

SYSTEMS ENGINEERING AND DESIGN 1865

INTERNATIONAL DESIGN CONFERENCE – DESIGN 2022
https://doi.org/10.1017/pds.2022.189

Automated Requirement Dependency Analysis for Complex
Technical Systems

I. Gräßler, C. Oleff , M. Hieb and D. Preuß

Paderborn University, Germany

 christian.oleff@hni.upb.de

Abstract

Requirements changes are a leading cause for project failures. Due to propagation effects, change

management requires dependency analysis. Existing approaches have shortcomings regarding ability to

process large requirement sets, availability of required data, differentiation of propagation behavior and

consideration of higher order dependencies. This paper introduces a new method for advanced requirement

dependency analysis based on machine learning. Evaluation proves applicability and high performance by

means of a case example, 4 development projects and 3 workshops with industry experts.

Keywords: requirements management, change management, systems engineering (SE), dependency
analysis, artificial intelligence (AI)

1. Introduction
Throughout the development of complex technical systems, requirements are subject to continuous

change. Today, requirement changes are a key driver for project failure (The Standish Group, 2017).

Each requirement change may cause additional effort. To reduce the number and negative impact of

requirement changes, dependency analysis carries great potential (Gräßler et al., 2020; Koh et al.,

2012). Requirement changes are initially caused by external triggers (for example changing customer

preferences) or an increased understanding of the system, but also propagate within the requirement

set. Such consecutive changes account for about 50% of all requirement changes (Giffin et al., 2009).

Dependency analysis not just increases system understanding, but also enables holistic change impact

analysis and efficient change management (Gräßler et al., 2021; Morkos, 2012).

Dependency analysis needs to be done continuously, to support change management in all

development stages. It is especially challenging in early development stages, before sufficient data

about the solution elements is available (Gräßler and Pottebaum, 2021; Gräßler and Pottebaum, 2022).

This unlocks efficiency potentials in change management and change impact assessment (Gräßler et

al., 2020).

Dependency analysis requires to identify dependencies within large scale interdisciplinary requirement

sets, but also to differentiate them by change propagation behaviour. Change propagation between two

requirements depends on three elements: the incoming change impulse, the local requirement change

behaviour (including the developer's decision on how to implement the change impulse) and the

characteristics of the dependency between them (Gräßler et al., 2021). Dependency analysis aims to

determine such dependency characteristics and thereby enables an assessment of change propagation

behaviour.

To differentiate dependencies based on their characteristics, existing reference models on dependency

types can be used (Pohl, 1996; Dahlstedt and Persson, 2005; Gräßler and Hentze, 2017). Exemplary

dependency types are: requires, refines, similar or conflicts. For an assessment of change propagation

https://doi.org/10.1017/pds.2022.189 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.189

1866 SYSTEMS ENGINEERING AND DESIGN

behaviour, relevant dependency types need to be modelled. Existing research findings indicate that the

dependency types requires, is required by and is refined by propagate inevitably, whereas other

dependency type have no or instable correlation to change propagation (Goknil et al., 2014;

Zhang et al., 2014; Gräßler et al., 2021).

Today, existing approaches mostly exist in Engineering Change Management (ECM) (Hamraz et al.,

2013; Mehr et al., 2021) and Requirement Change Management (RCM) (Jayatilleke and Lai, 2018;

Hein, P. H. et al., 2021) and have shortcomings regarding availability of required data in early

development stages, differentiation of dependency types, higher order change propagation and ability

to process large requirement sets (Gräßler et al., 2021). The contribution at hand aims to address this

research gap. Therefore, the following research question is derived: "How can requirement

dependencies in developing complex technical systems be identified and characterized in early

development stages and with reasonable application effort?"

To answer the research question, alternative solution classes are compared on a theoretical level (cf.

Section 3) and based on actual performance (cf. Section 4). Using the most promising approach, a

method for identifying and characterizing requirement dependencies in the context of developing

complex technical systems is introduced (cf. Section 5) and evaluated regarding performance,

applicability and usefulness (cf. Section 6).

