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Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT
among bacteria in the environment is assumed to have implications in the risk assessment of genetically mod-
ified bacteria which are released into the environment. First, introduced genetic sequences from a genetically
modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subse-
quently their ecological niche. Second, the genetically modified bacterium released into the environment might
capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological
potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of
bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria
as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and
microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in
soil and plant-associated bacteria and the factors affecting gene transfer.
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EXTENSIVE HGT IN THE EVOLUTION OF
BACTERIAL GENOMES

The significance of HGT between bacteria was first rec-
ognized when ‘infectious heredity’ of multiple antibi-
otic resistance to pathogens was observed (Watanabe,
1963). Since then, the assumed importance of HGT has
changed several times, but recent advances mainly in
whole genome sequencing of bacteria suggested that
HGT is a major, if not the dominant, force in bacte-
rial evolution (Berg and Kurland, 2002; Doolittle et al.,
2003). Evidence for massive gene exchanges in bacte-
rial evolution was discovered in completely sequenced
genomes by deviant composition of acquired genetic el-
ements (guanine + cytosine content, codon usage), high
similarity of genes to distantly related species, variation
of gene content between closely related strains, and in-
congruent phylogenetic trees (Koonin et al., 2001). Up
to 20% of a typical bacterial genome can be acquired
from other species (Ochman et al., 2000). Often remnants
of plasmid, phage or transposon-related sequences are
found adjacent to genes identified as horizontally trans-
ferred, suggesting that these MGE served as vectors for
HGT (Ochman et al., 2000). The search of 56 sequenced
bacterial genomes for prophage sequences performed by
Canchaya et al. (2003) revealed that 40 genomes con-
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tained prophage sequences exceeding 10 kb in length,
which encoded numerous virulence factors and other
adaptive traits. The two sequenced genomes of the
bacterium Xylella fastidiosa, the leafhopper-transmitted
causal agent of citrus cancer, were shown to carry five or
six prophages, and prophage occurrence seemed to have
influenced genome evolution. With respect to observed
large genome differences between closely related strains,
Lan and Reeves (2000) proposed the concept of a bacte-
rial species genome defined by a core set of genes which
is shared by a large majority of isolates of a species, and
an auxiliary/foreign set of genes. Correspondingly, the
latter was also called the flexible genome (Hacker and
Carniel, 2001), as it is determined by its high plasticity,
i.e. gene acquisition and loss.

HGT can only affect bacteria that readily exchange
genes, and genome analysis of eight free-living bacte-
ria indicated that members of such ‘exchange communi-
ties’ have a tendency to be similar in factors like genome
size, genome G/C composition, carbon utilization, and
oxygen tolerance (Jain et al., 2003). Not all genes seem
equally likely to be horizontally transferred (Jain et al.,
1999). The modularity of genetic units supports their
spread by HGT. The pace of genome innovation is accel-
erated by HGT, which provides functional modules rather
than slowly creating new genes by mutations (Jain et al.,
2003).
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Real-time adaptation by HGT

While genome sequences retrospectively evidenced hori-
zontally acquired genes over long time periods and their
importance in bacterial evolution, there is also much
evidence now for HGT being an ongoing process that
plays a primary role in the real-time ecological adap-
tation of prokaryotes. MGE have an essential role in
this process by shaping bacterial genomes, promoting
intra-species variability and distributing functional ge-
netic modules within exchange communities. Dynami-
cally changing selection forces promote HGT of those
genetic modules which allow rapid adaptation to such
factors. Consequently, HGT of genetic modules that al-
lowed adaptation to rapidly evolving biotic interactions
was frequently observed (recently reviewed by Smets and
Barkay, 2005). Such interactions are, e.g., the production
of antibiotics by microbes or their use by humans result-
ing in the spread of antibiotic resistance (McManus et al.,
2002; Witte, 1998), the release of xenobiotics or new sec-
ondary metabolites and the spread of degradative genes
and pathway assembly (Larraín-Linton et al., 2006; Top
and Springael, 2003), or pathogenic and symbiotic inter-
actions and the spread of genomic islands (Arnold et al.,
2003; Hacker and Kaper, 2000).

