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Abstract 

Requirements changes are a leading cause for project failures. Due to propagation effects, change 

management requires dependency analysis. Existing approaches have shortcomings regarding ability to 

process large requirement sets, availability of required data, differentiation of propagation behavior and 

consideration of higher order dependencies. This paper introduces a new method for advanced requirement 

dependency analysis based on machine learning. Evaluation proves applicability and high performance by 

means of a case example, 4 development projects and 3 workshops with industry experts. 

Keywords: requirements management, change management, systems engineering (SE), dependency 
analysis, artificial intelligence (AI) 

1. Introduction 
Throughout the development of complex technical systems, requirements are subject to continuous 

change. Today, requirement changes are a key driver for project failure (The Standish Group, 2017). 

Each requirement change may cause additional effort. To reduce the number and negative impact of 

requirement changes, dependency analysis carries great potential (Gräßler et al., 2020; Koh et al., 

2012). Requirement changes are initially caused by external triggers (for example changing customer 

preferences) or an increased understanding of the system, but also propagate within the requirement 

set. Such consecutive changes account for about 50% of all requirement changes (Giffin et al., 2009). 

Dependency analysis not just increases system understanding, but also enables holistic change impact 

analysis and efficient change management (Gräßler et al., 2021; Morkos, 2012). 

Dependency analysis needs to be done continuously, to support change management in all 

development stages. It is especially challenging in early development stages, before sufficient data 

about the solution elements is available (Gräßler and Pottebaum, 2021; Gräßler and Pottebaum, 2022). 

This unlocks efficiency potentials in change management and change impact assessment (Gräßler et 

al., 2020). 

Dependency analysis requires to identify dependencies within large scale interdisciplinary requirement 

sets, but also to differentiate them by change propagation behaviour. Change propagation between two 

requirements depends on three elements: the incoming change impulse, the local requirement change 

behaviour (including the developer's decision on how to implement the change impulse) and the 

characteristics of the dependency between them (Gräßler et al., 2021). Dependency analysis aims to 

determine such dependency characteristics and thereby enables an assessment of change propagation 

behaviour. 

To differentiate dependencies based on their characteristics, existing reference models on dependency 

types can be used (Pohl, 1996; Dahlstedt and Persson, 2005; Gräßler and Hentze, 2017). Exemplary 

dependency types are: requires, refines, similar or conflicts. For an assessment of change propagation 
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behaviour, relevant dependency types need to be modelled. Existing research findings indicate that the 

dependency types requires, is required by and is refined by propagate inevitably, whereas other 

dependency type have no or instable correlation to change propagation (Goknil et al., 2014;  

Zhang et al., 2014; Gräßler et al., 2021). 

Today, existing approaches mostly exist in Engineering Change Management (ECM) (Hamraz et al., 

2013; Mehr et al., 2021) and Requirement Change Management (RCM) (Jayatilleke and Lai, 2018; 

Hein, P. H. et al., 2021) and have shortcomings regarding availability of required data in early 

development stages, differentiation of dependency types, higher order change propagation and ability 

to process large requirement sets (Gräßler et al., 2021). The contribution at hand aims to address this 

research gap. Therefore, the following research question is derived: "How can requirement 

dependencies in developing complex technical systems be identified and characterized in early 

development stages and with reasonable application effort?" 

To answer the research question, alternative solution classes are compared on a theoretical level (cf. 

Section 3) and based on actual performance (cf. Section 4). Using the most promising approach, a 

method for identifying and characterizing requirement dependencies in the context of developing 

complex technical systems is introduced (cf. Section 5) and evaluated regarding performance, 

applicability and usefulness (cf. Section 6). 

2. Research Approach 
The research methodology is derived from the Design Research Methodology (Blessing and 

Chakrabarti, 2009). The work presented is part of a prescriptive study of a superordinate type five 

research project (Gräßler et al., 2022). In previous steps, a research project was conducted to evaluate 

current solutions and research gaps and to elicit performance goals of dependency analysis (Gräßler et 

al., 2020). To address the research gaps, a literature review on solution classes beyond the domain of 

change management was done to identify suitable approaches for dependency analysis (for example 

ontologies and machine learning) (Graessler et al., 2020). 

Within this research, most promising approaches are implemented and compared in laboratory 

experiments. Based on the findings, a method for advanced requirement dependency analysis is 

developed and validated by a case study development project (intelligent handling robot), four student 

development projects (power tools) and three workshops with industry experts. Based on the case 

examples, experts from a leading engineering service provider of automotive industry assess 

performance, applicability and usefulness. 

