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Abstract. Wewill clarify themicrolocal structure of the vanishing cycle of the solution complexes
toD-modules. In particular, we¢nd that the object introducedbyD'Agnolo and Schapira is akind
of the direct product (with a monodromy structure) of the sheaf of holomorphic microfunctions.
By this result, a totally new proof (that does not involve the use of the theoryofmicrolocal inverse
image) of the theorem of D'Agnolo and Schapira will be given.We also give an application to the
rami¢edCauchyproblemswithgrowth conditions, i.e., theproblems in theNilsson class functions
of Deligne.
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1. Introduction

In this paper, we will determine the microlocal structure of the nearby (vanishing)
cycles of the holomorphic solution complexes to D-modules. Let X be a complex
manifold and H � X a complex hypersurface. If we denote by Oram

HjX the sheaf of
holomorphic functions on X ÿH (arbitrarily) rami¢ed along H (see the de¢nition
in Section 2), the solution complex RHomDX �M;Oram

HjX � to a coherent DX -module
M is the nearby cycle sheaf of the holomorphic solution complex
Sol�M� � RHomDX �M;OX �. Deligne [6] de¢ned the sheaf Oram

HjX by
RHomCX �FH ;OX � for a sheaf FH attached to H , weakly R-constructible in the
sense of Kashiwara and Schapira [16]. Here we are interested in the structure of
its microlocal version mhom�FH ;OX � introduced by D'Agnolo and Schapira [3]. This
is a complex of sheaves on the cotangent bundle T�X , whose restriction to the zero
section T�XX ' X coincides with Oram

HjX � RHomCX �FH ;OX �. However, to the best
of our knowledge, it seems that the concrete structure of mhom�FH ;OX � has not
yet been studied and this object has been treated only using purely sheaf theoretical
methods (see, for example, [3, 7, 23]) up to now.

First in Section 2, we will show that the complex mhom�FH ;OX � is concentrated in
the degree 0 and, locally on _T�HX , it is even isomorphic to a kind of direct product of
the sheaf CRHjX of holomorphic microfunctions. Since it is not a direct product in the
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usual sense, we will call it the (local) `simultaneous direct product' structure of the
sheaf mhom�FH ;OX �. In fact, globally on _T�HX , it is not the (simultaneous) direct
product of CRHjX and has a `monodromy' structure. We will explain the precise
meaning in Section 2.

These results enable us to study the microlocal nearby (vanishing) cycle
mhom�FH ; Sol�M�� � RHomDX �M; mhom�FH ;OX ��. We believe that it will be the
starting point of the calculation of the vanishing cycles of holonomic systems.
In effect, Kashiwara [10] studied the structure of the solution complexes
RHomDX �M; CRHjX � to holonomic systemsM. Our results show that the vanishing
cycles of holonomic systems M can be obtained by calculating the microlocal
vanishing cycleRHomDX �M; mhom�FH ;OX ��, which is the simultaneous direct prod-
uct of RHomDX �M; CRHjX �.

In Section 3, we give a totally new proof of a result of D'Agnolo and Schapira [3]
on the generalization of the theorem of Hamada, Leray and Wagschal [9]. We prove
this theorem without using the theory of microlocal inverse image of Kashiwara and
Schapira [16].

Roughly speaking, the situation that we encounter is (microlocally) just the
(simultaneous) direct product of that considered in [15], and our proof goes along
the same lines as the proof of [15]. Finally in Section 4, we obtain the tempered
version of the result of [3] as a simple application of these studies. Namely, we solve
the rami¢ed Cauchy problems for D-modules with regular singularities (in the sense
of [14]) for the initial data in the Nilsson class of Deligne [5]. Let us mention that
the same problem was also tackled in [23], in which the general rami¢ed initial data
could not be treated. This dif¢culty arises from the fact that the functor
Tÿmhom��;OX � of Andronikof [1] was de¢ned only for R-constructible sheaves.
We overcame this dif¢culty by introducing a subsheaf Tÿmhom�FH ;OX � of
mhom�FH ;OX �. For another type of Cauchy problem with growth conditions, see
Tonin [23]. In fact, in the case of initial logarithmic pole data, the rami¢ed Cauchy
problem for DX -modules with growth conditions was solved by Laurent [18] and
Monteiro Fernandes [19].