2. Research Approach
The research methodology is derived from the Design Research Methodology (Blessing and

Chakrabarti, 2009). The work presented is part of a prescriptive study of a superordinate type five

research project (Gräßler et al., 2022). In previous steps, a research project was conducted to evaluate

current solutions and research gaps and to elicit performance goals of dependency analysis (Gräßler et

al., 2020). To address the research gaps, a literature review on solution classes beyond the domain of

change management was done to identify suitable approaches for dependency analysis (for example

ontologies and machine learning) (Graessler et al., 2020).

Within this research, most promising approaches are implemented and compared in laboratory

experiments. Based on the findings, a method for advanced requirement dependency analysis is

developed and validated by a case study development project (intelligent handling robot), four student

development projects (power tools) and three workshops with industry experts. Based on the case

examples, experts from a leading engineering service provider of automotive industry assess

performance, applicability and usefulness.

Figure 1. Research approach

https://doi.org/10.1017/pds.2022.189 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.189

SYSTEMS ENGINEERING AND DESIGN 1867

3. Related Work
In literature, there are different types of approaches for the automated detection of requirement

dependencies. These approaches are currently not applied in developing complex technical systems.

These are subdivided with regard to the differentiated consideration of requirement

dependencies (Graessler et al., 2020). Approaches for differentiated consideration determine the type

of dependency between requirements. Singular approaches determine whether a certain type of

dependency exists or not. Since the number of requirements is high in the development of complex

technical systems, approaches with a high degree of automation are only considered here.

Approaches for Differentiated Consideration of Dependency Types

The approaches for differentiated consideration of dependency types are distinguished between

ontology-based approaches and machine learning approaches. In so called ontology-based approaches,

expert knowledge is formalised in a knowledge base. Here, entities with certain dependency types are

networked (Motger et al., 2019; Borrul Baraut, 2019; Zichler and Helke, 2017). Since ontology-based

approaches have high creation effort and require knowledge that is not sufficiently available in early

development stages, they are not considered further.

In approaches that use machine learning techniques (Deshpande et al., 2019; Atas et al., 2018;

Samer et al., 2019), classifiers are trained using supervised learning. Input is the textual description of

requirements. The output is the classification of the type of dependency between requirements and is

calculated automatically. In supervised learning, the output is evaluated by the expert for training. A

disadvantage is that a large amount of data is needed to train the classifiers (Prabhu et al., 2021).

Moreover, the early provision of such data can only be guaranteed if the development project is

similar to past projects and the classifier can be trained with historical data. Development projects

with high novelty might face poor quality of results due to limited transferability of a classifier trained

for another development project. The effort to apply a classifier that has already been trained is low.

Approaches for Singular Consideration of Dependency Types

Furthermore, there are approaches that detect individual dependency types and do not aim for an

overarching approach. Hamdaqa has developed an approach to detect external cross-

references (Hamdaqa and Hamou-Lhadj, 2011). Och Dag et al. use lexical analysis in combination

with stemming and stop word removal to determine the similarities between requirements (Natt och

Dag et al., 2002). They equate dependency with similarity. Martinez et al. also use semantic

similarities to identify dependencies. To do this, they compare requirements descriptions with use

cases and scenarios (Martinez et al., 2019). Park et al. calculate the similarity between sets of

requirements to identify possible redundancies and inconsistencies and extract the possible ambiguous

requirements (Park et al., 2000). The similarity measurement method combines a sliding window and

a parser model. Other approaches exist to detect inconsistencies in requirement sets (Zhu and Jin,

2005; Misra, 2016). Di Thomazzo et al. develop an approach to automatically create a Requirements

Traceability Matrix (RTM) based on fuzzy logic (Di Thommazo et al., 2013). To determine the

dependency between functional requirements, the frequency vector and cosine similarity methods are

used. Abadi et al. compare the effectiveness of different information retrieval techniques for finding

traceability links from code to documentation (requirements, user manuals ...) (Abadi et al., 2008).

Advantages and Disadvantages of Approaches

Developing an approach for the detection of requirement dependencies is a multi-criteria optimisation

problem. Criteria are application effort, completeness of results and differentiation of dependencies by

propagation behaviour. Singular approaches are not considered further, because they cannot detect

dependencies, which are necessary for analysing propagation behaviour of requirement changes:

requires, is required by and is refined by (Gräßler et al., 2021). Since neither singular nor ontology-

based approaches are suitable in this context, only machine learning approaches are considered. The

advantages of these approaches are the high degree of automation and robustness. Higher order change

https://doi.org/10.1017/pds.2022.189 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.189

1868 SYSTEMS ENGINEERING AND DESIGN

propagation and large requirement sets can be analysed efficiently. Disadvantage is the high amount of

training data required for achieving high performance in dependency analysis.

