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Abstract. The notion of ring endomorphisms having large images is introduced.
Among others, injectivity and surjectivity of such endomorphisms are studied. It is
proved, in particular, that an endomorphism σ of a prime one-sided noetherian ring
R is injective whenever the image σ (R) contains an essential left ideal L of R. If, in
addition, σ (L) = L, then σ is an automorphism of R. Examples showing that the
assumptions imposed on R cannot be weakened to R being a prime left Goldie ring
are provided. Two open questions are formulated.

2010 Mathematics Subject Classification. 16W20, 16P60.

In this paper we start investigations of endomorphisms of semiprime unital rings
R having large images, i.e. endomorphisms σ such that the image σ (R) contains an
essential left ideal of R (see Definition 1.7). The motivation for such studies is twofold.
Let us recall that a ring (or a module) is called Hopfian (resp. co-Hopfian) if every
surjective (resp. injective) endomorphism is injective (resp. surjective). It is well known
and easy to prove that noetherian (artinian) modules and rings are Hopfian (co-
Hopfian). However, in general, the Hopfian property for modules behaves much better
than that of rings. Examples showing a difference in that behaviour can be found in
[6, 12, 13, 14, 15]. In case of rings, the set of all endomorphisms has no natural structure
of a ring and it seems to be natural to consider some classes of endomorphisms of a ring.
Our goal is to investigate how one can weaken Hopfian or co-Hopfian assumptions on
a ring endomorphism to conclude that the endomorphism is injective or surjective. We
obtained some positive results in this direction (cf. the second part of the Introduction).
Surprisingly, we could not answer some of the elementary formulated problems. For
example, we proved that every endomorphism having large image of a prime ring
with Krull dimension has to be injective; however we do not know whether the same
property holds for semiprime rings with Krull dimension.

The second source of motivation for our studies is lifting of properties from a
non-zero ideal of a prime ring to the ring itself. Theorems 1.1 of [2], 1, 2 and 3 of [3],
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Main Theorem of [5], Thèoréme 1.9 of [9] and Chapters 5 and 6 of [4] can serve as
examples of results of such nature.

The paper is organized as follows: Section 1 deals with the injectivity of
endomorphisms of semiprime left noetherian rings having large images. Necessary
and sufficient conditions for such endomorphisms of a semiprime ring to be injective
are given in Proposition 1.13. Theorem 1.10 says that such an endomorphism is
always injective, provided R is prime. In Section 2 we investigate surjectivity of these
endomorphisms. In particular, we show in Corollary 2.4 that every endomorphism of
a semiprime left noetherian ring such that σ (L) = L for an essential left ideal L of R
has to be an automorphism. We also show that every endomorphism of a principal left
ideal domain having a large image is always an automorphism. Examples are provided
all along the paper to justify the assumptions made. As an application of our results,
we obtain that the Jacobian conjecture has a positive solution for endomorphisms with
large images. Finally, two open questions are formulated.

1. Injectivity. Throughout the paper σ will stand for an endomorphism of an
associative ring R with unity.

The left annihilator {a ∈ R | aS = 0} of a subset S of R will be denoted by lannR(S).
The right annihilator of S in R will be denoted by rannR(S).

The following proposition is a part of folklore. It gives some basic motivation for
the assumptions we work with. We left its easy proof to the reader.

PROPOSITION 1.1. Let L be a left ideal of a ring R such that lannR(L) = 0. Suppose
that σ is an endomorphism and τ is an automorphism of R such that σ |L = τ |L. Then
σ = τ is an automorphism of R.

The assumption of Proposition 1.1 is satisfied if L is an essential left ideal of a
semiprime ring. Thus, in particular, when L is any non-zero ideal of a prime ring.

LEMMA 1.2. Let σ be an endomorphism of a ring R and n ≥ 1 a natural number.
Then ker σ n ⊂ ker σ n+1 iff σ n(R) ∩ ker σ �= 0 iff σ n(R) ∩ ker σ n �= 0.