2. Microlocal Structure of Nearby (Vanishing) Cycles

In this paper, we essentially employ the terminology of Kashiwara and Schapira [16].
For example, for a topological space X we denote by Db�X � the derived category of
complexes of sheaves ofCX -modules. First, we assume that X is a complex manifold
andH � X a complex hypersurface. We shall recall the construction of Deligne [6] of
nearby (vanishing) cycles (see also [3] for an introduction). Let p : ~C� ' Ct ! Cz be
the universal covering map of C� given by t 7! z � exp�2pit�. We choose a
holomorphic de¢ning function g of H s.t. H � fg � 0g. The ¢ber product
~X�H � ~C�C X , pH : ~X�H ! X induced from p and g ¢ts well into the Cartesian
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square:

~X�H ÿ! ~C�

pH
??y ??yp
X ÿ!

g
C:

DEFINITION 2.1 ([6]). We de¢ne the sheaf of holomorphic functions on X ÿH
(arbitrarily) rami¢ed along H by the formula: Oram

HjX � RHomCX �FH ;OX �, where
FH � pH!C ~X�H

.

Let us recall that the object

RHomCX �FH ;OX � ' RpH�O ~X�H
2 Db�X �

is concentrated in the degree 0 and can be regarded as a sheaf on X . If we apply the
functor

mhom��; ��: Db�X �op �Db�X � ÿ! Db�T�X �

of [16] to the sheaf FH , we get the microlocal version mhom�FH ;OX � 2 Db�T�X � of
Oram

HjX satisfying RpX�mhom�FH ;OX � ' Oram
HjX for the projection pX :T�X ! X . This

microlocal object was ¢rst introduced in [3] and used to generalize the theorem
of Hamada, Leray and Wagschal [9] into the case of DX -modules. By the following
proposition, one can understand the precise structure of the complex
mhom�FH ;OX �. We endow the set Z of rational integers with the discrete topology
and consider the ¢rst projection t:X1 � X �Z! X . For an object F 2 Db�X �,
we set

L1 F :� t!tÿ1F 2 Db�X �.

PROPOSITION 2.2. (i) The object mhom�FH ;OX � is concentrated in the degree 0.
(ii) For any p 2 _T�HX, we have an isomorphism:

mhom�FH ;OX � ÿ!� mhom
M1

CH ;OX

� �
�1�

on an open neighborhood of p.
(iii) The stalk of mhom�FH ;OX � at p 2 _T�HX is described as follows:

mhom�FH ;OX �p ' limÿ!
S

H1RHomCX

M1
CS;OX

� �
pX �p�

' limÿ!
S;U

Y1
OX �U ÿ S�

.Y1
OX �U�

� �
;
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where S ranges over the family of closed subsets of X s.t.

CH �S�pX �p� � fv 2 �THX �pX �p�;< v; p >> 0g [ f0g
and U ranges over the open neighborhoods of pX �p� in X.

Proof. (ii) Locally we may assume that

H � fz1 � 0g � X ; z1 � x1 � iy1 and p � dx1 2 _T�HX :

We take a locally closed subset K :� fx1 < 0; y1 � 0g of X st. @K � H and an open
subset O :� X ÿ �K � X . It follows from the isomorphism FH ' �FH �XÿH that
we have the exact sequence of sheaves:

0! �FH �O ! FH ! �FH �K ! 0:

Since on O and K the monodromy of the sheaf FH disappears, we get
�FH �O '

L1CO and �FH �K '
L1CK . Now consider the isomorphism

M1
CO � t!tÿ1CO ÿ!� �t!CX1� 
CO �

M1
CX

� �

CO:

Then we get the estimation p 62 SS�L1CO� (by Proposition 5.4.14(i) of [16]) and the
isomorphism FH 'L1CK in the localized category Db�X ; p� of Db�X � at p. As in
the argument of [21], one can associate a distinguished triangle

D0�CH � ! D0�C �K � ! D0�CK � ! �1
to the exact sequence

0! CK ! C �K ! CH ! 0;

where D0��� � RHomCX ��;CX � is the stupid dual functor on X . This distinguished
triangle is reduced to:

CH �ÿ2� ! CK �ÿ1� ! C �K �ÿ1� ! �1
and we obtain a morphismCH �ÿ1� ! CK which is isomorphic in Db�X; p�. Thus, by
tensorizing

L1CX , we have the isomorphism
L1CH �ÿ1� '

L1CK in Db�X ; p�.
Summarizing, we have got a microlocal ismorphism FH 'L1CH �ÿ1� which
induces an isomorphism:

mhom�FH;OX � ÿ!� mhom
M1

CH ;OX

� �
�1�

on an open neighborhood of p 2 _T�HX .
(i), (iii) At the zero section T�XX of T�X , the object mhom�FH ;OX � coincides with

the sheaf Oram
HjX . Hence, there is nothing to prove. Since

supp mhom�FH ;OX � � SS�FH � � T�XX [ T�HX
it is enough to consider the stalks at p 2 _T�HX . By a simple calculation and (ii), we
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have the stalk formula

Himhom�FH;OX �p ' limÿ!
S

Hi�1RHomCX

M1
CS;OX

� �
pX �p�

at p for 8i 2 Z, where S ranges over the family of closed subsets of X s.t.