Well documented is the example of the dissemina-
tion of antibiotic resistance genes by HGT, which allowed
bacterial populations to rapidly adapt to a strong selec-
tive pressure by medically or agronomically used antibi-
otics (Heuer and Smalla, 2007; Mazel and Davies, 1999;
McManus et al., 2002; Tschäpe, 1994; Witte, 1998). The
combinatorial genetic evolution of multi-resistance is fa-
cilitated by transposons, IS-elements and integrons. A
new class of transposable elements was recently discov-
ered, termed ISCRs, which mobilize DNA adjacent to
their insertion site by rolling circle replication (Toleman
et al., 2006). The ISCRs studied so far were closely as-
sociated with many antibiotic resistance genes, and were
often located on conjugative plasmids. Another example
of bacterial capabilities that seem to have evolved and
spread rather recently by HGT is the capability to degrade
man-made xenobiotic compounds. Often the necessary
degradative genes are located on IncP-1 plasmids (Top
and Springael, 2003), which are the most promiscuous (or
broad host range, BHR) self-transmissible plasmids char-
acterized to date (Adamczyk and Jagura-Burdzy, 2003).
The DNA sequence of IncP-1 plasmids is typically a mo-
saic of diverse origin, providing evidence of an active par-
ticipation in horizontal gene transfer (Heuer et al., 2004;
Schlüter et al., 2003; Smalla et al., 2006). Also, MGEs
other than plasmids have been shown to carry catabolic
genes and to be responsible for their lateral exchange, re-
sulting in the assembly of new pathways. A transposable
element that codes for the degradation of biphenyl and
4-chlorobiphenyl was described by Merlin et al. (1999)

and detected in several PCB-degrading bacteria isolated
from various environments (Springael et al., 2001). A va-
riety of plasmids involved in chloroaniline degradation
was described (Boon et al., 2001; Dejonghe et al., 2002).
Recent findings strongly suggest that such MGEs play a
very important role in the dissemination of degradative
genes among bacteria, and thus in the natural construc-
tion of new degradative pathways (Top and Springael,
2003).

Mobile genetic elements also play an important role
in the evolution of pathogenic or symbiotic bacteria
(Arnold et al., 2003; Hacker and Kaper, 2000; Vivian
et al., 2001; Zhao et al, 2005). Comparative genome anal-
ysis, e.g., of different E. coli strains, revealed that HGT,
gene loss and repeated IS element-mediated chromoso-
mal rearrangements played an important role in the evolu-
tion of bacterial genomes, and that pathogenicity islands
(PAIs) have the potential for ongoing rearrangements,
deletions and insertions (Brzuszkiewicz et al., 2006). Ge-
nomic differences between the E. coli strains compared
were not exclusively due to the presence or absence of
large PAIs but also due to smaller gene clusters often
flanked by MGE (Brzuszkiewicz et al., 2006). The driv-
ing force for the acquisition of foreign DNA by HGT is
thought to be the need to overcome environmental con-
straints for survival, and to compete successfully in their
ecological niche (Hacker and Kaper, 2000).

MECHANISMS OF HGT

Horizontal gene transfer (HGT) between bacteria is
driven by three major processes: transformation (the up-
take of free DNA), transduction (gene transfer medi-
ated by bacteriophages) and conjugation (gene transfer
by means of plasmids or integrative conjugative ele-
ments). Mobile genetic elements (MGEs) such as plas-
mids, bacteriophages, integrative conjugative elements,
transposons, IS elements, integrons, gene cassettes and
genomic islands are the important vehicles in the latter
two processes. A brief summary of characteristic proper-
ties of MGEs is given in Table 1 (modified according to
Dobrindt et al., 2004). In many species, a high proportion
of horizontally transferred genes can be attributed to plas-
mid, phage or transposon-related sequences, since rem-
nants of MGEs are often found adjacent to genes iden-
tified as horizontally transferred (Brüssow et al., 2004;
Ochman et al., 2000).