Proof. The easy proof of the lemma is left as an exercise. �
It is known that rings satisfying the ascending chain condition (ACC) on ideals

are Hopfian. A direct application of the above lemma offers a generalization of this
fact.

PROPOSITION 1.3. Let R be a ring satisfying the ACC condition on ideals. Suppose
that for any n ≥ 1 there exists a non-zero left ideal L = L(n) of R such that L ⊆ σ n(R)
(for example when σ (L) = L). If either L is essential as a left ideal of R or lannR(L) = 0,
then σ is injective.

The following examples justify the assumptions made in the above proposition
and will help delimiting the ones that will appear in Theorem 1.10.

EXAMPLE 1.4. Let K be a field. The K-endomorphism of the polynomial ring K [x]
which sends x onto x2 induces an endomorphism σ of the ring R = K [x | x3 = 0]. Then
the image σ (R) contains the essential ideal Rx2 = Kx2, ker σ �= 0 and R is noetherian.

EXAMPLE 1.5. Let R = K [xi | i ≥ 0] be a polynomial ring in indeterminates xi,
i ≥ 0. and σ be the K-endomorphism of R given by σ (x0) = x0, σ (x1) = 0 and σ (xi) =
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xi−1, for i ≥ 2. Then R is a domain, σ (R) = R so σ (R) contains a non-zero ideal and
σ is not injective.

EXAMPLE 1.6. Let R = K [x, y | xy = yx = 0], where K is a field. Let σ be the
K-linear endomorphism of R determined by σ (x) = x and σ (y) = 0. R is semiprime
noetherian and (x) ⊆ σ (R) but σ is not injective.

Let us observe that for a left ideal L of a ring R the properties of being essential
and having zero left annihilator are independent notions; however, they coincide when
R is a semiprime left Goldie ring.

We will see in Theorem 1.10 that for prime rings a much stronger statement than
the one given in Proposition 1.3 holds. To get this, some preparation is needed.

DEFINITION 1.7. We say that an endomorphism σ of a ring R has a large image if
σ (R) contains an essential left ideal L of R with rannR(L) = 0.

Note that the above definition is not left–right symmetric as the following example
shows.

EXAMPLE 1.8. Let K be a field and R = K〈xi | i ≥ 0 and xkxl = 0 when k ≥ l〉.
The ideal M generated by the set {xi}∞i=0 is nil, so R is a local ring. Also note that
Mx0 = 0 while lannR(M) = 0.

It is easy to check that the assignment σ (x0) = 0 and σ (xi+1) = xi defines a K-
linear endomorphism of R. If L is a left ideal of R, then L is contained in M. Thus,
L has non-zero right annihilator. This means that σ does not satisfy Definition 1.7.
However, M ⊆ σ (R) is essential as a right ideal of R and lannR(M) = 0.

When L is an essential left ideal of a ring R then rannR(L) = 0 if the left singular
ideal of R is zero. This is always the case when R is semiprime left Goldie. In particular,
when R is a semiprime ring which is left noetherian, or possesses left Krull dimension,
then any essential left ideal L of R has a zero right annihilator.

In what follows, K(RM) and udim(RM) will denote the Krull dimension and the
Goldie dimension of a left R-module M. Let us recall that any left noetherian ring has
left Krull dimension K(R) = K(RR) and left Goldie dimension udim(R).

Note that if σ is an endomorphism of a semiprime ring R having a large image,
then the rings R and σ (R) share many ring properties. Some of them are recorded in
the following.

PROPOSITION 1.9. Suppose that an endomorphism σ of a ring R has a large image.
Then:

(1) If R is prime (semiprime), then so is σ (R).
(2) udim(σ (R)) = udim(R).

If, in addition, R is semiprime, then:
(3) If R is a left Goldie ring, then σ (R) is also a semiprime left Goldie ring and the

classical left quotient rings Q(σ (R)) and Q(R) are equal.
(4) If K(R) exists, then K(σ (R)) = K(R).
(5) If R is left noetherian, then R is also noetherian as a left module over σ (R).