 
Figure 1. Research approach 
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3. Related Work 
In literature, there are different types of approaches for the automated detection of requirement 

dependencies. These approaches are currently not applied in developing complex technical systems. 

These are subdivided with regard to the differentiated consideration of requirement 

dependencies (Graessler et al., 2020). Approaches for differentiated consideration determine the type 

of dependency between requirements. Singular approaches determine whether a certain type of 

dependency exists or not. Since the number of requirements is high in the development of complex 

technical systems, approaches with a high degree of automation are only considered here. 

Approaches for Differentiated Consideration of Dependency Types 

The approaches for differentiated consideration of dependency types are distinguished between 

ontology-based approaches and machine learning approaches. In so called ontology-based approaches, 

expert knowledge is formalised in a knowledge base. Here, entities with certain dependency types are 

networked (Motger et al., 2019; Borrul Baraut, 2019; Zichler and Helke, 2017). Since ontology-based 

approaches have high creation effort and require knowledge that is not sufficiently available in early 

development stages, they are not considered further. 

In approaches that use machine learning techniques (Deshpande et al., 2019; Atas et al., 2018; 

Samer et al., 2019), classifiers are trained using supervised learning. Input is the textual description of 

requirements. The output is the classification of the type of dependency between requirements and is 

calculated automatically. In supervised learning, the output is evaluated by the expert for training. A 

disadvantage is that a large amount of data is needed to train the classifiers (Prabhu et al., 2021). 

Moreover, the early provision of such data can only be guaranteed if the development project is 

similar to past projects and the classifier can be trained with historical data. Development projects 

with high novelty might face poor quality of results due to limited transferability of a classifier trained 

for another development project. The effort to apply a classifier that has already been trained is low. 

Approaches for Singular Consideration of Dependency Types 

Furthermore, there are approaches that detect individual dependency types and do not aim for an 

overarching approach. Hamdaqa has developed an approach to detect external cross-

references (Hamdaqa and Hamou-Lhadj, 2011). Och Dag et al. use lexical analysis in combination 

with stemming and stop word removal to determine the similarities between requirements (Natt och 

Dag et al., 2002). They equate dependency with similarity. Martinez et al. also use semantic 

similarities to identify dependencies. To do this, they compare requirements descriptions with use 

cases and scenarios (Martinez et al., 2019). Park et al. calculate the similarity between sets of 

requirements to identify possible redundancies and inconsistencies and extract the possible ambiguous 

requirements (Park et al., 2000). The similarity measurement method combines a sliding window and 

a parser model. Other approaches exist to detect inconsistencies in requirement sets (Zhu and Jin, 

2005; Misra, 2016). Di Thomazzo et al. develop an approach to automatically create a Requirements 

Traceability Matrix (RTM) based on fuzzy logic (Di Thommazo et al., 2013). To determine the 

dependency between functional requirements, the frequency vector and cosine similarity methods are 

used. Abadi et al. compare the effectiveness of different information retrieval techniques for finding 

traceability links from code to documentation (requirements, user manuals ...) (Abadi et al., 2008). 

Advantages and Disadvantages of Approaches 

Developing an approach for the detection of requirement dependencies is a multi-criteria optimisation 

problem. Criteria are application effort, completeness of results and differentiation of dependencies by 

propagation behaviour. Singular approaches are not considered further, because they cannot detect 

dependencies, which are necessary for analysing propagation behaviour of requirement changes: 

requires, is required by and is refined by (Gräßler et al., 2021). Since neither singular nor ontology-

based approaches are suitable in this context, only machine learning approaches are considered. The 

advantages of these approaches are the high degree of automation and robustness. Higher order change 
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propagation and large requirement sets can be analysed efficiently. Disadvantage is the high amount of 

training data required for achieving high performance in dependency analysis.  

4. Comparison of Alternative Approaches 
To find the best approach for dependency analysis, a systematic comparison of machine learning 

approaches is conducted. Especially for BERT (Bidirectional Encoder Representations from 

Transformers), previous research indicates high potential regarding accuracy and ability to 

differentiate dependency types (Prabhu et al., 2021; Arslan et al., 2021). Developed by (Vaswani et 

al. 2017), BERT achieves good results in different application contexts (González and Garrido, 

2020). BERT is based on transformers, specifically only the encoder part of the transformers, to 

learn the contextual relationship of words within the text corpus. 