Natural transformation

Natural transformation is generally understood as the
uptake of free DNA by competent bacteria (Chen and
Dubnau, 2004; Dubnau, 1999; Lorenz and Wackernagel,
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Table 1. Characteristics of mobile genetic elements (MGEs).

MGE Properties Review

Plasmids Circular or linear extrachromosomal replicons; self- Thomas, 2000

transferable or mobilizable plasmids are vehicles for

the transmission of genetic information between a

broad or narrow range of species

Bacteriophages Viruses that infect prokaryotes; can integrate into the Canchaya et al., 2003

host genome and then be vehicles for horizontal gene

transfer

Integrative Self-transferable conjugative elements that integrate Burrus and Waldor, 2004

conjugative into the genome of new hosts like temperate

elements bacteriophages; may promote the mobilization of

(ICEs) genomic islands by utilizing conserved integration sites

Genomic Large chromosomal regions acquired by horizontal Dobrindt et al., 2004

islands transfer that are flanked by repeat structures and

contain genes for chromosomal integration and excision

Transposable Genetic elements that can move within or between Mahillon and Chandler, 1998

elements replicons by action of their transposase; flanked by

inverted repeats, transposons typically carry genes

for antibiotic resistance or other phenotypes, while

IS-elements code only for the transposase;

multiple copies of the same IS-element promote

genome plasticity by homologous recombination

Integrons Genetic elements that capture promoterless gene Hall and Collis, 1995

cassettes at an attachment site downstream of a promoter,

by action of the integrase encoded on the integron;

frequently associated with transposons and conjugative plasmids

1994). The uptake of DNA can serve as nutrient source,
for DNA repair or as source of genetic innovation
(Dubnau, 1999). The uptake of DNA can be followed by
an integration into the bacterial genome by homologous
recombination, homology-facilitated illegitimate recom-
bination (de Vries and Wackernagel, 2002), or by forming
an autonomously replicating element. Natural transfor-
mation provides a mechanism of gene transfer that en-
ables competent bacteria to generate genetic variability
by making use of DNA present in their surroundings
(Dubnau, 1999; Nielsen et al., 2000). Prerequisites for
natural transformation are the availability of free DNA,
the development of competence, the uptake and stable
integration of the captured DNA. While the molecular
mechanisms required for natural transformation are being
intensively studied for some species, there is very lim-
ited knowledge of how important natural transformation
is in different environmental settings for the adaptability
of bacteria. Mainly two aspects of natural transformation
in the environment have been studied: the persistence of
free DNA, and the ability of different bacterial species

to become competent and take up free DNA under envi-
ronmental conditions. Different studies have shown that
in spite of the ubiquitous occurrence of DNases, high-
molecular free DNA could be detected and its persis-
tence in different environments has been demonstrated
(Gebhard and Smalla, 1999; Nielsen et al., 1997; Paget
and Simonet, 1997; Widmer et al., 1996; 1997). Natural
transformation is considered to also be the mechanism
by which competent bacteria could capture DNA from
transgenic plants (de Vries and Wackernagel, 1998; 2004;
Gebhard and Smalla, 1998). The fate of transgenic con-
structs in natural settings could be followed by PCR or by
selecting specific and directed gene restoration after up-
take of transgenic plant DNA (de Vries and Wackernagel,
1998; de Vries et al., 2003; Gebhard and Smalla, 1999).

Microbial activity was pinpointed as an important bi-
otic factor affecting the persistence of free DNA in soil
(Blum et al., 1997). Cell walls or other debris might
play an important role in protecting DNA after cell death
(Nielsen et al., 2000; Paget and Simonet, 1997). A more
rapid breakdown of DNA was observed at higher soil
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humidity and temperature. Both factors are thought to
contribute to a higher microbial activity in soil (Blum
et al., 1997; Widmer et al., 1996). In the study of De-
manèche et al. (2001a) plasmid DNA adsorbed on clay
particles was found to be incompletely degradable even
at high nuclease concentrations. The adsorption of DNA
seems to be a charge-dependent process, and thus the rate
and extent of adsorption of dissolved DNA to minerals
depends largely on the type of mineral, the pH of the
bulk phase, whereas the conformation and the molecular
size of the DNA molecules have a minor effect (Lorenz
and Wackernagel, 1994; Paget and Simonet, 1994). Since
DNA can persist adsorbed on soil particles or protected
in plant or bacterial cells, this DNA could be captured by
competent bacteria.