Proof. Statements (1)–(3), which probably are a part of folklore, hold in a more
general context when σ (R) is replaced by an arbitrary subring T of R containing an
essential left ideal L of R with rannR(L) = 0. The first one does not require essentiality
of L and is an easy consequence of the following observation. Let a, b ∈ T be such that
aLb = 0. Then LaRLb = 0 and La = 0 only if a = 0, as rannR(L) = 0.
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If V is a non-zero left ideal of T , then LV ⊆ V is a left ideal of R contained in
T and LV �= 0 as rannR(L) = 0. Let L1 + L2 + · · · be a direct sum of non-zero left
ideals of T . Then, by the above, LL1 + LL2 . . . is a direct sum of non-zero left ideals
of R. Also note that if M1 + M2 + · · · is a direct sum of non-zero left ideals of R, then
(L ∩ M1) + (L ∩ M2) + . . . is a direct sum of non-zero ideals of T . This implies that
udim(T) = udim(R), i.e. statement (2) holds.

Suppose R is semiprime left Goldie. Then, by the above, T is semiprime and has
finite left Goldie dimension. This yields that T is a left Goldie ring, as the ACC on left
annihilators is inherited by subrings. Since L is an essential left ideal of a semiprime
Goldie ring R, there exists a regular element c of R such that Rc ⊆ L ⊆ T . Clearly,
c is regular in T , so we have R = Rcc−1 ⊆ Q(T). Also note that if d ∈ R is a regular
element of R then dc ∈ T is a regular element of T . Therefore, d is an invertible element
of Q(T). This shows that T ⊆ R ⊆ Q(R) ⊆ Q(T). On the other hand, the essentiality
of L in R shows that regular elements of T are left regular in R and, consequently,
regular in R, as R is semiprime left Goldie (see [11, Proposition 2.3.4]). This implies
that Q(T) ⊆ Q(R) and completes the proof of statement (3).

(4) Suppose K(R) exists. Then K(R) ≥ K(σ (R)) (cf. [11, Lemma 6.3.3]). The
endomorphism σ has a large image, so σ (R) contains an essential left ideal L of R
such that rannR(L) = 0. By assumption, R is a semiprime ring with Krull dimension.
Thus, by [11, Proposition 6.3.10(ii)], K(R) = K(RL). Statements (1) and (2) above show
that σ (R) is a semiprime ring and L is also an essential left ideal of σ (R). Thus, by
the same proposition we also have K(σ (R)) = K(σ (R)L). This yields K(R) ≤ K(σ (R)),
as K(RL) ≤ K(σ (R)L) and completes the proof of statement (3).

(5) Suppose R is left noetherian and L is an essential left ideal of R contained in
σ (R). Then R is a semiprime left Goldie ring, so L contains a regular element of R, say
c ∈ L is such. Then Rc ⊆ L ⊆ σ (R) is a submodule of a noetherian left σ (R)-module
σ (R). Thus, we can find ci ∈ σ (R) such that Rc = ∑n

i=1 σ (R)ci. Since ci ∈ Rc, ci = ric
for some ri ∈ R. Now Rc = ∑n

i=1 σ (R)ric and R = ∑n
i=1 σ (R)ri follows, as c is regular

in R. �
Note that all the above statements do not imply that σ (R) contains an essential

left ideal of R. Indeed, if R = K [x] is a polynomial ring over a field K and σ is
an K-endomorphism of R defined by σ (x) = x2, then clearly R and σ (R) possess
all properties from the above proposition but σ (R) does not contain a non-zero ideal
of R.

As an immediate application of Proposition 1.9 we obtain the following.

THEOREM 1.10. Let σ be an endomorphism of a semiprime ring R which has a large
image. Suppose R has left Krull dimension (for example R is left noetherian), then ker σ

is not essential as a left ideal of R. In particular, if additionally R is a prime ring, then σ

is an injective endomorphism.