CH �S�pX �p� � fv 2 �THX �pX �p�;< v; p >> 0g [ f0g:
The right-hand side vanishes except for i � 0, and for i � 0 it is isomorphic to

limÿ!
S;U

Y1
OX �U ÿ S�

.Y1
OX �U�

� �
;

where U ranges over the open neighborhoods of pX �p� in X . This completes the
proof. &

Remark 2.3. The stalk at p 2 _T�HX of mhom�FH ;OX � is very similar to that of the
in¢nite direct product

Q1 CRHjX of the sheaf of holomorphic microfunctions.
However, the stalk at p of

Q1 CRHjX is equal to

limÿ!
S

Y1
�GXÿS�OX �z=�OX �z

� �
; z � pX �p� 2 X ;

where S ranges over the family of closed subsets of X s.t.

CH �S�pX �p� � fv 2 �THX �pX �p�; hv; pi > 0g [ f0g:
This is not isomorphic to the stalk of mhom�FH ;OX �.

Motivated by the above remark, we shall regard the sheaf mhom�FH ;OX � (restricted
to an open neighborhood of a point p 2 _T�HX ) as a kind of the direct product of
CRHjX and call it the `simultaneous direct product' of CRHjX . For every k 2 Z, consider
the embedding

jk : X � X � fkgÿ!X �Z � X1

and the natural morphism

M1
CH � t!tÿ1CH ! t! jk�jÿ1k tÿ1CH ' CH;

from which we have an injective sheaf homomorphism

CRHjX � mhom�CH ;OX ��1� ,!mhom
M1

CH ;OX

� �
�1� ' mhom�FH ;OX �

on an open neighborhood of p 2 _T�HX . Hence we can consider that (locally on _T�HX )
the sheaf CRHjX is a subsheaf of the sheaf mhom�FH ;OX �. We call this subsheaf the kth
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component of mhom�FH ;OX �. Note that this embedding of CRHjX is de¢ned only on an
open neighborhood of p 2 _T�HX . As for the global structure of the sheaf
mhom�FH ;OX �, we have the following results:

PROPOSITION 2.4. (i) The restriction of the sheaf mhom�FH ;OX � to _T�HX has a
`monodromy' structure. Namely, if we turn (once) around H in _T�HX in the clockwise
direction, the kth component of mhom�FH ;OX � is connected to the �k� 1�th
component.

(ii) RpX !mhom�FH ;OX � ' OX jH on H.
Proof. (i) In order to see the monodromy structure, we will give another proof of

Proposition 2.2 (ii). In an open neighborhood of p 2 _T�HX , SS�FH � � T�HX so,
by Proposition 6.6.1 of [16] there exists an object M 2 Db�fptg� such that
FH 'MH in the localized derived category Db�X; p�. If H � fz1 � 0g,
z1 � x1 � iy1 and p � �0; dx1� 2 _T�HX , by the de¢nition of Db�X ; p�, we have

RGfx1 X 0g�FH �0 ' RGfx1 X 0g�MH �0 �M:

It follows from the distinguished triangle

RGfx1 X 0g�FH �0ÿ!�FH �0ÿ!RGfx1<0g�FH �0ÿ!� 1

and the isomorphisms (obtained from the de¢nition of FH � pH!C ~X�H
):

RGfx1<0g�FH �0 '
M1

C and �FH �0 ' 0

that we have an isomorphism
L1C ' RGfx1 X 0g�FH �0�1�. Therefore,

M 'L1C�ÿ1� and we got the desired isomorphism FH 'L1CH �ÿ1� in
Db�X; p�. If we rotate the covector p 2 _T�HX in the clockwise direction, the
�k� 1�th component of FH 'L1CH �ÿ1� is continued to the k-th component from
the above proof (FH � pH!C ~X�H

). Since mhom��;OX � is a contravariant functor, part
(i) follows.

(ii) First we recall that we have the morphism of adjunction

FH � pH!p!
HCX ! CX

from which one can deduce a morphism

OX jH' �RpX !mhom�CX ;OX ��Hÿ!�RpX !mhom�FH ;OX ��H :
Let us prove that it is in fact an isomorphism. For a point z 2 H � X , the stalk of
RpX !mhom�FH ;OX � at z is expressed by

RpX !mhom�FH ;OX �z ' �RHom�qÿ12 FH ; q!
1OX � jDX �ÿdimRX ��z;

where q1 (resp. q2) is the ¢rst (resp. second) projection from X � X to X and
DX � X � X is the diagonal set. Thus, for any i 2 Z, by taking the inductive limit
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for open neighborhoods U of z in X , we have

Hi�RpX !mhom�FH ;OX ��z
' limÿ!

z2U
HiRG�U �U;RHom�qÿ12 FH �dimRX �; q!