Although it is thought that natural competence is
widespread among bacterial species (Dubnau, 1999;
Lorenz and Wackernagel, 1994), the proportion of bac-
teria in natural settings that can become competent and
the environmental conditions stimulating competence de-
velopment and are largely unknown. Natural competence
is the genetically programmed physiological state per-
mitting the efficient uptake of macro-molecular DNA.
Transformation is a tightly regulated process, and re-
quires an elaborate machinery with more than a dozen
of proteins involved. For only a rather limited number
of bacterial species have the natural transformation sys-
tems been studied in great detail (reviewed by Dubnau,
1999). Transformability seems to be a property that is
not systematically shared by all isolates belonging to the
same species, and transformation frequencies can dif-
fer up to four orders of magnitude among transformable
isolates of a species (Maamar and Dubnau, 2005; Siko-
rski et al., 2002). The soil bacterium Bacillus subtilis re-
sponds to environmental stress with competence devel-
opment. In B. subtilis, competence development is part
of a physiological state distinct from vegetative growth
or sporulation, which is developed by 10–20% of the
cells in the late growth stage under specific nutritional
conditions (Berka et al., 2002). In addition to differ-
ences in the DNA uptake processes, bacteria do not ex-
hibit the same efficiency to integrate the incoming DNA
by heterologous recombination (Sikorski et al., 2002).
The majority of studies on transformation in the context
of biosafety research have been performed with strain
Acinetobacter sp. BD413. Recently, the naturally trans-
formable Acinetobacter sp. ADP1 strain and its deriva-
tive BD413 were shown to belong to the newly de-
scribed species Acinetobacter baylyi (Vaneechoutte et al.,
2006). This strain can be transformed efficiently with
DNA of different sources. A few reports on the develop-
ment of the competence state under environmental con-
ditions exist. Nielsen et al. (1997) showed that the addi-
tion of nutrients can stimulate competence development

of Acinetobacter sp. BD413 in bulk soil. Competence de-
velopment was reported for the plant pathogen Ralsto-
nia solanacearum and the co-inoculated Acinetobacter
sp. BD413 when colonizing tobacco plants. Even more
strikingly, for the two soil isolates Pseudomonas fluo-
rescens and Agrobacterium tumefaciens, natural transfor-
mation without any specific physical or chemical treat-
ment was observed in soil (Demanèche et al., 2001b). A
peptide-pheromone system, which controls competence
in Streptococcus mutans functions optimally when cells
are living in actively growing biofilms (Li et al., 2001).
Biofilms seemed also to facilitate natural transformation
of Acinetobacter sp. BD413 and did not offer a barrier
against effective natural transformation (Hendrickx et al.,
2003). Recently, the uptake of DNA by Pseudomonas
cells during lightning has been described as an alternative
mechanism, promoting the uptake of DNA by bacteria
which might not possess a sophisticated mechanism for
developing natural competence (Cérémonie et al., 2004;
2006). However, the relevance of this mechanism as a
gene transfer process in nature is still debated.

Transduction

Transduction is a mechanism of DNA acquisition by
which non-viral DNA can be transferred from an in-
fected host bacterium to a new host via infectious or non-
infectious virus particles. Host DNA is mistakenly pack-
aged into the empty phage head when the phage particle
is produced. Defective phage particles which are released
from lysed host cells, can adsorb to new host cells and de-
liver the DNA carried in the capsid into the new host. The
injected bacterial DNA can be integrated into the recip-
ient genome. Although most bacteriophages infect only
a narrow range of hosts, this mechanism of gene transfer
has the advantage that transducing phages can be rather
persistent under environmental conditions, do not require
cell-cell contact, and DNA in transducing phage particles
is protected (Wommack and Colwell, 2000).