4. Comparison of Alternative Approaches
To find the best approach for dependency analysis, a systematic comparison of machine learning

approaches is conducted. Especially for BERT (Bidirectional Encoder Representations from

Transformers), previous research indicates high potential regarding accuracy and ability to

differentiate dependency types (Prabhu et al., 2021; Arslan et al., 2021). Developed by (Vaswani et

al. 2017), BERT achieves good results in different application contexts (González and Garrido,

2020). BERT is based on transformers, specifically only the encoder part of the transformers, to

learn the contextual relationship of words within the text corpus.

As a benchmark for comparison with alternative approaches, the well-established approaches

statistical Multinomial Logistic Regression (MLR) and Support Vector Machine (SVM) as well as

Recurrent Neural Network (RNN) are used. Case example data was reengineered based on the open

source robotic project "BCN3D Moveo" (https://www.bcn3d.com/bcn3d-moveo-the-future-of-

learning-robotic-arm/) to create a suitable dataset for comparison. The dataset includes 145

requirements which were manually enriched by a dependency matrix with 21.025 entries.

According to the hold-out method which is considered suitable for validation sets with more than

1000 entries (Reich and Barai, 1999), those are split (80/20) in a training set (16820 entries) and a

validation set (4205 entries) for comparison. To enable replication, random state = 42 was used.

Criteria for comparison are the Precision, Recall, F1 and the Receiver Operating Characteristic

Area Under the Curve (ROC_AUC). Precision indicates the number of predicted true positives

compared to the true and false positive classes. Precision close to 1 indicates reliable models.

Recall provides the proportion of correct positive classified results to the total positive result.

Recall close to 1 indicates the recognition of relevant elements. The F1-Score is the harmonized

average between the Precision and the Recall. The F1-Score measures the extent to which the

classes are distributed in a balanced manner and thus evaluates the overall quality of the model.

Lastly, the ROC_AUC provides information about the under prediction rate of a classifier and

observes the relationship between true positive rate and false positive rate. This metric is used to

evaluate unbalanced data. Values close to 1 indicate little under prediction whereas values close to

0.5 merely reflect chance and are less meaningful. (Alpaydın, 2019)

Since the dataset contains a major class ("None") with many entries and several minor classes with

few entries (for example "Requires"), the criteria needed to be viewed macro averaged (equal

weight on all classes) to be significant. Using random oversampling and class weighted as standard

data augmentation approaches, BERT reaches the highest rang and outperforms the other models

(cf. Table 1).

Table 1. Comparison of results for detecting requirement dependencies (random oversampling)

Criteria MLR SVM RNN BERT

Precision (macro avg.) 20.47 % 24.00 % 22.07 % 54.10 %

Recall (macro avg.) 21.30 % 23.43 % 60.92 % 56.98 %

F1 (macro avg.) 6.29 % 23.92 % 12.92 % 55.12 %

ROC_AUC (w. avg.) 0.64 0.74 0.81 0.93

The comparison shows, that Precision, Recall and F1 values of BERT are promising for a multi-class

classification problem [cf. (Prabhu et al., 2021)]. ROC_AUC indicates that the results are close to the

optimum of 1 and that the dependency analysis is reliable. As a result, BERT is selected to be

investigated in detail.

https://doi.org/10.1017/pds.2022.189 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.189

SYSTEMS ENGINEERING AND DESIGN 1869

5. Automated Requirement Dependency Analysis
As shown in the previous section, BERT outperforms conventional approaches. In order to train

BERT, two different types of training are needed. First, pre-training and second context specific

fine-tuning.

5.1. Pre-Training and Context-Specific Fine-Tuning

Pre-training is designed to capture information by processing large amounts of textual data, such as

Wikipedia texts and book corpuses (cf. section 1 in Figure 2). The pre-training task is divided into

Masked Language Learning and Next Sentence Prediction. In Masked Language Learning, parts of

sentences are randomly replaced by masked tokens and fed into the language model. The model's task

is to classify the masked words based on probability to train word relations. Sentence prediction feeds

a pair of sentences as input to the model, separated by segment embeddings. The model's task is to

decide whether a sentence pair belongs together or not. The aim is to train the model to identify

contextual related text data (Devlin et al., 2018). Within the research at hand a generic pre-trained

BERT model was used provided open source by huggingface (huggingface, 2018).