1OX ��

' limÿ!
z2U

HiRG�U;Rq1�RHom�qÿ12 �FH �U �dimRX �; q!
1OX �� �1�

' limÿ!
z2U

HiRG�U;RHom�Rq1!qÿ12 �FH �U �dimRX �;OX ��:

Now for any point w 2 U

�Rq1!qÿ12 �FH �U �dimRX ��w
' RGc�U;FH ��dimRX � � RGc�pÿ1H �U�;C ~X�H

��dimRX �;

and if we take U so that pÿ1H �U� is homeomorphic to R2n, 2n � dimRX , the
right-hand side is isomorphic to C. Replacing FH with CX , we also have
�Rq1!qÿ12 �CX �U �dimRX ��w ' C for w 2 U and we obtain the required isomorphism:

RpX !mhom�CX ;OX �zÿ!� RpX !mhom�FH ;OX �z:
This completes the proof. &

We set _pX : _T�X ! X as usual. By applying Sato's distinguished triangle
RpX ! ! RpX� ! R _pX� ! �1 to the sheaf mhom�FH ;OX � we obtain the following
corollary:

COROLLARY 2.5. There exists an exact sequence on H:

0!OX jH ÿ!Oram
X jH jH! � _pX�mhom�FH ;OX ��H ! 0:

Now for a coherent DX -moduleM, set F � Sol�M� :� RHomDX �M;OX �. Then the
complex

RHom�FH ;F �H ' RHomDX �M;Oram
X jH �H 2 Db�H�

is the so-called nearby cycle of F and, by the above corollary the complex
�R _pX�RHomDX �M; mhom�FH ;OX ���H is the vanishing cycle of F . Hence,
RHomDX �M; mhom�FH ;OX �� _T�HX is the microlocal object of the vanishing cycle
of F . On the other hand, Kashiwara [10] obtained a (local) isomorphism
RHomDX �M; CRHjX � ' Cm

T�HX
for holonomic DX -modules satisfying the condition

charM� T�HX for the characteristic varieties on an open subset of _T�HX . Here
m stands for the multiplicity of M along T�HX . Since the sheaf mhom�FH ;OX � is
(locally on _T�HX ) a simultaneous direct product of CRHjX with a monodromy structure,
it would be very interesting to study the microlocal vanishing cycle
RHomDX �M; mhom�FH ;OX �� _T�HX by using the result of [10]. Note also that
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Kashiwara and Kawai [13] obtained the canonical form of the holonomic
EX -modulesM satisfying the condition charM� T�HX for a complex hypersurface
H � X . We will study the vanishing cycles for holonomic systems by these
observations in a forthcoming paper.

Remark 2.6. Proposition 2.4(i) (monodromy structure) can be shown also by
calculating the stalks of mhom�FH ;OX � using Proposition 4.4.4 of [16], which
was the starting point of this study. However to do so, we have to pay much more
attention to the geometric settings, and we will not present this calculation here.

3. Microlocal Equivalence of Two Rami¢ed Cauchy Problems

Roughly speaking, there are two types of rami¢ed Cauchy problems for
DX -modules, the one for logarithmic pole-type initial data as in [15] and the other
for general rami¢ed initial data due to D'Agnolo and Schapira [3]. The methods
of the proof employed in these papers are completely different. That is, the proof
of the former case [15] is essentially based on the result of [2] concerning the
Cauchy^Kowalevski type theorem for pseudodifferential equations. To the con-
trary, the proof of the latter case of [3] is purely algebraic and makes use of the
sophisticated theory of the microlocal inverse image. Here we will show that these
two problems are microlocally (almost) equivalent. Outside the zero section of
the cotangent bundle T�X , the latter case turns out to be just the `simultaneous
direct product' of the former case. From now on, we will give a totally new proof
of the work [3] which does not involve the use of a microlocal inverse image.

Until the end of this paper,X is a complex manifold of dimension n andY � X is a
complex hypersurface. We also take a complex hypersurface Z of Y to consider the
Cauchy problem with initial data inOram

ZjY . LetM be a coherentDX -module for which
Y is noncharacteristic. We shall use the natural morphisms

T�Y ÿ
r

Y �X T�X ÿ!
$

T�X

associated to the inclusion f:Y ! X . Assume that charM\ rÿ1� _T�ZY � is a disjoint
union

Fr
i�1 Li of complex manifolds fLigri�1 such that r jLi : Li ÿ! _T�ZY are complex

diffeomorphisms. For the sake of simplicity, we assume that the characteristic var-
iety V � charM is purely of codimension one in T�X and V is smooth on each
Li (i � 1; 2; . . . ; r). We choose local holomorphic de¢ning functions gi of V in
an open neighborhood of Li (i � 1; 2; . . . ; r). Then the union of the integral curves
of the complex Hamiltonian vector ¢eld Hgi passing through Li is Lagrangian,
and can be expressed as _T�Zi