Evidence for the importance of transduction as an
HGT process under environmental conditions comes
mainly from recent studies on the abundance of bacte-
riophages in different environmental settings and from
bacterial genome sequences. Bacteriophage counts done
by means of electron or epifluorescence microscopy re-
vealed that in marine or fresh water samples bacterio-
phage counts were about 10-fold higher than bacterial
counts. The determination of direct bacteriophage counts
in soil is obviously more problematic, and only recently
studies revealed also a high abundance of viruses in soil
(Ashelford et al., 2003). These authors discussed that
the average counts of viruses determined in soil (approx.
1.5 × 107 g−1) were most likely an underestimate.
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Most of the sequenced bacterial genomes contain
prophage sequences (reviewed by Canchaya et al., 2003).
Many pathogenicity determinants (toxins) have been
acquired via phages, e.g. by Corynebacterium diph-
theria, Clostridium botulinum, Streptococcus pyogenes,
Staphylococcus aureus and Shiga toxin producing E.
coli (reviewed by Brüssow et al., 2004). Pathogenic-
ity islands (PAI) are large genomic islands that carry
one or more virulence gene, which often evolved from
lysogenic bacteriophages, and are assumed to be more
frequent in pathogenic strains than nonpathogenic strains
(Dobrindt et al., 2004; Hacker et al., 2003). However,
complete annotation of genome sequences revealed that
some nonpathogenic strains can also carry PAIs encod-
ing traits such as adhesins, iron uptake systems or pro-
teases, which contribute to general adaptability, fitness
and competitiveness, but lack prominent virulence factors
(Grozdanov et al., 2004).

Conjugation

Conjugation is the process whereby a DNA molecule
(plasmid or conjugative transposon) is transferred from
a donor to a physically attached recipient cell via the
so-called conjugation apparatus (Zechner et al., 2000).
Although common mechanistic principles are shared by
most of the conjugative system, e.g., the synthesis of
conjugative pili, there is a remarkable diversity of con-
jugative systems in Gram-negative and in Gram-positive
bacteria. Depending on the shape and characteristics of
the plasmid-encoded pili, plasmids transfer better on sur-
faces, e.g., in biofilms or between planctonic cells (Pukall
et al., 1996). Plasmids that do not carry the complete set
of genes coding for proteins required for the conjugative
transfer apparatus can still be transferred to recipient cells
by mobilizing plasmids (Frey and Bagdasarian, 1989), by
phages, or by transformation.

A critical property of plasmids is their host range.
Host range is not an “all or nothing” property (Heuer
et al., 2007). In the environment, certain species are pre-
ferred among the potential hosts, and adaptation of host
and plasmid to each other can shift the host range (Heuer
et al., 2007). Plasmids with a broad host range often ap-
pear to have lost restriction sites that are specific for nu-
cleases of the strain to which they are frequently transfer-
ring. In addition, they may carry anti-restriction systems
that minimize the effect of cleavage by special nucleases
that protect many bacteria from invasion by foreign DNA.

Information on the presence of conjugative or self-
transferable plasmids in environmental bacteria comes
from screening of bacterial isolates, from capturing trans-
ferable plasmids into recipients (exogenous isolation) di-
rectly from the bacterial fraction of environmental sam-
ples, or from sequencing of complete bacterial genomes

(reviewed by Smalla and Heuer, 2006). The proportion
of plasmid-carrying bacterial populations is thought to
depend on the species, the environmental habitat stud-
ied, and the extent of selective pressure. Transfer of con-
jugative plasmids or transposons has been demonstrated
to occur in different environmental settings. Transfer fre-
quencies are mainly affected by the metabolic status of
the donor (Johnsen and Kroer, 2006; Pukall et al., 1996).
New tools to study HGT by conjugation have improved
the knowledge on the horizontal gene pool, and greatly
facilitated the identification of factors affecting HGT and
the sites where HGT occurs.

