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Abstract

The episode of widespread organic carbon deposition marked by peak black shale sedimenta-
tion during the Palaeoproterozoic is also reflected in exceptionally abundant graphite deposits
of this age. Worldwide anoxic/euxinic sediments were preserved as a deep crustal reservoir of
both organic carbon, and sulphur in accompanying pyrite, both commonly >1 wt %. The car-
bon- and sulphur-rich Palaeoproterozoic crust interacted with mafic magma to cause Ni–Co–
Cu–PGE mineralization over the next billion years, and much uranium currently produced is
from Mesoproterozoic deposits nucleated upon older Palaeoproterozoic graphite.
Palaeoproterozoic carbon deposition has thus left a unique legacy of both graphite deposits
and long-term ore deposition.

1. Introduction

The Palaeoproterozoic Lomagundi–Jatuli Event was a major anomaly in the global cycling of
carbon which records a positive excursion in δ13C composition in carbonates worldwide
(Melezhik et al. 2007). This event was closely followed by the deposition of extensive black (car-
bon-rich) shales, the Shunga Event ˜2.0 Ga, on several continents (Condie et al. 2001; Strauss
et al. 2013; Martin et al. 2015). The abundance of carbon may reflect intense weathering of the
continents following the Great Oxidation Event, and high productivity in the nutrient-rich
oceans (Melezhik et al. 2013). The identification of this episode as the peak of black shale sed-
imentation in the Precambrian, from 2.0 to 1.85 Ga (Condie et al. 2001), is based on data from
Australia (57 %), North America (37 %) and Russia (6 %). New exploration for graphite depos-
its, required for industrial processes, batteries and possibly manufacture of graphene, has drawn
attention tomany additional successions of Palaeoproterozoic black shale, nowmetamorphosed
to graphitic metasediments, and the unique nature of this carbon burial episode.

The record of graphite as a measure of Palaeoproterozoic carbon burial is expressed here as
(i) a review of the depositional ages of the biggest graphite deposits, (ii) a compilation of carbon/
sulphur elemental datasets for graphitic metasediments and (iii) a review of carbon isotope
compositions of Palaeoproterozoic graphite. Combined, the data will confirm if the
Palaeoproterozoic was a period of anomalous carbon burial, if the carbon was derived from sedi-
mentary organic matter rather than carbonic fluids during metamorphism, and if the carbon
caused burial of sulphur as in younger sediments.

2. Methods

Stable carbon isotope analysis was conducted at SUERC on 20 graphitic samples digested in
10 % HCl overnight to remove trace carbonate. Samples were analysed by standard closed-tube
combustion method by reaction in vacuo with 2 g of wire form CuO at 800 °C overnight. Data
are reported in per mil (‰) using the δ notation versus Vienna Pee Dee Belemnite
(V-PDB). Repeat analysis of laboratory standard gave δ13C reproducibility around ±0.2 ‰
(1 s). Other isotopic data were collated from cited literature. Total organic carbon (TOC)
and S contents were measured using a LECO CS225 elemental analyser at the University of
Aberdeen, with standards 501-024 (Leco Instruments, instrument uncertainty ±0.05 % C,
±0.002 % S) and BCS-CRM 362. Data are reported on a carbon/sulphur cross-plot, relative
to the modern marine composition (Berner & Raiswell, 1983). The datasets reported are for
rock units with TOC levels above 1 wt %, i.e. they are classified as black shales (TOC >0.5
wt %; Huyck, 1990). The repeatability, based on three repeats of CRMs and blanks, was con-
sistently within 1 wt %. Collation of the world’s largest graphite deposits was performed using a
typical industry cut-off for exploitation of 8 wt % carbon (data file available from the authors).
Tonnages of ore at major ore deposits were collated from cited literature. The long-term legacy
of the Palaeoproterozoic graphitic rocks for mineralization that is important to global metal
resources is demonstrated by reviews herein of nickel (þcobalt–copper–PGE (platinum-group
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element)) mineralization, which occurs in mafic/ultramafic intru-
sions; and unconformity-related uranium mineralization.