X by a complex hypersurface Zi of X satisfying
Zi \ Y � Z. Finally, as in [15], de¢ne the sheaf

Pr
i�1Oram

ZijX by the exact sequence
of sheaves on X :

0ÿ!Orÿ1
X ÿ!l

Mr

i�1
Oram

ZijX ÿ!
Xr
i�1
Oram

ZijXÿ!0;
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where the morphism l is given by

�f1; f2; . . . ; frÿ1� 7! �f1; f2 ÿ f1; f3 ÿ f2; � � � ;ÿfrÿ1�:

Under these assumptions, we can state the following theorem [3], which generalizes
the theorem of [9] to the case of DX -modules.

THEOREM 3.1 ([3]). There exists an isomorphism on Y

RHomDX M;
Xr
i�1
Oram

Zi jX

 !
Y

ÿ!� RHomDY �MY ;Oram
ZjY �;

whereMY is the induced system ofM to Y.
Proof. We shall give a new proof of this theorem. As in Chapter III, 2 of [22],

consider the commutative diagram of the morphisms of sheaves on Z � X :

0 0 0?y ?y ?y
0 ÿ! Orÿ1

X ÿ! Orÿ1
X ÿ! 0?yl ?yl ?y

0 ÿ! Or
X ÿ!

Mr

i�1
Oram

Zi jX ÿ!
Mr

i�1
_pX�mhom�FZi ;OX � ÿ! 0?y ?y ?y

0 ÿ! OX ÿ!
Xr
i�1
Oram

Zi jX ÿ!
Mr

i�1
_pX�mhom�FZi ;OX � ÿ! 0?y ?y ?y

0 0 0

in which all columns and the top and middle rows are exact. Therefore by the nine
lemma, we get an exact sequence of sheaves on Z:

0ÿ!OX jZ ÿ!
Xr
i�1
Oram

ZijX jZ ÿ!
Mr

i�1
� _pX�mhom�FZi ;OX ��Z ÿ! 0:

Note that the complex hypersurfaces Zi's are transversal to each other and the
supports of mhom�FZi ;OX � (i � 1; 2; . . . ; r) are disjoint in _T�X . The following
lemma, which is almost trivial by a simple calculation, is necessary to prove the
theorem.
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LEMMA 3.2. For any i � 1; 2; . . . ; r, there exist isomorphisms

Rr� EY!X

OL
$ÿ1EX

$ÿ1CRZijX

" #
' CRZjY ;

Rr� EY!X

OL
$ÿ1EX

$ÿ1mhom�FZi ;OX �
" #

' mhom�FZ;OY �: �2�

Proof. The ¢rst isomorphism is well known. The second one can be shown as
follows:

Rr� EY!X

OL
$ÿ1EX

$ÿ1mhom�FZi ;OX �
" #

' Rr�$
ÿ1mhom FZi ; f� DY!X

OL
f ÿ1DX

f ÿ1OX

0@ 1A0@ 1A ' Rr�$
ÿ1mhom�FZi ; f�OY �

' mhom� f ÿ1FZi ;OY � � mhom�FZ;OY �; �3�
where we have used Corollary 6.7.6 of [16]. &

Let us continue the proof of the theorem. Setting pY :T�Y ! Y and _pY : _T�Y ! Y ,
consider the natural morphism of distinguished triangles in Db�Z�:

RHomDX �M;OX �Z ! RHomDX M;
Xr
i�1
Oram

Zi jX

 !
! R _pX�RHomDX M;

Mr

i�1
mhom�FZi ;OX �

 !
!�1

# # #

RHomDY �MY ;OY �Z ! RHomDY �MY ;Oram
ZjY � ! R _pY�RHomDY �MY ;mhom�FZ;OY �� !�1

where all vertical arrows are induced from the morphism:

RHomDX �M; �� jY! RHomDY DY!X

OL
f ÿ1DX

f ÿ1M;DY!X

OL
f ÿ1DX

f ÿ1���
0@ 1A

and the left vertical arrow is an isomorphism by the Cauchy^
Kowalevski^Kashiwara theorem. So, to complete the proof, it remains to show that
the canonical morphism

Rr�$
ÿ1RHomEX ~M;

Mr

i�1
mhom�FZi ;OX �

 !
ÿ!

Rr�RHomrÿ1EY EY!X

OL
$ÿ1EX

$ÿ1 ~M;
Mr

i�1
EY!X

OL
$ÿ1EX$

ÿ1mhom�FZi ;OX �
 !