As a benchmark for comparison with alternative approaches, the well-established approaches 

statistical Multinomial Logistic Regression (MLR) and Support Vector Machine (SVM) as well as 

Recurrent Neural Network (RNN) are used. Case example data was reengineered based on the open 

source robotic project "BCN3D Moveo" (https://www.bcn3d.com/bcn3d-moveo-the-future-of-

learning-robotic-arm/) to create a suitable dataset for comparison. The dataset includes 145 

requirements which were manually enriched by a dependency matrix with 21.025 entries. 

According to the hold-out method which is considered suitable for validation sets with more than 

1000 entries (Reich and Barai, 1999), those are split (80/20) in a training set (16820 entries) and a 

validation set (4205 entries) for comparison. To enable replication, random state = 42 was used. 

Criteria for comparison are the Precision, Recall, F1 and the Receiver Operating Characteristic 

Area Under the Curve (ROC_AUC). Precision indicates the number of predicted true positives 

compared to the true and false positive classes. Precision close to 1 indicates reliable models. 

Recall provides the proportion of correct positive classified results to the total positive result. 

Recall close to 1 indicates the recognition of relevant elements. The F1-Score is the harmonized 

average between the Precision and the Recall. The F1-Score measures the extent to which the 

classes are distributed in a balanced manner and thus evaluates the overall quality of the model. 

Lastly, the ROC_AUC provides information about the under prediction rate of a classifier and 

observes the relationship between true positive rate and false positive rate. This metric is used to 

evaluate unbalanced data. Values close to 1 indicate little under prediction whereas values close to 

0.5 merely reflect chance and are less meaningful. (Alpaydın, 2019)  

Since the dataset contains a major class ("None") with many entries and several minor classes with 

few entries (for example "Requires"), the criteria needed to be viewed macro averaged (equal 

weight on all classes) to be significant. Using random oversampling and class weighted as standard 

data augmentation approaches, BERT reaches the highest rang and outperforms the other models 

(cf. Table 1). 

Table 1. Comparison of results for detecting requirement dependencies (random oversampling) 

Criteria MLR SVM RNN BERT 

Precision (macro avg.) 20.47 % 24.00 % 22.07 % 54.10 % 

Recall (macro avg.) 21.30 % 23.43 % 60.92 % 56.98 % 

F1 (macro avg.) 6.29 % 23.92 % 12.92 % 55.12 % 

ROC_AUC (w. avg.) 0.64 0.74 0.81 0.93 

 

The comparison shows, that Precision, Recall and F1 values of BERT are promising for a multi-class 

classification problem [cf. (Prabhu et al., 2021)]. ROC_AUC indicates that the results are close to the 

optimum of 1 and that the dependency analysis is reliable. As a result, BERT is selected to be 

investigated in detail. 
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5. Automated Requirement Dependency Analysis 
As shown in the previous section, BERT outperforms conventional approaches. In order to train 

BERT, two different types of training are needed. First, pre-training and second context specific 

fine-tuning.  

5.1. Pre-Training and Context-Specific Fine-Tuning 

Pre-training is designed to capture information by processing large amounts of textual data, such as 

Wikipedia texts and book corpuses (cf. section 1 in Figure 2). The pre-training task is divided into 

Masked Language Learning and Next Sentence Prediction. In Masked Language Learning, parts of 

sentences are randomly replaced by masked tokens and fed into the language model. The model's task 

is to classify the masked words based on probability to train word relations. Sentence prediction feeds 

a pair of sentences as input to the model, separated by segment embeddings. The model's task is to 

decide whether a sentence pair belongs together or not. The aim is to train the model to identify 

contextual related text data (Devlin et al., 2018). Within the research at hand a generic pre-trained 

BERT model was used provided open source by huggingface (huggingface, 2018). 

After pre-training, the model is fine-tuned on a labelled text dataset (cf. section 2 in Figure 2) in a 

supervised manner to learn the context specific task which is "identify requirement dependencies". 

Fine-tuning leaves trained hyper-parameters unchanged, but adjusts task-specific inputs and outputs in 

BERT end-to-end. By adding a classification layer on top of the transformer output, BERT is able to 

determine certain (dependency) classes (Devlin et al., 2018). Within this research, the requirement 

data was artificially enhanced using random selection and weighted by classes for data augmentation. 

This is required to compensate a highly unbalanced dataset with "none" as the predominantly class and 

few data on the other dependency types. Within the last step (cf. section 3 in Figure 2), the BERT 

model is exported and can be used in a working environment. 

 
Figure 2. BERT Training 

5.2. Applying BERT for Requirement Dependency Analysis 

A BERT model is used for automated requirement dependency analysis. The method consists of the 

following steps: data pre-processing, classification of dependencies and transformation of the results 

into a requirement dependency list.  