3. Results

3.1. Anomalous Palaeoproterozoic carbon reservoir

Of the 33 richest graphite deposits in the world (minimum 8 wt
% carbon), 28 of 33 (85 %) deposits are of Palaeoproterozoic age
(Fig. 1; Table S1, in the Supplementary Material available online
at https://doi.org/10.1017/S0016756821000583). Most of the
deposits are dated to the range 2.1–1.85 Ga. Graphite deposits
not dated to this interval are either Palaeoproterozoic but not so
precisely dated, or Archaean. Hydrocarbon source rocks in
younger successions are attributed excellent organic richness
at mean contents above 4 wt % carbon, confirming the excep-
tional nature of the Palaeoproterozoic carbon accumulation.
Younger episodes of high carbon accumulation, including in
the late Neoproterozoic (Condie et al. 2001), were less extensive
and thus had less opportunity to influence subsequent processes
such as mineralization. The rich graphite deposits are predomi-
nantly vein-type, but there are many non-vein deposits of lower
grade, and also younger less rich vein deposits (Robinson
et al. 2017).

3.2. Sulphur contents of graphitic sediments

The cross-plot of organic carbon and sulphur (Fig. 2; Table S2, in
the Supplementary Material available online at https://doi.org/10.
1017/S0016756821000583) shows that in multiple datasets the S/C
ratio is greater than the modern marine sediment value of c. 0.35.
This is similarly reported in Palaeoproterozoic shales by Paiste
et al. (2020). The direct implication is that the anomalously high
carbon burial had the consequence of causing anomalously high
sulphur sequestration in many Palaeoproterozoic successions.
The carbon contents may be lower than originally deposited due
to volatile loss during metamorphism (Raiswell & Berner, 1987),
but correction for this would imply even richer carbonaceous
deposits at the time of deposition.

Some Palaeoproterozoic black shales do not show a concomi-
tant sulphur enrichment (e.g. de Putter et al. 2018), but most
are sulphur-rich. While the shales are typically sulphur-rich, beds
of mineable graphite are not sulphur-rich, and would not be com-
mercially viable if they were (Lu & Forssberg, 2002; Chelgani
et al. 2016).

3.3. Isotopic composition of Palaeoproterozoic graphite

Asmany of the graphite deposits weremetamorphosed to amphibo-
lite or granulite facies, it is feasible that the original sedimentary

Fig. 1. (Colour online) World’s richest graphite ore deposits. Deposits ranked by mean carbon content (wt %), collated from publicly available technical reports for exploration
projects (Table S1, in the Supplementary Material available online at https://doi.org/10.1017/S0016756821000583). Data shown adopt a lower cut-off of 8 % carbon, commonly
used in graphite exploration. Where clusters of several deposits occur together (e.g. at Balama), largest deposit is plotted. Palaeoproterozoic deposits highlighted and account for
28 of 33 richest deposits. Map shows global distribution of the richest graphite ores.

1712 J Parnell et al.

https://doi.org/10.1017/S0016756821000583 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756821000583
https://doi.org/10.1017/S0016756821000583
https://doi.org/10.1017/S0016756821000583
https://doi.org/10.1017/S0016756821000583
https://doi.org/10.1017/S0016756821000583
https://doi.org/10.1017/S0016756821000583
https://doi.org/10.1017/S0016756821000583
https://doi.org/10.1017/S0016756821000583


protolith could be supplemented by graphite precipitated from vol-
atile solutions containing CO2, H2O and CH4 during metamor-
phism, which should be evident in heavier carbon isotope values
(Huizenga & Touret, 2012; Luque et al. 2012). Data for 31 graphite
mines and prospective deposits in rocks of Palaeoproterozoic age
(Fig. 3; Table S3, in the Supplementary Material available online
at https://doi.org/10.1017/S0016756821000583), from 15 countries
distributed globally, are consistently in the range −15 to −37 ‰.
This range indicates an origin exclusively from organic matter,
and not enriched from a carbonate source during metamorphism.
Two separate databases for Palaeoproterozoic kerogen (Krissansen-
Totton et al. 2015; Havig et al. 2017) confirm that organic matter of
this age had δ13C −35 to −20 ‰. The graphite therefore represents
the anomalous Palaeoproterozoic deposition of organic carbon. By
contrast, several graphite deposits deposited from volatile CO2-rich
solutions in Precambrian granulites have a range of −18 to −5 ‰
(Vry et al. 1988; Huizenga & Touret, 2012; Luque et al. 2012;
Buseck & Beyssac, 2014). There are examples of graphite
in Palaeoproterozoic marbles (limestones) with relatively heavy
compositions (e.g. Garde, 1979), in which the graphite must be at
least partially derived from decarbonation. However, these are
minor showings, which do not impact on our dataset of rich graphite
deposits.

