times I \to X$ such that g(t, 0) = f(t), g(t, 1) = a, and g(0, r) = g(1, r) = a for each $r \in I$.

THEOREM 2. If S is an arcwise connected topological semilattice with zero, then S is simply connected.

Proof. Let $f: I \to S$ be continuous with f(0) = f(1) = 0. Define $g: I \times I \to S$ by $g(t, r) = f(t) \wedge f(t-tr)$.

COROLLARY 3. If S is a connected and locally compact metric topological semilattice with zero and if each element of S has arbitrarily small closed order-dense neighbourhoods, then S is simply connected.

Proof. By Theorem 1, zero is chained to each point of S. It is well-known that a compact connected metric chain is an arc (see, for example, [7, p. 30]) and hence S is arcwise connected.

COROLLARY 4. If L is a connected and locally compact metric topological lattice with zero, then L is simply connected.

REFERENCES

1. L. W. Anderson, On the distributivity and local connectivity of plane topological lattices, *Trans. Amer. Math. Soc.* 91 (1959), 102–112.

2. L. W. Anderson, One-dimensional topological lattices, Proc. Amer. Math. Soc. 10 (1959), 715-720.

3. L. W. Anderson, On the breadth and codimension of a topological lattice, *Pacific J. Math.* 9 (1959), 327-333.

4. L. W. Anderson and L. E. Ward, Jr, One-dimensional topological semilattices. To appear in Illinois J. Math.

5. R. J. Koch, Arcs in partially ordered spaces, Pacific J. Math. 9 (1959), 723-728.

6. L. E. Ward, Jr, Partially ordered topological spaces, Proc. Amer. Math. Soc. 5 (1954), 144-161.

7. R. L. Wilder, Topology of manifolds (New York, 1949).

UNIVERSITY OF OREGON U.S. NAVAL ORDNANCE TEST STATION