After pre-training, the model is fine-tuned on a labelled text dataset (cf. section 2 in Figure 2) in a

supervised manner to learn the context specific task which is "identify requirement dependencies".

Fine-tuning leaves trained hyper-parameters unchanged, but adjusts task-specific inputs and outputs in

BERT end-to-end. By adding a classification layer on top of the transformer output, BERT is able to

determine certain (dependency) classes (Devlin et al., 2018). Within this research, the requirement

data was artificially enhanced using random selection and weighted by classes for data augmentation.

This is required to compensate a highly unbalanced dataset with "none" as the predominantly class and

few data on the other dependency types. Within the last step (cf. section 3 in Figure 2), the BERT

model is exported and can be used in a working environment.

Figure 2. BERT Training

5.2. Applying BERT for Requirement Dependency Analysis

A BERT model is used for automated requirement dependency analysis. The method consists of the

following steps: data pre-processing, classification of dependencies and transformation of the results

into a requirement dependency list.

For data pre-processing, the input data (textual requirement descriptions; e.g. "max. load is 5 kg."

and "max. width of object is 10 cm.") needs to be cleaned and transformed into a mathematical

representation (cf. section 1 in Figure 3). This includes concatenation of input requirements, forming

an ongoing text of two input requirements (text field; e.g. "max. load is 5 kg . max. width of object is

10 cm .") added by a dummy label (label field). The dummy labels will be changed later by the

https://doi.org/10.1017/pds.2022.189 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.189

1870 SYSTEMS ENGINEERING AND DESIGN

BERT model into a dependency type. After the dataset is formed, the requirement text needs to be

tokenized – splitting the sentence into single words. For this research, the BERT tokenizer was used

(huggingface, 2020). Tokens are differentiated by content words and stop words (e.g. "load" as

content word and "of" as stop word). Stop words have grammatical purposes and support the

statement of content words (Rao and McMahan, 2020). This is supported by different software

packages. Within this case study the software package NLTK (Natural Language Toolkit) was used

(NLTK Project, 2021). NLTK has a list of 543 German stop words that can be automatically filtered.

Finally, the text data can be transformed into a mathematical representation and used as input for the

BERT model.

The pre-processed input data is processed by the BERT model (cf. section 2 in Figure 3) for

classification of dependencies. The task is to determine the estimated dependency type between two

requirements. To indicate propagation behaviour, the dependency types refines, refined by, requires

and required are significant (cf. Section 1) and used for classification. Classification is done fully

automated, resulting in a dataset of the requirement text and their estimated dependency type.

For further usage of results, the output of the BERT model needs to be transformed into a suitable

data format – e.g. xls or ReqIF (cf. section 3 in Figure 3). The aim is to create an interpretable

representation of the requirements and their dependencies. The result is a matrix of the requirements

and their classified dependency type, which can be used for impact assessment and change

management.

Figure 3. Applying BERT for Dependency Analysis

6. Evaluation
The method for automated requirement dependency analysis is evaluated in a four-step approach.

First, requirements from a case example of developing an intelligent handling robot are analysed to

determine performance of dependency analysis. Furthermore, requirements from an interdisciplinary

development project of an engineering service provider are investigated. Second, the reusability is

evaluated by using the initial model (trained with data on the intelligent handling robot) to classify

requirements of four student development projects on power tools and determine performance. Third,

the model is trained with data from the intelligent handling robot as well as the student development

projects, and is also tested with data from these projects to examine the performance when using

heterogeneous data for training. Fourth, applicability and usefulness of the method and software-

prototype is assessed by pilot users from industry.