3.4. Mineralization

Large nickel (þCo–Cu–PGE) deposits occur in mafic–ultramafic
cumulate bodies, many of which were intruded through
Palaeoproterozoic graphitic rocks (Hoatson et al. 2006).
Assimilation of sulphur- and/or carbon-rich strata was critical
to mineralization, as it caused sulphur saturation and sulphide
precipitation in the magma. Assimilation is supported by sulphur
isotope data (Ripley, 2014). The host rocks to Ni (þCoþCuþ

PGE) intrusions have high S/C ratios typical of anoxic/euxinic
sediments (Berner & Raiswell, 1983), and the high carbon con-
tents are thus associated locally with abundant pyrite and pyrrho-
tite (Fig. 2). The sulphide-bearing graphitic hosts also contributed
trace elements to the melt that promoted mineralization. For
example, tellurium incorporated into pyrite in anoxic sediments
became concentrated by assimilation into melts where it could
precipitate PGE and gold tellurides (Peltonen, 1995; Samalens
et al. 2017). Almost all of the largest post-Archaean nickel depos-
its are either of Palaeoproterozoic age, or they are younger but
were intruded through and assimilated Palaeoproterozoic strata
(Fig. 4). The assimilation of carbonaceous (and sulphidic)
material is evidenced by xenoliths of metasediment, and by neo-
formed graphite crystallized from contaminated melt. Thus,
graphite occurs in the super-large deposits formed at Voisey’s
Bay at 1.33 Ga, and Duluth at 1.1 Ga, and graphitic marble xen-
oliths occur in Jinchuan at 0.85 Ga, all following emplacement
through graphitic Palaeoproterozoic rocks. At Duluth, the
dependence of mineralization on assimilated carbon is especially
evident from the distribution of ore bodies at the margin between
the Duluth Complex intrusion and the host carbonaceous shales
(Ripley et al. 2002; Ripley, 2014). Nickel and PGEs in these intru-
sions are commonly accompanied by cobalt, and some of the
highest-tonnage bedrock cobalt resources are in intrusions which
had assimilated Palaeoproterozoic graphitic sediment, including
the younger intrusions at Voisey’s Bay and Duluth (Slack et al.
2017) (Fig. 4). Unconformity-hosted deposits are the biggest
producers of uranium ores. The highest-yielding deposits, in
Canada and Australia, occur at unconformities between a
Mesoproterozoic cover succession and a Palaeoproterozoic sub-
strate. The substrate is consistently graphitic, especially in shear
zones, and the graphite is attributed a role as a reductant and
locus of high heat flow (Jefferson et al. 2007) or source of reducing
methane (Branquet et al. 2019), although there is debate about
whether the graphite is essential or not. While the
Palaeoproterozoic graphite is 1.8 Ga or older, the uranium min-
eralization which it influenced may be substantially younger.
Deposits in Canada and Australia were first mineralized at
1.59 Ga and 1.68 Ga respectively, but were reactivated at intervals

Fig. 2. (Colour online) Cross-plot of sulphur and organic carbon contents for
Palaeoproterozoic country rocks for younger ore deposits and prospects. Reference
line for recent marine sediments from Berner & Raiswell (1983). S/C ratios for these
deposits are consistently higher than the line, reflecting extensive pyrite formation
that would enhance mineralization during subsequent intrusion. Datasets (Table
S2, in the Supplementary Material available online at https://doi.org/10.1017/
S0016756821000583) from Andrews & Ripley (1989), Peltonen (1995), Melezhik et al.
(1998), Ripley et al. (2002), Partin et al. (2015), Pascal et al. (2015) and this study
(Greenland, UK).

Fig. 3. Carbon isotopic compositions of Palaeoproterozoic graphite mines and pro-
spective deposits, and three Ni ore deposits in Palaeoproterozoic rocks. Data from 15
countries, listed in Table S3, in the Supplementary Material available online at https://
doi.org/10.1017/S0016756821000583. Data from graphite are similar to data from
organic matter (kerogen) for period 2.0–1.5 Ga (Krissansen-Totton et al. 2015; Havig
et al. 2017). Precambrian graphite precipitated from carbon dioxide has distinct range
of compositions (Luque et al. 2012).
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up to the Phanerozoic (Jefferson et al. 2007). Elsewhere, graphite-
bearing strata of Palaeoproterozoic age were mineralized over a
billion-year period at 1.4 Ga in European Russia (IAEA, 2018),
1.23 Ga in the Russian Pacific (Goroshko & Gur’yanov, 2007),
˜1.2 Ga in Rio Preto, Brazil (De Figueiredo Filho, 1984), 1.12
Ga in Shillong, India (Awati et al. 1995), and 0.8 Ga in

Kintyre, Western Australia (IAEA, 2018). Of the 23 largest
unconformity-related uranium ore systems, the largest 13, and
20 of the 23, are associated with Palaeoproterozoic graphite
(Fig. 4), accounting for 97.5 % of the total tonnage (IAEA,
2018). Despite models in which the graphite is not essential to
mineralization (Jefferson et al. 2007), this represents a very high
proportion. In addition to uranium, some of these unconformity-
related deposits also yield platinum group elements, gold,
selenium and tellurium (Davidson & Large, 1994).