Proof. Suppose K(R) exists. Thus, by Proposition 1.9, K(σ (R)) = K(R). Assume
that ker σ is essential as a left ideal. Then, as R is a semiprime left Goldie
ring, there exists a regular element c of R such that c ∈ ker σ . Hence, by
[11, Lemma 6.3.9], K(R(R/Rc)) < K(R). Moreover, K(R(R/ ker σ )) ≤ K(R(R/Rc)) as
R/ ker σ is a homomorphic image of R/Rc as a left R-module. This implies that
K(σ (R)) = K(R(R/ ker σ )) < K(R), which is impossible. This contradiction shows that
ker σ cannot be essential as a left ideal of R. This completes the proof of the
theorem. �
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We do not know the answer to the following:

QUESTION 1. Suppose that an endomorphism σ of a semiprime left noetherian ring
has a large image. Does σ have to be injective?

The next proposition offers some equivalent conditions for an endomorphism of a
semiprime left noetherian ring to be injective. In order to get this, some preparation is
needed. Let C(R) denote the set of all regular elements of a ring R and Cl(R) stands for
the set of all left regular elements of R, i.e. Cl(R) = {a ∈ R | lannR(a) = 0}. When R is a
semiprime left Goldie ring then C(R) = Cl(R) (cf. [11, Proposition 2.3.4]). Jategoankar
proved in [7] that σ (C(R)) ⊆ C(R) for any injective endomorphism σ of a semiprime
left Goldie ring R. The following elementary lemma offers the same thesis under a
slightly different hypothesis.

LEMMA 1.11. Let σ be an injective endomorphism of a ring R having large image. Then
σ (Cl(R)) ⊆ Cl(R). In particular, σ (C(R)) ⊆ C(R), provided R is semiprime left Goldie.

Proof. Since σ has a large image, σ (R) contains an essential left ideal L of R. Let
a ∈ R. Suppose that N = lannR(σ (a)) �= 0. Then 0 �= N ∩ L ⊆ σ (R). This means that
there is a non-zero r ∈ R such that σ (r)σ (a) = 0. Hence, ra = 0 as σ is injective. This
shows that σ (Cl(R)) ⊆ Cl(R). Suppose R is semiprime left Goldie. Then C(R) = Cl(R)
and the thesis follows. �

THEOREM 1.12. Let R be a semiprime left Goldie ring with an endomorphism σ .
Suppose σ has a large image. Then the following conditions are equivalent:

(1) σ is injective;
(2) σ (C(R)) ⊆ C(R).

If one of the above conditions holds then σ extends in a canonical way to an automorphism
of the left classical quotient ring Q(R) of R.

Proof. The implication (1) ⇒ (2) is given by Lemma 1.11.
Suppose that σ (C(R)) ⊆ C(R). This implies that σ can be uniquely extended

to an endomorphism, also denoted by σ , of Q = Q(R). We claim that σ is an
automorphism of Q. By the theorem of Goldie, Q is a semisimple ring. This means that
its homomorphic image σ (Q) is also a semisimple ring. This and Proposition 1.9(3)
imply that σ (R) is a semiprime left Goldie ring and Q(σ (R)) ⊆ σ (Q) ⊆ Q = Q(σ (R)).
This shows that σ (Q) = Q, and Proposition 1.3 implies that σ is also injective, since Q
is left noetherian as a semisimple ring. This completes the proof. �

PROPOSITION 1.13. Suppose R is a semiprime left noetherian ring. Let σ be an
endomorphism of R having a large image. The following conditions are equivalent:

(1) σ is injective;
(2) σ (C(R)) ⊆ C(R);
(3) there exists a regular element c ∈ R such that Rc ⊆ σ (R) and σ n(c) is regular in

R for every n ∈ �;
(4) σ n has a large image for every n ∈ �.

Proof. The implication (1) ⇒ (2) is given by Lemma 1.11.
By the assumption, R is semiprime left Goldie and σ (R) contains an essential ideal

L of R. Thus, there exists a regular element c of R such that Rc ⊆ σ (R). It is clear now,
that (2) ⇒ (3).