For data pre-processing, the input data (textual requirement descriptions; e.g. "max. load is 5 kg." 

and "max. width of object is 10 cm.") needs to be cleaned and transformed into a mathematical 

representation (cf. section 1 in Figure 3). This includes concatenation of input requirements, forming 

an ongoing text of two input requirements (text field; e.g. "max. load is 5 kg . max. width of object is 

10 cm .") added by a dummy label (label field). The dummy labels will be changed later by the 
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BERT model into a dependency type. After the dataset is formed, the requirement text needs to be 

tokenized – splitting the sentence into single words. For this research, the BERT tokenizer was used 

(huggingface, 2020). Tokens are differentiated by content words and stop words (e.g. "load" as 

content word and "of" as stop word). Stop words have grammatical purposes and support the 

statement of content words (Rao and McMahan, 2020). This is supported by different software 

packages. Within this case study the software package NLTK (Natural Language Toolkit) was used 

(NLTK Project, 2021). NLTK has a list of 543 German stop words that can be automatically filtered. 

Finally, the text data can be transformed into a mathematical representation and used as input for the 

BERT model.  

The pre-processed input data is processed by the BERT model (cf. section 2 in Figure 3) for 

classification of dependencies. The task is to determine the estimated dependency type between two 

requirements. To indicate propagation behaviour, the dependency types refines, refined by, requires 

and required are significant (cf. Section 1) and used for classification. Classification is done fully 

automated, resulting in a dataset of the requirement text and their estimated dependency type.  

For further usage of results, the output of the BERT model needs to be transformed into a suitable 

data format – e.g. xls or ReqIF (cf. section 3 in Figure 3). The aim is to create an interpretable 

representation of the requirements and their dependencies. The result is a matrix of the requirements 

and their classified dependency type, which can be used for impact assessment and change 

management.  

 
Figure 3. Applying BERT for Dependency Analysis 

6. Evaluation 
The method for automated requirement dependency analysis is evaluated in a four-step approach. 

First, requirements from a case example of developing an intelligent handling robot are analysed to 

determine performance of dependency analysis. Furthermore, requirements from an interdisciplinary 

development project of an engineering service provider are investigated. Second, the reusability is 

evaluated by using the initial model (trained with data on the intelligent handling robot) to classify 

requirements of four student development projects on power tools and determine performance. Third, 

the model is trained with data from the intelligent handling robot as well as the student development 

projects, and is also tested with data from these projects to examine the performance when using 

heterogeneous data for training. Fourth, applicability and usefulness of the method and software-

prototype is assessed by pilot users from industry. 

6.1. Case Example of Intelligent Handling Robot: Evaluating Performance 

For evaluating the performance of the requirement dependency analysis, requirements from the case 

example of the intelligent handling robot "BCN3D Moveo" is used (cf. chapter 4). The performance 

indicators Precision, Recall and F1 are determined for respective dependency types for 

evaluation (cf. Table 2). 
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Table 2. Results for intelligent handling robot 

Dependencies Number Precision Recall F1 

None 3081 98,70 % 98,44 % 98,57 % 

Refines 15 38,89 % 46,67 % 42,42 % 

Refined by 15 38,46 % 33,33 % 35,71 % 

Requires 31 44,44 % 38,71 % 41,38 % 

Required by 31 50,00 % 67,74 % 57,53 % 

Macro avg. - 54,10 % 56,98 % 55,12 % 

Weighted avg. - 97,12 % 97,01 % 97,05 % 

 

The results show that "none" dependencies are classified correctly with a high performance (F1: 

98,57 %). The model is only conditionally suitable for distinguishing different dependency types 

(macro average F1: 55,12 %). Therefore, performance is investigated without differentiation of 

dependency types. All dependency types are assigned to "dependent" (cf. Table 3), which is legitimate 

since they all indicate inevitable propagation behaviour (Gräßler et al., 2021).  

Table 3. Results when dependency types are not distinguished 

Dependencies Number Precision Recall F1 

None 3081 99,12 % 99,06 % 99,09 % 

Dependent 92 69,15 % 70,65 % 69,89 % 

Macro avg. - 84,14 % 84,86 % 84,49 % 

Weighted avg. - 98,25 % 98,24 % 98,24 % 

 

The macro average F1 is 84,49 %, which shows that the performance for detecting dependencies is 

higher, when dependency types are not distinguished. The reason for this effect is that the data for 

fine-tuning BERT is more heterogenous, which reduces issues of overfitting. Due to increased 

performance while maintaining sufficient information on propagation behaviour, dependency types are 

no longer differentiated for the following investigations. This is also recommended in general, in case 

the training data basis is too small to reach adequate performance for multiple classes to be classified. 