In general, MGEs are agreed to add some, often small
or even not measurable, metabolic burden to their host,
although adaptation can occur to minimize this impact
(Dahlberg and Chao, 2003; Heuer et al., 2007). Conse-
quently, the prevalence of plasmids is evidence that they
can be of benefit to bacteria in the environment, to com-
pensate for any burden they might impose on the cell. The
way they do this may not be identical for all plasmids
– a small, high copy number plasmid and a large, self-
transmissible plasmid may benefit its hosts in different
ways. Often traits conferring an improved fitness or abil-
ity to colonize environmental niches are located on con-
jugative MGEs. The broadest view is that MGEs increase
the chance of new strains arising with novel or increased
selective advantages over their neighbors. Plasmids sur-
vive because bacterial communities and their environ-
ments are continually changing, so that the variability
that an MGE allows increases the speed at which adapted
strains arise, and the adapted strains carry the MGE and
propagate it faster. Thus MGEs that increase adaptabil-
ity evolve and will survive at the expense of those that
do not.

MGEs IN BACTERIAL COMMUNITIES
OF AGRICULTURAL SETTINGS

Prevalence of MGEs in soil or plant-associated
bacteria

The use of genomic approaches has revealed a large and
untapped diversity of MGEs resident in soil and plant-
associated bacteria: plasmids, prophages, pathogenic-
ity islands and integrons. Surveys on the presence of
plasmids isolated from plant-associated or soil bacteria
have been performed, and revealed that a considerable
proportion of bacteria from different environments car-
ried plasmids. Approximately 18% of bacterial isolates
from the phytosphere of sugar beets were found to con-
tain plasmids (Powell et al., 1993), and a large propor-
tion of these plasmids were able to mobilize non-self-
transferable but mobilizable IncQ plasmids (Kobayashi
and Bailey, 1994). The exogenous isolation of MGEs,
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which was originally used to retrieve plasmids from river
epilithon (Bale et al., 1988), was also successfully used
to capture MGEs from soil or phytosphere communities
(Smalla and Sobecky, 2002). Recipients functioning as a
genetic sink, and introduced under laboratory or in situ
conditions, have acquired MGEs conferring selectable
traits such as mercury or antibiotic resistance from the
bacterial fraction of bulk or rhizosphere soil (Drønen
et al., 1998; Heuer and Smalla, 2007; Heuer et al., 2002;
van Overbeek et al., 2002). Mercury resistance was used
as an effective selective marker to exogenously isolate
self-transferable plasmids from the phytosphere of differ-
ent crops in Gram-negative recipients (Lilley and Bailey,
1997; Lilley et al. 1994; 1996; Schneiker et al., 2001;
Smit et al., 1998) or from mercury-polluted soils (Drønen
et al., 1998). Capturing degradative genes resident on
MGEs has also been successfully demonstrated from
soils treated with 2,4-D, but not from untreated controls
(Top et al., 1995; 1996). Self-transferable plasmids con-
ferring resistance towards a range of antibiotics were
captured from animal manures used for soil fertilization
(Heuer and Smalla, 2007; Heuer et al. 2002; Smalla et al.,
2000; van Overbeek et al., 2002). Mobilizing plasmids
were isolated by Van Elsas et al. (1998), when bacte-
rial communities obtained from the rhizosphere of young
wheat plants served as donor in a tri-parental mating.
Plasmid pIPO2 was isolated in R. eutropha based on its
mobilizing capacity. Replicon typing and sequencing of
the complete plasmid (Tauch et al., 2002) revealed that
this cryptic plasmid of a size of approx. 45 kbp was
not related to any of the known BHR plasmids except
to plasmid pSB102 (Schneiker et al., 2001). Sequenc-
ing of plant-associated bacteria revealed that many phy-
topathogenic and symbiotic bacteria carry plasmids (Vi-
vian et al., 2001; Zhao et al., 2005), pathogenicity islands
(Arnold et al., 2003) or integrons (Gillings et al., 2005).