(3) ⇒ (4). Let c ∈ R be as described in (3) and set L = Rc. Since L is a left
ideal of R contained in σ (R), σ k(L) is a left ideal of σ k(R) contained in σ k+1(R), for
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every k ≥ 0. We prove, by induction on m ≥ 0, that Pm = Lσ (L) . . . σ m(L) ⊆ σ m+1(R).
Note that, by assumption, P0 = L ⊆ σ (R). Let m ≥ 0 and assume that Pm ⊆ σ m+1(R).
Then Pm+1 = Pmσ m+1(L) ⊆ σ m+1(L) ⊆ σ m+2(R), as Pm ⊆ σ m+1(R) and σ m+1(L) is a
left ideal of σ m+1(R) contained in σ m+2(R). This proves the claim. Note that Pm contains
a regular element cσ (c) . . . σ m(c), where m ≥ 0. This implies that, for any n ≥ 1, σ n has
a large image, i.e. (4) holds.

(4) ⇒ (1). R is left noetherian and the implication is a direct consequence of
Proposition 1.3. �

Let us observe that implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are satisfied in the above
proposition under the assumption that R is a semiprime left Goldie ring. The
assumption that R is left noetherian was used in the proof of (4) ⇒ (1) only (but
semiprimeness of R was not used). In fact, Example 1.5 shows that the implication
(3) ⇒ (1) does not hold when R is not noetherian even if it is a commutative domain.

2. Surjectivity. In this section we will assume that the endomorphism σ of the
ring R is injective. It is known (cf. [8, 10]) that in this situation there exists a universal
over-ring A = A(R, σ ) of R, called a Cohn–Jordan extension of R, such that σ extends
to an automorphism of A and, for any a ∈ A, there exists n ≥ 1 such that σ n(a) ∈ R.
Note that σ is an automorphism of R if and only if R = A.

The following technical lemma will be helpful in the proof of Theorem 2.3.

LEMMA 2.1. Let σ be an injective endomorphism of a ring R and L be a left (two-
sided) ideal of R. Then L is a left (two-sided) ideal of A = A(R, σ ) iff σ n(L) is a left
(two-sided) ideal of R for every n ∈ �.

Proof. Suppose that, for any n ∈ �, σ n(L) is a left ideal of R. Let a ∈ A and n ≥ 1 be
such that σ n(a) ∈ R. Then, by assumption, σ n(aL) = σ n(a)σ n(L) ⊆ σ n(L). Injectivity
of σ implies aL ⊆ L and shows that L is a left ideal of A. Similar arguments work on
the right side.

The reverse implication is clear as, for a left ideal J of A, σ (J) is a left ideal of A
and σ (J) ⊆ R, provided J ⊆ R. �

PROPOSITION 2.2. Let σ be an injective endomorphism of a left noetherian ring R.
Then σ is an automorphism of R iff there exists an element c ∈ R ∩ C(A) such that
Ac ⊆ R, where A = A(R, σ ).

Proof. Suppose c ∈ R is as in the proposition. Let a ∈ R. Note that, as Ac ⊆ R,
we have Rσ−m(a)c ⊆ R for every m ≥ 1. This means that Im = ∑m

i=0 Rσ−i(a)c is a left
ideal of R, for every m ≥ 1. Since R is left noetherian and Im ⊆ Im+1, for any m, there
exists n ≥ 1 such that σ−(n+1)(a)c ∈ In. This and regularity of c in A imply that there
are elements r0, . . . , rn ∈ R such that σ−(n+1)(a) = ∑n

i=0 riσ
−i(a). Now applying σ n+1

on both sides of this equality, we obtain a ∈ σ (R). This shows that σ (R) = R, so σ is
an automorphism.

For the reverse implication it is enough to take c = 1. �
Now we are in position to prove the following.

THEOREM 2.3. Let σ be an injective endomorphism of a left noetherian semiprime
ring R. Then the following conditions are equivalent:

(1) σ is an automorphism of R.
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(2) There exists an essential left ideal L of R such that L ⊆ σ (R) and σ n(L) is a left
ideal of R, for every n ∈ �.