' RHomEY � ~MY ; mhom�FZ;OY �� �4�
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(for ~M� EX
N

pÿ1X DX
pÿ1X M and ~MY � EY

N
pÿ1Y DY

pÿ1Y MY ) is an isomorphism on
_T�ZY . Here the last equality follows from Lemma 3.2. If we consider the resolutionLN

j�1 EX=EXPj ! ~M! 0 of ~M (by pseudodifferential operators Pj which are
non-microcharacteristic for Y along T�Zi

X ) of [15], by a standard argument, we only
have to show the isomorphism:

$ÿ1RHomEX �EX=EXPj; mhom�FZi ;OX ��

ÿ!� RHomrÿ1EY EY!X

OL
$ÿ1EX

EX=EXPj; EY!X

OL
$ÿ1EX

$ÿ1mhom�FZi ;OX �
 !

�5�

at any point 8p 2 Li for 8j � 1; 2; . . . ;N. Now recall that Kashiwara^Schapira [15]
proved the isomorphism:

$ÿ1RHomEX �EX=EXPj; CRZi jX �

ÿ!� RHomrÿ1EY EY!X

OL
$ÿ1EX

EX=EXPj; EY!X

OL
$ÿ1EX

$ÿ1CRZi jX

 !
�6�

at p by applying a result of Bony and Schapira [2] on the Cauchy^Kowalevski-type
theorem for pseudodifferential equations. Since mhom�FZi ;OX � is the simultaneous
direct product of CRZijX , the isomorphism (5) follows from (the proof of) (6). It is
enough to simultaneously solve the holomorphic Cauchy problems for in¢nitely
many open subsets in X . This completes the proof. &

Let us summarize what we found in the course of the proof. The microlocal object
that we encounter treating the case of logrithmic poles was

Lr
i�1 CRZi jX . On the other

hand, the corresponding object for the case of general rami¢ed holomorphic
functions was

Lr
i�1 mhom�FZi ;OX �, namely, the simultaneous direct product ofLr

i�1 CRZi jX (with a twisting by the monodromy structure). This observation enabled
us to prove the theorem of D'Agnolo and Schapira [3] in the lines of Kashiwara
and Schapira [15].

4. Rami¢ed Cauchy Problems for Nilsson Class Functions

In this section, we show how our results in previous sections allow us to treat the
rami¢ed Cauchy problems for initial data with growth conditions. Here we consider
the growth condition of the so-called Nilsson class, which has been introduced by
Deligne [5]. We inherit the notations of two previous sections and recall the de¢nition
of the Nilsson class. Let H � X be a complex hypersurface and consider the sheaf
Oram

HjX of holomorphic functions rami¢ed along H � ft � 0g. We take a coordinate
system �t; z0� of X .
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DEFINITION 4.1. We say a section f 2 Oram
HjX ' pH��O ~X�H

� is in the Nilsson class iff
the restriction of f to the angular sector

S�a;b� � f�t; z0� 2 X ; t 6� 0; arg�t� 2 �a; b�g

for 8�a; b� �� R satis¢es the condition

9N � 0 s:t: j f �t; z0� j � j t jN is bounded on S�a;b�:

We denote by Oram
�HjX � � Oram

HjX the subsheaf consisting of sections in the Nilsson class.

Our main theorem in this section is as follows:

THEOREM 4.2. We assume the conditions in Theorem 3.1. Assume, moreover, that
the DX-module M has regular singularities (in the sense of [14]) along
V � charM on each Li � V \ rÿ1� _T�ZY � (i � 1; 2; . . . ; r). Then we have an
isomorphism:

RHomDX M;
Xr
i�1
Oram
�Zi jX �

 !
Y

ÿ!� RHomDY �MY ;Oram
�ZjY ��:

Proof. As is calculated in Proposition 2.2(iii), the stalk at p 2 _T�HX of
mhom�FH ;OX � for a complex hypersurface H � X is equal to

limÿ!
S;U

Y1
OX �U ÿ S�

.Y1
OX �U�

� �
:

where S ranges over the family of closed subsets of X s.t.

CH �S�pX �p� � fv 2 �THX �pX �p�; hv; pi > 0g [ f0g

and U is an open neighborhood of pX �p� 2 X . If we replace OX �U ÿ S� (and OX �U�)
by the tempered sections Ot

X �U ÿ S� (and Ot
X �U�), which are extendible as

distributions to the whole X , we can construct the subsheaf Tÿ mhom�FH ;OX �
of mhom�FH;OX � on T�X whose stalk at p is represented by

limÿ!
S;U

Y1
Ot

X �U ÿ S�
.Y1

Ot
X �U�

� �
:

Though we cannot apply Andronikof's functor Tÿ mhom��;OX � in [1] to
FH 2 Db�X � (FH is not R-constructible), we adopt here the same notation. In fact,
it would be possible to de¢ne Tÿ mhom�G;OX � for arbitrary sheaves G 2 Db�X �
if we use the very recent theory of Kashiwara and Schapira [17] on ind-sheaves.
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This sheaf Tÿ mhom�FH ;OX � on _T�HX ¢ts into the exact sequence on H:

0!OX jH !Oram
�HjX �jH ! _pX�Tÿ mhom�FH ;OX � ! 0:

The exactitude can be veri¢ed by calculating the complex R _pX�Tÿ mhom�FH ;OX �.
Hence, as in the proof of Theorem 3.1, there exist an exact sequence.:

0!OX jZ !
Xr
i�1
Oram
�ZijX �jZ !