Factors influencing HGT in soil

Soils usually provide only restricted resources support-
ing microbial growth, resulting in limited population den-
sities and activity. This in turn restricts those microbial
processes that are dependent on density and activity, such
as all HGT (Timms-Wilson et al., 2001; Van Elsas et al.,
2003; 2006). However, particular sites in soil and the phy-
tosphere have been shown to provide good conditions for
bacterial colonization and activity, resulting in the occur-
rence of locally-enhanced densities of active cells. These
sites are often conducive to HGT processes, and are re-
garded as “hot” spots for bacterial gene transfer activity.
Soil treatments with manure, decomposing plant mate-
rial or plant-derived root exudates are considered to stim-
ulate HGT in soil (Götz and Smalla, 1997; Heuer and

Smalla, 2007). The plant species-dependent bacterial di-
versity in the rhizosphere (Costa et al., 2006a; 2006b;
Smalla et al., 2001), which is believed to be caused by
different root exudation patterns and differences of root
shape, has recently been shown to also influence plasmid
transfer frequencies (Mølbak et al., 2007). Key abiotic
and biotic factors that affect the extent of HGT in hot
spots in the phytosphere or in soil have been reviewed
recently (Van Elsas et al., 2003; 2006). The importance
of selection on the impact of gene transfer processes in
soils was discussed in a review by Top et al. (2002).
Recently, Heuer and Smalla (2007) showed that treating
soils with manure or with manure supplemented with sul-
fadiazine resulted in significantly increased abundance of
genes conferring resistance to sulfadiazine, of MGEs (in-
tegron gene cassettes or plasmids), and increased trans-
fer frequencies of exogenously isolated MGEs conferring
antibiotic resistances. The presence of nutrients as well as
of surfaces which can be colonized is particularly impor-
tant, as such sites are known to support large densities
of metabolically-active micro-organisms. Using both mi-
crocosm and in situ experiments, HGT between bacterial
hosts has been shown to occur in soil and in the phy-
tosphere (Lilley and Bailey, 1997; Mølbak et al., 2003;
Normander et al., 1998; Pukall et al., 1996; Sengeløv
et al., 2001). The use of marker genes in combination
with microscopic tools or flow cytometry allowed moni-
toring of HGT processes by conjugation in situ at a single
cell level (Sørensen et al., 2005).

Contribution of MGEs to the adaptability
and diversity of soil or plant-associated bacteria

Nowadays, HGT is viewed as an important and com-
mon process by which also soil or plant-associated bacte-
ria adapt to changing environmental conditions, broaden
their range of environmental niches by increasing their
fitness and competitiveness. Although MGEs have been
detected in many soil and plant-associated bacteria, their
function often remains unclear. The presence of a mer-
cury resistance operon cannot explain why Pseudomonas
isolates from the phytosphere host large plasmids of
greater than 300 kb which carry plant-inducible genes
(Zhang et al., 2004). Sequence analysis of one of these
Pseudomonas plasmids revealed that the functions of al-
most all putative genes still need to be investigated to get
an idea about their contribution to host fitness in the phy-
tosphere.

Vivian et al. (2001) reviewed the role of plasmids
in phytopathogenic bacteria and stressed the paucity of
knowledge concerning almost all aspects of plasmid biol-
ogy among phytopathogenic bacteria. This notion can be
extended to the molecular biology and ecology of most
MGEs associated with plant-associated or soil bacteria.
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This is even more surprising, as a substantial number of
genes involved in pathogenicity and host specificity of
phytopathogens have been assigned to plasmids. Traits
encoded on plasmids found in phytopathogenic strains
range from cytokinin, ethylene, indolacetic acid, UV re-
sistance, streptomycin or copper resistance, toxins such
as coronatine to avirulence genes (Vivian et al., 2001).
While avirulence genes or toxin-encoding genes are of-
ten found on plasmids, the genes encoding the special-
ized protein secretion machinery (termed type III secre-
tion system), which is required to deliver proteins to
plant cells, are more often located on PAIs in the chro-
mosome (Arnold et al., 2003). Exceptions are Ralstonia
solanacearum and Erwinia herbicola, where the TTSS
is located on a 2.1 Mb plasmid and 150 kb plasmid, re-
spectively. Genes involved in pathogenicity are thought
to be acquired by HGT mediated by phages, conjugative
transposons or plasmids. Many genomic islands in phy-
topathogenic bacteria probably originated from plasmids
encoding beneficial traits that integrated into the chro-
mosome. PAIs are usually flanked by direct repeats, in-
dicating that they were integrated into the host genome
via homologous recombination (Arnold et al., 2003). Se-
quencing complete genomes of phytopathogens revealed
that PAIs can occur on plasmids and the chromosome,
and have similar features as the ones studied in great de-
tail in human pathogens (Arnold et al., 2003; Hacker and
Kaper, 2000). Genomic islands have usually G+C con-
tent that is lower than the surrounding genome. A lower
G+C content may indicate the presence of acquired DNA,
or have a direct functional role by maintaining low ex-
pression levels or silencing of laterally acquired genes
(Lucchini et al., 2006). Integrons best known for their po-
tential to assemble antibiotic resistance gene cassettes in
clinical bacteria were also reported to occur in different
soil bacteria. Gillings et al. (2005) explored the impor-
tance of integrons as source of Xanthomonas genome di-
versity. In general, strains belonging to the same patho-
var had identical sets of gene cassettes, and these had
no similarity to the gene cassettes found in different
pathovars. So far, the Xanthomonas cassettes are pheno-
typically cryptic, and future research is required to clar-
ify whether their gene products contribute to the adap-
tation of the phytopathogen to their particular plant host
(Gillings et al., 2005). Furthermore, integrons might be
an important mechanism for incorporating horizontally
acquired genes into the chromosome of its host.