Proof. It is enough to prove (2) ⇒ (1). Let L be an essential left ideal of R such that
L ⊆ σ (R) and σ n(L) is a left ideal of R, for every n ∈ �. Lemma 2.1 and assumptions
imposed on L yield that L is a left ideal of A = A(R; σ ). Since L is an essential left ideal
of a semiprime left Goldie ring, it contains a regular element c ∈ C(R). Injectivity of σ

and Lemma 1.11 imply that for any n ≥ 0 σ n(c) ∈ C(R). Let a ∈ A and n ≥ 1 be such
that ac = 0 and σ n(a) ∈ R. Then σ n(a)σ n(c) = 0 and a = 0 follows as σ n(c) ∈ C(R) and
σ is injective. Similarly, ca = 0 implies a = 0. This shows that c ∈ C(A). We also have
Ac ⊆ AL ⊆ R and Proposition 2.2 completes the proof. �

Let us remark that, by Theorem 1.10, an endomorphism σ satisfying statement
(2) of Theorem 2.3 is injective, provided R is a prime ring.

By the above Theorem 2.3 and Proposition 1.3 give the following.

COROLLARY 2.4. Let R be a semiprime left noetherian ring and L be an essential left
ideal of R. Then every endomorphism σ of R such that σ (L) = L is an automorphism
of R.

Examples 1.5 and 2.12 show that the noetherian assumption in the above corollary
is essential even in the case R is a commutative domain. Namely, in general, an
endomorphism σ , as in the above example, does not have to be injective. There also
exist such injective endomorphisms which are not onto.

Every non-zero ideal of a prime ring is essential as a left ideal, thus using Theorem
1.10 and taking L = σ (I) in Theorem 2.3 we get the following.

COROLLARY 2.5. An endomorphism σ of a prime left noetherian ring R is an
automorphism iff there exists an ideal I of R such that σ (I) �= 0 and σ n(I) is an ideal of
R, for every n ≥ 1.

PROPOSITION 2.6. Let σ be an endomorphism of a prime left noetherian ring such
that σ (R) contains a non-zero ideal I of R. Then for any natural number n ≥ 1 we have:

(1) σ n(R) contains a non-zero ideal In of R such that In+1 ⊆ σ (In).
(2) There exists a non-zero ideal J of R such that 0 �= σ i(J) is an ideal of R, for all

1 ≤ i ≤ n.

Proof. (1) By assumption 0 �= I ⊆ σ (R) and Theorem 1.10 shows that σ is injective.
We construct In by induction as follows: I1 = I and In+1 = Iσ (In)I , for n ≥ 1. The
injectivity of σ and the primeness of R show that In+1 is a non-zero ideal of R. Moreover,
making use of the induction hypothesis we have: In+1 = Iσ (In)I ⊆ σ (R)σ (In)σ (R) ⊆
σ (In) ⊆ σ n+1(R). This gives the proof of (1).

(2) By (1), there exists a non-zero ideal In of R contained in σ n(R). It is enough to
take J = σ−n(In). �

If n ≥ 1 and J and J ′ are ideals of R such that σ i(J) and σ i(J ′) are ideals of R,
for 0 ≤ i ≤ n, then J + J ′ also has this property. This means that, for any n ≥ 1, there
exists the largest ideal Jn of R such that σ i(Jn) is an ideal of R for 0 ≤ i ≤ n. Note that,
by the construction, Jn+1 ⊆ Jn, for every n ≥ 1. Therefore, σ n(

⋂∞
i=1 Ji) = σ n(

⋂∞
i=n Ji) =⋂∞

i=n σ n(Ji) is an ideal of R for all n ≥ 1 and Proposition 2.6 and Theorem 2.3 give the
following.
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COROLLARY 2.7. Suppose that σ is an endomorphism of a prime left noetherian ring
such that σ (R) contains a non-zero ideal of R. Let Jn, where n ∈ �, denote the largest
ideal of R such that σ i(Jn) is an ideal of R, for any 0 ≤ i ≤ n. Then all Jn’s are non-zero
and σ is an automorphism of R iff

⋂∞
i=1 Ji �= 0.

The following theorem records another situation when every endomorphism with
a large image has to be an automorphism.