6.1. Case Example of Intelligent Handling Robot: Evaluating Performance

For evaluating the performance of the requirement dependency analysis, requirements from the case

example of the intelligent handling robot "BCN3D Moveo" is used (cf. chapter 4). The performance

indicators Precision, Recall and F1 are determined for respective dependency types for

evaluation (cf. Table 2).

https://doi.org/10.1017/pds.2022.189 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.189

SYSTEMS ENGINEERING AND DESIGN 1871

Table 2. Results for intelligent handling robot

Dependencies Number Precision Recall F1

None 3081 98,70 % 98,44 % 98,57 %

Refines 15 38,89 % 46,67 % 42,42 %

Refined by 15 38,46 % 33,33 % 35,71 %

Requires 31 44,44 % 38,71 % 41,38 %

Required by 31 50,00 % 67,74 % 57,53 %

Macro avg. - 54,10 % 56,98 % 55,12 %

Weighted avg. - 97,12 % 97,01 % 97,05 %

The results show that "none" dependencies are classified correctly with a high performance (F1:

98,57 %). The model is only conditionally suitable for distinguishing different dependency types

(macro average F1: 55,12 %). Therefore, performance is investigated without differentiation of

dependency types. All dependency types are assigned to "dependent" (cf. Table 3), which is legitimate

since they all indicate inevitable propagation behaviour (Gräßler et al., 2021).

Table 3. Results when dependency types are not distinguished

Dependencies Number Precision Recall F1

None 3081 99,12 % 99,06 % 99,09 %

Dependent 92 69,15 % 70,65 % 69,89 %

Macro avg. - 84,14 % 84,86 % 84,49 %

Weighted avg. - 98,25 % 98,24 % 98,24 %

The macro average F1 is 84,49 %, which shows that the performance for detecting dependencies is

higher, when dependency types are not distinguished. The reason for this effect is that the data for

fine-tuning BERT is more heterogenous, which reduces issues of overfitting. Due to increased

performance while maintaining sufficient information on propagation behaviour, dependency types are

no longer differentiated for the following investigations. This is also recommended in general, in case

the training data basis is too small to reach adequate performance for multiple classes to be classified.

6.2. Student Development Projects on Power Tools: Reusability

For evaluating the reusability of fine-tuned models, a case example of four student projects on

developing power tools (e.g. cordless screwdriver) is investigated. Requirements of these student

projects are analysed using the BERT model which is fine-tuned with data from the intelligent

handling robot (cf. section 6.1). For calculation of the Performance Indicators, results of the four

projects are cumulated (cf. Table 4).

Table 4. Results for student projects

Dependencies Number Precision Recall F1

None 4291 86,79% 99,39% 92,67%

Dependent 655 18,75% 0,92% 1,75%

Macro avg. - 52,77% 50,16% 47,21%

Weighted avg. - 77,78% 86,35% 80,63%

"None" dependencies are classified with a high performance (F1-Score: 92,67 %) while "dependent"

requirements are classified with a low performance (F1-Score: 1,75%). The results show that the

performance of the model decreases, when the model is not fine-tuned using data from the

investigated project (macro average-F1 of 47,21 % vs. 84,49 % cf. Table 3).

https://doi.org/10.1017/pds.2022.189 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.189

1872 SYSTEMS ENGINEERING AND DESIGN

6.3. Case Examples of Intelligent Handling Robot and Student Development
Project: Performance Using Heterogeneous Data

Data from the intelligent handling robot and student development projects are used to train and test the

model. This investigation shows how high the performance is when the model is trained with

heterogeneous data from different contexts (cf. Table 5).

Table 5. Results for determining performance using heterogeneous data

Dependencies Number Precision Recall F1

None 2054 98,44 % 98,25 % 98,34 %

Dependent 556 93,57 % 94,24 % 93,91 %

Macro avg. - 96,01 % 96,25 % 96,12 %

Weighted avg. - 97,40 % 97,39 % 97,40 %

Existing dependencies are classified more accurately when trained with heterogeneous data in

comparison to homogeneous data (dependent F1: 93,12 % to 69,89 %, cf. Table 3). Performance of

classifying "none" is marginal lower (98,34 % to 99,09 %, cf. Table 3). To achieve high performance,

data from different development projects are necessary for training.