Mr

i�1
� _pX�Tÿ mhom�FZi ;OX ��Z ! 0

and a morphism of distinguished triangles in Db�Z�:

RHomDX �M;OX �Z ! RHomDX M;
Xr
i�1
Oram
�Zi jX �

 !
! R _pX�RHomDX M;

Mr

i�1
Tÿ mhom�FZi ;OX �

 !
# # #

RHomDY �MY ;OY �Z ! RHomDY �MY ;Oram
�ZjY �� ! R _pY�RHomDY �MY ;Tÿ mhom�FZ;OY �� ÿ!�1

Therefore, to prove the theorem, it suf¢ces to show the isomorphism:

$ÿ1RHomEX � ~M;Tÿ mhom�FZi ;OX ��

ÿ!� RHomrÿ1EY EY!X

OL
$ÿ1EX

~M; EY!X

OL
$ÿ1EX

$ÿ1Tÿ mhom�FZi ;OX �
 !

�7�

for ~M� EX
N

pÿ1X DX
pÿ1X M at 8p 2 Li � _T�X �i � 1; 2; . . . ; r�. We need the next

lemma to perform a quantized contact transformation.

LEMMA 4.3. For 8p 2 Li � _T�X, there exists a germ of complex contact
transformation w:T�X ÿ!� T�Cn

z at p such that

w�Y �X T�X � � fz1 � 0g;
w�charM� � fz1 � 0g; �8�
w�T�Zi

X � � T�HC
n for H � fz2 � 0g � Cn;

where �z; zdz�, z � �z1; z2; . . . ; zn� is a local coordinate system of T�Cn.
Proof. By Theorem A.4.4. of [22], there exists a contact transformation

w0:T
�X ÿ!� T�Cn

z at p s.t.

w0�Y �X T�X � � fz1 � 0g;
w0�charM� � fz1 � 0g; �9�
w0�Li� � fz1 � z1 � 0g � f�0; 0�g � T�Cnÿ1 ' T�Cnÿ1:

Since Li is isotropic in T�X , w0�Li� is also isotropic in T�Cn. If we regard w0�Li� as a
closed submanifold of T�Cnÿ1, it implies that w0�Li� is a conic Lagrangian
submanifold in T�Cnÿ1. Now let us choose a contact transformation
w1:T�C

nÿ1 ÿ!� T�Cnÿ1 at w0�p� 2 T�Cnÿ1 which takes w0�Li� to the conormal bundle
T�H 0C

nÿ1 of H 0 � fz2 � 0g � Cnÿ1 (Theorem A.4.2 of [22]) and set

MICROLOCALVANISHING CYCLES AND RAMIFIED CAUCHY PROBLEMS 123

https://doi.org/10.1023/A:1002625504040 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002625504040


w � �idT�C1 � w1� � w0:T�Xÿ!
�

T�Cn
z . Then

w�Y �X T�X � � fz1 � 0g;
w�charM� � fz1 � 0g; �10�
w�Li� � f�0; 0�g � T�H 0C

nÿ1 � T�C1 � T�Cnÿ1:

It follows from the construction of T�Zi
X that w�T�Zi

X � is the union of the integral
curves of the complex Hamiltonian vector ¢eld Hz1 � @z1 passing through
w�Li� � f�0; 0�g � T�H 0C

nÿ1, that is, T�HC
n �H � fz2 � 0g � Cn

z�. &

Let us continue the proof of the theorem. We shall use the contact transformation w
at 8p 2 Li in the above lemma and denote the associated integral transformation
of sheaves by F. Then

F�FZi � ' F
M1

CZi �ÿ1�
� �

'
M1

F�CZi ��ÿ1� '
M1

CH �ÿ1�

at w�p� 2 _T�HC
n and we have an isomorphism:

w�mhom�FZi ;OX � ' mhom
M1

CH ;OCn

� �
�1�:

We will show that the temperedness is preserved by this quantized contact trans-
formation, i.e.

w�Tÿ mhom�FZi ;OX � ' Tÿ mhom
M1

CH ;OCn

� �
�1�:

If we take the kth component CRZijX � mhom�FZi ;OX � and set

CR;fZijX :� CRZi jX \ Tÿ mhom�FZi ;OX �;

it follows from the theory of Andronikof [1] that w�CR;fZijX is isomorphic to the tem-
pered kth component

CR;fHjCn � CRHjCn \ Tÿ mhom
M1

CH ;OCn

� �
�1�:

This shows that the temperedness is preserved through the contact transformation w.
Hence, after the quantized contact transformation, it remains to show the
isomorphism:

RHomECn
~N ;Tÿ mhom

M1
CH ;OCn

� �
�1�

� �
ÿ!� RHomECnÿ1 ECnÿ1!Cn

OL
ECn

~N ; ECnÿ1!Cn

OL
ECn

Tÿ mhom
M1

CH ;OCn

� �
�1�

 !
�11�
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at w�p� 2 _T�HC
n for the ECn -module ~N � w� ~M�. Since ~N has regular singularities

along w�charM� � fz1 � 0g, ~N has a resolution of the type:

! SNk ! SNkÿ1 � � � ! SN0 ! ~N ! 0;

by the simple system S � ECn=ECnD1, whose existence is a consequence of [14]. By the
standard argument (see, for example, [4]), it suf¢ces to show (11) for
~N � S � ECn=ECnD1. For ~N � S the left-hand side of (11) is isomorphic to

Tÿ mhom
L1CH\fz1�0g;OCnÿ1
ÿ ��1� at w�p�. Since we have, at w�p�, ECnÿ1!Cn

NL
ECnS ' ECnÿ1 and

ECnÿ1!Cn

OL
ECn

Tÿ mhom
M1

CH ;OCn

� �
�1�

' Tÿ mhom
M1

CH\fz1�0g;OCnÿ1

� �
�1�

holds by the lemma below, the right-hand side of (11) is equal to te left-hand side.
This completes the proof. &

LEMMA 4.4. For any i � 1; 2; . . . ; r, there exist isomorphisms

Rr� EY!X

OL
$ÿ1EX

$ÿ1CR;fZi jX

" #
' CR;fZjY ;

Rr� EY!X

OL
$ÿ1EX

$ÿ1T ÿ mhom�FZi ;OX �
" #

' T ÿ mhom�FZ;OY �: �12�

Proof. We can construct a natural morphism from

Rr� EY!X

OL
$ÿ1EX

$ÿ1Tÿ mhom�FZi ;OX �
" #

to

Rr� EY!X

OL
$ÿ1EX

$ÿ1mhom�FZi ;OX �
" #

' mhom�FZ;OY �

by Lemma 3.2. We will verify that its image is equal to Tÿ mhom�FZ;OY �. By the
de¢nition of Tÿ mhom�FZi ;OX �, its stalk at p 2 Li � _T�Zi

X is

limÿ!
S;U

Y1
Ot

X �U ÿ S�
.Y1

Ot
X �U�

� �
;
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where S ranges over the family of closed subsets of X s.t.

CZi �S�pX �p� � fv 2 �TZiX �pX �p�; hv; pi > 0g [ f0g
and U is an open neighborhood of pX �p� 2 X . If Y � fz1 � 0g in X , the restriction of
Rr� EY!X

NL
$ÿ1EX $

ÿ1Tmhom�FZi ;OX �
h i

to the point p is the complex:

0ÿ! limÿ!
S;U

Y1
Ot

X �U ÿ S�
.Y1

Ot
X �U�

� �
ÿ!
z1�

limÿ!
S;U

Y1
Ot

X �U ÿ S�
.Y1
Ot

X �U�
� �

ÿ!0:

Now we can show by a simple calculation:

Ker

"
limÿ!
S;U

Y1
Ot

X �UÿS�
.Y1
Ot

X �U�
� �

ÿ!
z1�

limÿ!
S;U

Y1
Ot

X �UÿS�
.Y1
Ot

X �U�
� �#

ÿ!� 0:

Coker

"
limÿ!
S;U

Y1
Ot

X �U ÿ S�
.Y1

Ot
X �U�

� �

ÿ!
z1�

limÿ!
S;U

Y1
Ot

X �U ÿ S�
.Y1

Ot
X �U�

� �#

' limÿ!
S;U

Y1
Ot

Y �fU ÿ Sg \ Y �
.Y1

Ot
Y �U \ Y �

� �
; �13�

which implies the isomorphism

Rr� EY!X

OL
$ÿ1EX

$ÿ1Tÿ mhom�FZi ;OX �
" #

' Tÿ mhom�Fz;OY �:

This completes the proof. &

Remark 4.5. In the case of single differential operators, the condition of regular
singularities is the so-called Levi condition in the classical literatures. As for the
examples of systems which satisfy this condition of theorem 4.2, one may consult
section 6 of [4] . We can ¢nd examples of square matrix type systems there.
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