THEOREM 2.8. Suppose σ is an endomorphism of a left principal ideal domain R (left
PID for short). If σ (R) contains a non-zero left ideal L of R, then σ is an automorphism
of R.

Proof. Suppose L is a non-zero left ideal of R such that L ⊆ σ (R). Hence, by
Theorem 1.10, σ is injective.

Let 0 �= a ∈ L. Then Ra ⊆ σ (R) and Ra is a principal left ideal of σ (R), as the ring
σ (R) is also a left PID. Thus, there exists c ∈ σ (R) such that Ra = σ (R)c. In particular,
a = dc for some d ∈ σ (R) and Rdc = σ (R)c. Since R is a domain, c is regular and
we get Rd = σ (R). Thus, as 1 ∈ σ (R), we get R = Rd = σ (R). This shows that σ is
onto. �

In the case R is a left Ore domain, we have the following.

PROPOSITION 2.9. Let σ be an injective endomorphism of a left Ore domain. If σ (R)
contains a non-zero one-sided ideal of R, then the extension of σ to the division ring of
quotients D of R is an automorphism of D.

Proof. Injectivity of σ implies that σ extends to an endomorphism of D. The
assumption implies that there exists 0 �= c ∈ R such that either cR or Rc are contained
in σ (R) ⊆ σ (D) ⊆ D. The fact that σ (D) is a division ring implies easily that R ⊆ σ (D)
and σ (D) = D. �

The following example presents a left PID R with an injective endomorphism σ

such that σ (R) contains a non-zero right ideal and σ is not onto. Compare also this
example with Theorem 2.8.

EXAMPLE 2.10. Let K be a field with an endomorphism σ which is not onto.
Consider the skew polynomial ring R = K [x; σ ] (with coefficients written on the left).
We can extend σ to R by setting σ (x) = x. Then R is left PID and σ (R)x is a right ideal
of R contained in σ (R).

In Corollary 2.11 we sum up obtained results in the special case of prime rings.

COROLLARY 2.11. Suppose R is a prime left noetherian ring. Let σ be an
endomorphism of R having a large image. Then:

(1) σ is injective and extends to an automorphism of the classical left quotient ring
of R.

(2) If σ (L) = L, for a certain essential left ideal of R, then σ is automorphism of R.
(3) If R is left PID, then σ is an automorphism of R.

The above suggests the following:

QUESTION 2. Does there exist a prime left noetherian ring (or a left noetherian
domain) with an endomorphism σ such that σ has a large image and σ is not an
automorphism of R.

https://doi.org/10.1017/S0017089512000626 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000626


RING ENDOMORPHISMS WITH LARGE IMAGES 389

The question seems to be interesting even in the case R is a polynomial ring K [X ]
over a field K in the finite set X = {x1, . . . , xn} of indeterminates. Let τ : K [X ] → K [X ]
be a K-linear endomorphism. In the case #X = 1, Theorem 2.8 states that τ has to
be an automorphism of K [X ]. In a general case, Proposition 1.9(3) shows that K(X)
is the quotient field of K [τ (X)]. It is known (cf. [1, Theorem 2.1) that in this case the
Jacobian Conjecture holds, i.e. τ has to be an automorphism, provided the Jacobian
J(τ ) ∈ K∗.

When charK = 0, another special case of the above question is as follows: Does
the Dixmier Conjecture that every endomorphism of the Weyl algebra A1(K) is an
automorphism hold for endomorphisms having large images. Theorem 2.3 implies that
this is exactly the case when there exists a non-zero left ideal L of A1(K) such that
σ n(L) is a left ideal of A1(K) for every n ≥ 1.

We will present here examples of injective endomorphisms which are not
automorphisms but have large images when R is a prime left Goldie ring or even
a commutative domain. The first one is a commutative local domain.