6.4. Expert Evaluation: Applicability

Applicability is determined by the following three aspects: acceptable application effort, availability of

required information, comprehensibility of results and processing time. The evaluation was done in the

course of three workshops (each 120 minutes; three participants: head of department, requirements

engineer and process owner). The first workshop was about the availability of required information

and reasonability of application effort to create training sets for machine learning solutions. Both are

seen as fulfilled. The second workshop was on the lack of comprehensibility of results and limitations

of calculation time. Lack of comprehensibility is not seen as an issue, if an explanation of the general

approach is given. Processing time is seen as an issue when it exceeds 5 hours. Internal testing with

various amounts of requirements and with different computing power (16 GB RAM/i7 CPU: regular

laptop versus 13 GB RAM/P100-GPU: high performance cloud sever Google Colab) was done to

determine fulfilment. Testing shows that within the time limit of 5 hours, up to 100 requirements can

be processed on a regular laptop (2 seconds per requirements pair) and more than 1000 requirement

with a high-performance cloud sever (0,001 seconds per requirements pair). Therefore, the

requirement on processing time is partly fulfilled and needs further improvement to process extensive

requirement sets on regular equipment. Third workshop was on the learning mechanism to

continuously improve the performance. Again, availability of information and suitability of

application effort is evaluated as fulfilled. Therefore, the applicability of the method is fulfilled, with

improvement potential regarding the processing time of extensive requirement sets.

7. Conclusion and Outlook
The results of the evaluation show that the method for automated requirement dependency analysis

based on machine learning (BERT) has a high overall performance. It is possible to apply the method

in different application contexts. Performance as well as applicability in different contexts depended

on sufficiency of scope (performance) and heterogeneity (different application contexts) of the data

base . Future work should be focused on how to limit the required training data to further increase

performance and reusability. Industry workshops proof that the applicability is sufficient considering

application effort, availability of information, comprehensibility of results and processing time. As a

result, the method is an answer to the research question on how requirements dependency analysis can

be done in early development stages of the development of complex technical systems. It enables

change impact assessment and proactive change management from early development stages on. Thus,

a potential to reduce the risk of project failure by insufficient handling of requirement changes can be

https://doi.org/10.1017/pds.2022.189 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.189

SYSTEMS ENGINEERING AND DESIGN 1873

assumed. Future work can focus on using formalized requirements for improving performance of

dependency analysis, allowing further relationships between input data to be learned by the classifiers.

References

Abadi, A., Nisenson, M. and Simionovici, Y. (2008), “A Traceability Technique for Specifications”, in

Krikhaar, R. (Ed.), 16th IEEE International Conference on Program Comprehension, 2008: ICPC 2008 ; 10

- 13 June 2008, Amsterdam, The Netherlands, 6/10/2008 - 6/13/2008, Amsterdam, IEEE, Piscataway, NJ,

pp. 103–112.

Alpaydın, E. (2019), Maschinelles Lernen, De Gruyter Studium, 2. Edition, De Gruyter Oldenbourg, Berlin.

Arslan, Y., Allix, K., Veiber, L., Lothritzm Cedric, Bussyande, T., Klein, J. and Goujon, A. (2021), “A

Comparison of Pre-Trained Language Models for Multi-Class Text Classification in the Financial Domain”,

in Leskovec, J. (Ed.), Companion Proceedings of the Web Conference 2021, 19-23.04.2021, Ljubljana

Slovenia, Association for Computing Machinery, New York, NJ, USA, pp. 260–268.

Atas, M., Samer, R. and Felfernig, A. (2018), “Automated Identification of Type-Specific Dependencies

between Requirements”, in 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI),

12/3/2018 - 12/6/2018, Santiago, IEEE, Piscataway, NJ, pp. 688–695.

Blessing, L.T.M. and Chakrabarti, A. (2009), DRM, a Design Research Methodology, 1. Edition, Springer

London, Guildford, Surrey.

Borrull Baraut, R. (2019), “Incorporation of models in automatic requirement dependencies detection”, Master

Thesis, Universitat Politècnica de Catalunya, 28 January.

Dahlstedt, Å.G. and Persson, A. (2005), “Requirements Interdependencies: State of the Art and Future

Challenges”, in Aurum, A. and Wohlin, C. (Eds.), Engineering and Managing Software Requirements,

Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, pp. 95–116.

Deshpande, G., Arora, C. and Ruhe, G. (2019), “Data-Driven Elicitation and Optimization of Dependencies

between Requirements”, in Damian, D., Perini, A. and Lee, S.-W. (Eds.), 27th International Requirements

Engineering Conference, 23-27 Nov. 2019, Jeju Island, Korea (South), IEEE, Piscataway, NJ, pp. 416–421.