6.2. Student Development Projects on Power Tools: Reusability 

For evaluating the reusability of fine-tuned models, a case example of four student projects on 

developing power tools (e.g. cordless screwdriver) is investigated. Requirements of these student 

projects are analysed using the BERT model which is fine-tuned with data from the intelligent 

handling robot (cf. section 6.1). For calculation of the Performance Indicators, results of the four 

projects are cumulated (cf. Table 4). 

Table 4. Results for student projects 

Dependencies Number Precision Recall F1 

None 4291 86,79% 99,39% 92,67% 

Dependent 655 18,75% 0,92% 1,75% 

Macro avg. - 52,77% 50,16% 47,21% 

Weighted avg. - 77,78% 86,35% 80,63% 

 

"None" dependencies are classified with a high performance (F1-Score: 92,67 %) while "dependent" 

requirements are classified with a low performance (F1-Score: 1,75%). The results show that the 

performance of the model decreases, when the model is not fine-tuned using data from the 

investigated project (macro average-F1 of 47,21 % vs. 84,49 % cf. Table 3). 
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6.3. Case Examples of Intelligent Handling Robot and Student Development 
Project: Performance Using Heterogeneous Data 

Data from the intelligent handling robot and student development projects are used to train and test the 

model. This investigation shows how high the performance is when the model is trained with 

heterogeneous data from different contexts (cf. Table 5). 

Table 5. Results for determining performance using heterogeneous data 

Dependencies Number Precision Recall F1 

None 2054 98,44 % 98,25 % 98,34 % 

Dependent 556 93,57 % 94,24 % 93,91 % 

Macro avg. - 96,01 % 96,25 % 96,12 % 

Weighted avg. - 97,40 % 97,39 % 97,40 % 

 

Existing dependencies are classified more accurately when trained with heterogeneous data in 

comparison to homogeneous data (dependent F1: 93,12 % to 69,89 %, cf. Table 3). Performance of 

classifying "none" is marginal lower (98,34 % to 99,09 %, cf. Table 3). To achieve high performance, 

data from different development projects are necessary for training. 

6.4. Expert Evaluation: Applicability 

Applicability is determined by the following three aspects: acceptable application effort, availability of 

required information, comprehensibility of results and processing time. The evaluation was done in the 

course of three workshops (each 120 minutes; three participants: head of department, requirements 

engineer and process owner). The first workshop was about the availability of required information 

and reasonability of application effort to create training sets for machine learning solutions. Both are 

seen as fulfilled. The second workshop was on the lack of comprehensibility of results and limitations 

of calculation time. Lack of comprehensibility is not seen as an issue, if an explanation of the general 

approach is given. Processing time is seen as an issue when it exceeds 5 hours. Internal testing with 

various amounts of requirements and with different computing power (16 GB RAM/i7 CPU: regular 

laptop versus 13 GB RAM/P100-GPU: high performance cloud sever Google Colab) was done to 

determine fulfilment. Testing shows that within the time limit of 5 hours, up to 100 requirements can 

be processed on a regular laptop (2 seconds per requirements pair) and more than 1000 requirement 

with a high-performance cloud sever (0,001 seconds per requirements pair). Therefore, the 

requirement on processing time is partly fulfilled and needs further improvement to process extensive 

requirement sets on regular equipment. Third workshop was on the learning mechanism to 

continuously improve the performance. Again, availability of information and suitability of 

application effort is evaluated as fulfilled. Therefore, the applicability of the method is fulfilled, with 

improvement potential regarding the processing time of extensive requirement sets.  

7. Conclusion and Outlook 
The results of the evaluation show that the method for automated requirement dependency analysis 

based on machine learning (BERT) has a high overall performance. It is possible to apply the method 

in different application contexts. Performance as well as applicability in different contexts depended 

on sufficiency of scope (performance) and heterogeneity (different application contexts) of the data 

base . Future work should be focused on how to limit the required training data to further increase 

performance and reusability. Industry workshops proof that the applicability is sufficient considering 

application effort, availability of information, comprehensibility of results and processing time. As a 

result, the method is an answer to the research question on how requirements dependency analysis can 

be done in early development stages of the development of complex technical systems. It enables 

change impact assessment and proactive change management from early development stages on. Thus, 

a potential to reduce the risk of project failure by insufficient handling of requirement changes can be 
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assumed. Future work can focus on using formalized requirements for improving performance of 

dependency analysis, allowing further relationships between input data to be learned by the classifiers.  
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