In summary, the ages of the ore deposits show that both the
cumulate-hosted nickel and unconformity-related uranium min-
eralization occur 200 and more million years after deposition of
the graphite (Fig. 5), i.e. the Palaeoproterozoic graphite has a
long-term metallogenic legacy.

4. Discussion

4.1. High carbon contents

The very high organic richness of Palaeoproterozoic black shales
(Condie et al. 2001) is matched by the very high mean carbon con-
tents and abundance of commercial graphite deposits of
Palaeoproterozoic age. Critically, the high carbon accumulation
during the Palaeoproterozoic coincided with a relatively high
crustal preservation potential, related to supercontinent assembly
(Condie et al. 2001; Condie, 2014), leading to the long-term sur-
vival and mineralizing legacy of the Palaeoproterozoic carbon res-
ervoir. The black shale data are derived from a geographically
limited region (Australia, North America, Russia), but the graphite
data represent several additional continents. Recent data include
much information from Scandinavia, Ukraine, Brazil, India,
China and several parts of Africa, and so confer much greater reli-
ability as a global signature, and thus also support the global nature
of the coupled Lomagundi–Jatuli and Shunga events.

The carbon isotope data for Palaeoproterozoic graphite, indi-
cating an origin in sedimentary organic matter, link the graphite
to the host sequences. In many cases, the graphitic beds have a bed-
ding-parallel form that suggests that they represent layers in the
original succession, for example in Palaeoproterozoic successions
in South Australia (Keeling, 2017) and North Norway (Gautneb
et al. 2020). The graphite commonly occurs in close proximity
to non-commercial, but nonetheless highly graphitic, beds that
are unequivocally metasediments. However, several lines of evi-
dence indicate that the graphite beds were modified from the
deposited beds. The graphite is commonly replacive, i.e. graphite
overprinted other minerals, and graphite shows structurally-con-
trolled thickening such as in fold hinges (e.g. Gautneb et al. 2020).
Furthermore, ore graphite can be less crystallographically ordered
than graphite in the background succession, as measured by
Raman spectroscopy (e.g. Kríbek et al. 2015), showing that it
was mobilized and/or modified. The distinction between high-sul-
phur graphitic metasediments and low-sulphur graphite deposits
indicates a marked change in composition. Even in successions
which contain sulphide ore mineralization in graphitic rocks, such
as at Talvivaara, Finland (Kontinen & Hanski, 2015), and the
Bhilwara/Aravalli supergroups, India (Mishra & Bernhardt,
2009), the commercial graphite prospects have low sulphur con-
tents. This implies that carbon and sulphur had become fraction-
ated during metamorphism, and is consistent with models in
which graphitic sediments release large volumes of sulphur-rich
fluids during metamorphism (Poulson & Ohmoto, 1989;
Tomkins, 2010).
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4.2. Mineralization in Palaeoproterozoic rocks

Given the reductive properties of organic carbon, and the fundamen-
tal role of redox processes in metallogeny, a consequence of this epi-
sode of anomalous carbon burial was a step change in metal
sequestration both during the Palaeoproterozoic and during
subsequent geological history. The importance of the
Palaeoproterozoic deposition of carbon to global metallogeny is evi-
dent by considering the diversity of metal ores precipitated, the ton-
nages of the ores, and the continued influence of the carbon through
geologic time. Palaeoproterozoic rocks were extensively mineralized
at the time of deposition, including iron formations and manganese
mineralization both deposited from anoxic seawater and interbedded
with graphitic rocks: about 65 % of global manganese reserves were
deposited in the Palaeoproterozoic over 2.3–1.8 Ga (Havig et al. 2017;
De Putter et al. 2018). However, a legacy of continued long-termmin-
eralization was conferred by the physico-chemical nature of the

graphitic beds. Firstly, the highly ductile nature of the graphite made
it a focus for deformation and in particular the formation of shear
zones, which channelled younger mineralizing fluids. Secondly, the
conductive nature of the graphite may have engendered heat flow
anomalies that caused fluid circulation. Thirdly, the reductive power
of concentrated organic carbon made the graphite a chemical trap to
pullmetals out of solution. Fourthly, the carbon could be consumed in
chemical reactions that precipitated metals. Fifthly, graphitic sedi-
ments are commonly sulphidic, as expected inmarine shales, and sul-
phides co-precipitate trace elements during early diagenesis. These
properties allowed a wide range of ores, involving different metals,
to precipitate in Palaeoproterozoic graphitic rocks (Pirajno et al.
2003; Jefferson et al. 2007; Williams, 2007).