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018), BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding, available at: arXiv:1810.04805.

Di Thommazo, A., Ribeiro, T., Olivatto, G., Werneck, V. and Fabbri, S. (2013), “An Automatic Approach to

Detect Traceability Links Using Fuzzy Logic”, in 27th Brazilian Symposium, pp. 21–30.

Giffin, M., Weck, O. de, Bounova, G., Keller, R., Eckert, C. and Clarkson, P.J. (2009), “Change Propagation

Analysis in Complex Technical Systems”, Journal of Mechanical Design, Vol. 131 No. 8.

Goknil, A., Kurtev, I., van den Berg, K. and Spijkerman, W. (2014), “Change impact analysis for requirements:

A metamodeling approach”, Information and Software Technology, Vol. 56 No. 8, pp. 950–972.

González-Carvajal, S. and Garrido-Merchán, E. (2020), Comparing BERT against traditional machine learning

text classification, available at: http://arxiv.org/pdf/2005.13012v2.

Graessler, I., Preuß, D. and Oleff, C. (2020), “Automatisierte Identifikation und Charakterisierung von

Anforderungsabhängigkeiten – Literaturstudie zum Vergleich von Lösungsansätzen”, in Krause, D.,

Paetzold, K. and Wartzack, S. (Eds.), Proceedings of the 31st Symposium Design for X (DFX2020), pp.

199–208.

Gräßler, I. and Hentze, J. (2017), “Structuring and Describing Requirements in a Flexible Mesh for

Development of Smart Interdisciplinary Systems”, in Araujo, A. and Mota Soares, C.A. (Eds.), Smart

Structures and Materials, Springer International Publishing, Basel, pp. 1622–1631.

Gräßler, I., Oleff, C. and Preuß, D. (2021), “Holistic change propagation and impact analysis in requirements

management”, in Wagner, B. and Wilson, J. (Eds.), Proceeding of R&D Management Conference 2021.

Gräßler, I., Oleff, C. and Scholle, P. (2020), “Method for Systematic Assessment of Requirement Change Risk

in Industrial Practice”, Applied Sciences, Vol. 10 No. 23, p. 8697.

Gräßler, I., Pottebaum, J. (2021), “Generic Product Lifecycle Model: A Holistic and Adaptable Approach for

Multi-Disciplinary Product–Service Systems“, Applied Sciences, Vol. 11 No. 10, p. 4516.

Gräßler, I., Oleff, C. and Preuß, D. (2022), “Proactive Management of Requirement Changes in the

Development of Complex Technical Systems“, Applied Sciences, Vol. 12 No. 4; p. 1874.

Gräßler, I., Pottebaum, J. (2022), “From Agile Strategic Foresight to Sustainable Mechatronic and Cyber-

Physical Systems in Circular Economies“, in Krause, D. and Heyden, E. (Eds.), Design Methodology for

Future Products, Springer International Publishing, Cham, pp. 3–26.

Hamdaqa, M. and Hamou-Lhadj, A. (2011), “An approach based on citation analysis to support effective

handling of regulatory compliance”, Future Generation Computer Systems, Vol. 27 No. 4, pp. 395–410.

Hamraz, B., Caldwell, N.H.M. and Clarkson, P.J. (2013), “A Holistic Categorization Framework for Literature

on Engineering Change Management”, Systems Engineering, Vol. 16 No. 4, pp. 473–505.

https://doi.org/10.1017/pds.2022.189 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.189

1874 SYSTEMS ENGINEERING AND DESIGN

huggingface (2018), “bert-base-cased”, available at: huggingface.co/bert-base-cased (accessed 4 Nov. 2021).

huggingface (2020), “BERT Tokenizer”, available at: https://huggingface.co/transformers/

main_classes/tokenizer.html (accessed 4 November 2021).

Hein, P. H. Kames, E., Chen, C. and Morkos, B. (2021), “Employing machine learning techniques to assess

requirement change volatility“, in Research in Engineering Design, 32(2021) 2, pp. 245–269.

Jayatilleke, S. and Lai, R. (2018), “A systematic review of requirements change management”, Information and

Software Technology, Vol. 93, pp. 163–185.

Koh, Y., Caldwell, M. and Clarkson, J. (2012), “A method to assess the effects of engineering change

propagation”, Research in Engineering Design, Vol. 23 No. 4, pp. 329–351.