The presence of plasmids and the conjugative trans-
fer process was recently shown to contribute to biofilm
formation (Ghigo, 2001; Reisner et al., 2006), and this
might also have implications for colonization in the rhi-
zosphere.

MGE-driven bacterial adaptation to man-made selec-
tive pressure such as antibiotics, copper or herbicides

used in agriculture is also quite well documented. In-
creased abundances of bacteria with MGEs carrying re-
spective resistance genes or degradative genes and trans-
fer frequencies were observed in polluted soils compared
to the control (Heuer and Smalla, 2007; Top et al., 1995).
Identical nucleotide sequences of resistance genes in bac-
teria from antibiotic-treated farm animals and humans
suggested transfer of these genes between these habitats,
raising the risk of acquisition of resistances by human
pathogens through the use of antibiotics in agricultural
animal feed (Tschäpe, 1994). In a recent study, it was
shown that bacteriostatic compounds like tetracycline
could increase spread and establishment in the intestine
of transconjugants that acquired a resistance-conferring
plasmid (Licht et al., 2003). Although only a few aspects
of the flexible gene pool of soil and plant-associated bac-
teria could be highlighted in this mini-review, these ex-
amples should be sufficient to elucidate the enormous im-
portance of bacterial genome plasticity for survival and
successful colonization of new niches and adaptation of
soil or phytosphere bacteria to ever changing environ-
mental conditions.

CONCLUSIONS

It is now generally accepted that HGT played an impor-
tant role in the evolution of bacterial genomes. It is also
a major mechanism for real-time adaptation of bacteria.
The mosaic structure evident in many bacterial genomes
sequenced reflects the selective pressure for genetic plas-
ticity. The rapid accumulation of bacterial genome se-
quences and the development of powerful tools allowed
– and will continue to allow – new insights into the hor-
izontal gene pool, i.e. the horizontally transferred ge-
netic modules and their mobile genetic vehicles. Bacterial
species are constantly diversifying by sampling the hor-
izontal gene pool, which enables populations to rapidly
adapt to ever-changing environments. However, most as-
pects of their ecological niche remain constant, and select
for the less variable part of the genome which code for the
main characteristics of the species.

The risk assessment of a genetically modified organ-
ism must consider the potential for and, more impor-
tantly, the likelihood of any adverse effects of HGT to
bacteria in the environment. If there is any phenotype
associated with the inserted gene(s) which is potentially
unwanted in another host background, such as toxicity,
pathogenicity, increased virulence, resistance to antibi-
otics, competitive advantage, utilization of novel sub-
strates, or greatly expanded host range, then a close ex-
amination of the potential for gene transfer is warranted.
Otherwise, if there is already a significant existing gene
pool in the environment for genes imparting a particular
inserted trait, evaluation of the exposure components of
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risk seems to be gratuitous, in view of the tremendous
genome plasticity of bacteria in nature.
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