The distributions of the deposit types through time have differ-
ent controlling factors. The uranium in unconformity-hosted
deposits was derived particularly from the erosion of granites aged
from Archaean to Mesoproterozoic. This uranium became
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Fig. 5. (Colour online) Ore deposits genetically linked to Palaeoproterozoic graphite but formed at least 200million years since graphite deposition. (a) Examples through time of
ore deposits, in which the graphite influenced ore deposition for 2 billion years. (b) Global distribution of Proterozoic rocks, and examples of younger ore deposits associated with
Palaeoproterozoic graphite beds.
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available before younger episodes of carbon precipitation and so is
preferentially associated with crust rich in Palaeoproterozoic car-
bon. In the case of Ni–Co–Cu–PGE, even where the host intrusion
is much younger than Palaeoproterozoic, where the intrusion cuts
through the Palaeoproterozoic it may host ores formed by assimi-
lation of Palaeoproterozoic graphite and sulphide. The high pres-
ervation potential of Palaeoproterozoic strata (Condie et al. 2001;
Condie, 2014) has contributed to a dominance of country rocks of
this age.

4.3. Mineral exploration

Much mineralization occurs in Archaean and Palaeoproterozoic
rocks (Groves et al. 2005). This was followed by the so-called ‘bor-
ing billion’ period (1.8 to 0.8 Ga) when a combination of lower
crustal growth and low preservation potential limit the minerali-
zation record. Consequently, ore exploration occurs especially in
Canada, Brazil, Australia, Scandinavia and North China, where
much bedrock is Archaean and (Palaeo)proterozoic. Mineral
exploration in these rocks has emphasized the importance of
Palaeoproterozoic graphite. Fundamentally, graphitic rocks have
guided the search for unconformity-related uranium in many
countries (IAEA, 2018) and thus graphite has become an explora-
tion target.

Exploration for several types of ore deposit makes use of the
high electrical conductivity of the graphite. This allows the search
for, and delineation of, individual ore deposits in the subsurface,
for example deposits of unconformity-related uranium (Tuncer
et al. 2006). However, graphite in Palaeoproterozoic successions
is so abundant that it can be detected by geophysical techniques
at the basin scale (Boerner et al. 1996; Zhamaletdinov, 1996;
Lindsay et al. 2018). This abundance is not evident in rocks of
younger ages, and the data evidences a substantial critical reservoir
of graphite of Palaeoproterozoic age.

The strong link between metal ores and Palaeoproterozoic
graphite is evident in frontier exploration areas where individual
mining companies explore for both graphite and metals in adjoin-
ing or overlapping licences, including in Canada, Scandinavia,
Africa and Australia (Table S4, in the Supplementary Material
available online at https://doi.org/10.1017/S0016756821000583).
Both ore types are essential to future, environmentally sensitive
technologies (Gautneb et al. 2019). Most commonly, companies
target both graphite and nickel ores, but graphite is also sought
along with copper, uranium, gold and iron. This recent trend in
exploration is likely to lead to discoveries which further demon-
strate the strong link between Palaeoproterozoic graphite and met-
alliferous mineralization.

5. Conclusions: unique importance of Palaeoproterozoic
carbon

The abundance of the world’s largest graphite deposits that are of
Palaeoproterozoic age supports previous inferences that the
Palaeoproterozoic was a period of anomalously high carbon burial.
The high S/C ratios for many Palaeoproterozoic shales show that,
in addition to carbon, this was a period of high sulphide burial. The
combined carbon and sulphur conveyed a reductive character to
the sediments which gave them exceptional mineralizing potential.

Criteria for assessing the importance of Palaeoproterozoic car-
bon to mineralization, i.e. diversity of ores, tonnages of ores, and
longevity of influence, all indicate a unique role for
Palaeoproterozoic carbon in Earth’s geological history. While

there were episodes of deposition of single metals with greater ton-
nage, such as Archaean banded iron formations, longevity in the
Palaeoproterozoic rocks was unequalled. The Palaeoproterozoic
deposition of carbonaceous sediment had a greater control on
the long-term metallogeny of the planet than any other depositio-
nal episode in the planet’s history.
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