Martinez, G.G., Carpio, A.F.D. and Gomez, L.N. (2019), “A Model for Detecting Conflicts and Dependencies in

Non-Functional Requirements Using Scenarios and Use Cases”, in XLV Latin American Computing

Conference (CLEI), Piscataway, NJ, IEEE, pp. 1–8.

Mehr, M. R., Rashed, S. A. M., Lueder, A. and Mißler-Behr, M. (2021), “An Approach to Capture, Evaluate and

Handle Complexity of Engineering Change Occurrences in New Product Development“, in International

Journal of Industrial and Manufacturing Engineering, 15(2021) 9; pp. 400–408.

Misra, J. (2016), “Terminological inconsistency analysis of natural language requirements”, Information and

Software Technology, Vol. 74, pp. 183–193.

Morkos, B. (2012), “Computational representation and reasoning support for requirements change management

in complex system design”, Dissertation, Clemson University, 2012.

Motger, Q., Borrull, R., Palomares, C. and Marco, J. (2019), OpenReq-DD: A requirements dependency

detection tool, REFSQ Workshops, available at: ceur-ws.org/Vol-2376/NLP4RE19_paper01 (accessed 4

Nov. 2021).

Natt och Dag, J., Regnell, B., Carlshamre, P., Andersson, M. and Karlsson, J. (2002), “A Feasibility Study of

Automated Natural Language Requirements Analysis in Market-Driven Development”, Requirements

Engineering, Vol. 7 No. 1, pp. 20–33.

NLTK Project (2021), “Natural Language Toolkit”, available at: https://www.nltk.org/ (accessed 4 Nov. 2021).

Park, S., Kim, H., Ko, Y. and Seo, J. (2000), “Implementation of an efficient requirements-analysis supporting

system using similarity measure techniques”, Information and Software Technology, Vol. 42, pp. 429–438.

Pohl, K. (1996), Process-centered requirements engineering, Advanced software development series, Vol. 5,

Wiley; Research Studies Press, New York, NY, Taunton, Somerset, England.

Prabhu, S., Mohamed, M. and Misra, H. (2021), Multi-class Text Classification using BERT-based Active

Learning, available at: http://arxiv.org/pdf/2104.14289v2.

Rao, D. and McMahan, B. (2020), Natural Language Processing mit PyTorch: Intelligente Sprachanwendungen

mit Deep Learning erstellen, 1. Edition, O'Reilly Verlag, Heidelberg.

Reich, Y. and Barai, S.V. (1999), "Evaluating machine learning models for engineering problems", Artificial

Intelligence in Engineering, 13 (1999) 3, pp. 257-272.

Samer, R., Stettinger, M., Atas, M., Felfernig, A., Ruhe, G. and Deshpande, G. (2019), “New Approaches to the

Identification of Dependencies between Requirements”, in 31st International Conference on Tools with

Artificial Intelligence, 4-6 Nov. 2019, Portland, OR, USA, IEEE, Piscataway, NJ, USA, pp. 1265–1270.

The Standish Group (2017), Chaos Manifesto 2018, West Yarmouth, USA.

Zhang, H., Li, J., Zhu, L., Jeffery, R., Liu, Y., Wang, Q. and Li, M. (2014), “Investigating dependencies in

software requirements for change propagation analysis”, Information and Software Technology, Vol. 56, pp.

40–53.

Zhu, X. and Jin, Z. (2005), “Inconsistency measurement of software requirements specifications: an ontology-

based approach”, paper presented at 10th IEEE International Conference on Engineering of Complex

Computer Systems (ICECCS'05), 16-20 June 2005, Shanghai, China.

Zichler, K. and Helke, S. (2017), “Ontologiebasierte Abhängigkeitsanalyse im Projektlastenheft”, in Dencker, P.,

Klenk, H., Keller, H.B. and Plödereder, E. (Eds.), Automotive - Safety & Security 2017: Sicherheit und

Zuverlässigkeit für automobile Informationstechnik 30.-31. Mai 2017 Stuttgart, Germany, GI-Edition -

lecture notes in informatics (LNI) Proceedings, Gesellschaft für Informatik e.V. (GI), Bonn, pp. 121–134.

https://doi.org/10.1017/pds.2022.189 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.189