EXAMPLE 2.12. Let k(x) denote the field of rational functions over a field k and K its
algebraic extension K = k(x)(x

1
2n | n ∈ �). Let σ stands for the k-linear automorphism

of K given by σ (x
1

2n ) = x
1

2n−1 . Then σ can be extended to an automorphism of the power
series ring K [[y]] by setting σ (y) = y. Define R = k(x) + K [[y]]y ⊆ K [[y]]. Then R is a
local ring with the maximal ideal M = K [[y]]y, the restriction of σ to R is an injective
endomorphism of R, which is not onto. Clearly M = σ (M) is an ideal of R contained
in σ (R) = k(x2) + M ⊂ R.

The ring R in the above example is not noetherian as otherwise, by Theorem 2.3,
σ would be an automorphism of R. It is also easy to check directly that if In = (x

1
2i y |

0 ≤ i ≤ n − 1), n ∈ �, then x
1

2n y ∈ In+1 \ In.
In what follows, U(R) will denote the unit group of R. Let us note that σ (U(R)) �=

U(R) in Example 2.12. In fact, let us observe the following.

REMARK 2.13. Let R be local ring and σ be an injective endomorphism of R
such that σ (U(R)) = U(R). Then σ is an automorphism of R. Indeed, let m ∈ M =
R \ U(R). Since R is local, M is an ideal of R. This implies that 1 + m �∈ M. Thus, by
the assumption, there is a ∈ R such that σ (a) = 1 + m, i.e. m = σ (a − 1) ∈ σ (R).

The following example offers a commutative domain R with an injective
endomorphism σ which is not onto such that σ (U(R)) = U(R) and σ (I) = I for some
non-zero ideal I .

EXAMPLE 2.14. Let R = � + �x + �[ 1
2 ][x]x2. Let σ be the endomorphism of R

defined by σ (x) = 2x. Then I = �[ 1
2 ][x]x2 and J = 2�x + �[ 1

2 ][x]x2 are ideals of R
contained in σ (R) = � + 2�x + �[ 1

2 ][x]x2. Note that σ (I) = I and σ (J) ⊂ J.

The ring R in the above example is not noetherian. Indeed, if In = ( 1
2i x2 | 0 ≤ i ≤

n − 1), n ∈ �, then 1
2n x2 ∈ In+1 \ In.

Theorem 1.12 implies that if R is a semiprime left Goldie ring with an injective
endomorphism σ having a large image, then its Cohn–Jordan extension A = A(R, σ )
is contained in Q(R). Example 2.14 shows that inclusions R ⊆ A ⊆ Q(R) can be strict.

Example 2.14 can be generalized to the following construction.
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EXAMPLE 2.15. Let T = ⊕∞
n=0 Tn be an �-graded ring with a graded

automorphism σ , i.e. automorphism such that σ (Tn) = Tn. Let R0 be a subring of T0

such that σ (R0) ⊂ R0 and R = R0 ⊕ ⊕∞
n=1 Tn. Then σ is an injective endomorphism

of R which is not an automorphism and R contains an ideal M = ⊕∞
n=1 Tn of R such

that σ (M) = M.

It is easy to construct prime rings or even domains, as in the above example. Take
any prime ring (or a domain) R0 with an injective endomorphism σ which is not onto.
Let A0 = A(R0, σ ) be the Cohn–Jordan extension of R0. Then A0 is a prime ring (a
domain) and consequently T = A0[x] = ⊕∞

n=0 Tn is also such a ring, where Tn = A0xn.
Then one can extend σ to an automorphism of T and consider R = R0 ⊕ ⊕∞

n=1 Tn.
This construction never leads to noetherian rings. Note that if A0 would be finitely

generated as a left R0-module, then A0 = R0, i.e. σ would be an automorphism of R0.
Indeed, if A0 = R0a1 + · · · + R0am, then there would exist n ≥ 1 such that σ n(ai) ∈ R0,
for 1 ≤ i ≤ m. Then A0 = σ n(A0) = σ n(R0a1 + · · · + R0am) ⊆ R0.

By the above, there are ai ∈ R0, i ∈ �, such that R0a1 + · · · + R0an ⊂ R0a1 + · · · +
R0an+1, for all n. Let In denote the left ideal of R = R0 + A0[x]x generated by elements
a1x, . . . , anx. Then In ⊂ In+1, i.e. R is not noetherian.
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