AN ARITHMETIC SUM WITH AN APPLICATION TO QUASI k-FREE INTEGERS

V, C. HARRIS and M. V. SUBBARAO

(Received 23 June 1971)

Communicated by E. S. Barnes

1. Introduction

Let n be a positive integer and let T be any nonempty set of positive integers. By $(n, T)=1$ we mean n is relatively prime to each element of T. Hence n can be written as $n=n_{1} n_{2}$ where n_{1} is the largest divisor of n such that $\left(n_{1}, T\right)=1$. Let P be a property associated with positive integers. We shall say that a positive integer n is a P-number if it satisfies the property P. If in the above representation of n, the integer n_{1} is a P-number, then we shall say that n is a quasi P-number relative to T, or, simply, a quasi P-number. In particular, for k a positive integer $>1, n$ is quasi k-free (for given set T) if n_{1} is k-free.

Property P may be the property of belonging to a set A. In such a case we use the following notations:
$Q_{A ; T} \quad=$ the set of all quasi belonging to A numbers;
$Q_{A ; T}(x) \quad=$ the number of positive integers $\leqq x$ belonging to $Q_{A ; T}$, where x is real and $\geqq 1$;
$Q_{A ; T}(x ; h)=$ the number of positive integers $\leqq x$ belonging to $Q_{A ; T}$ and relatively prime to a fixed positive integer h;
$q_{A ; T}(n) \quad=$ the characteristic function of $Q_{A ; T}$, that is $q_{A ; T}(n)=1$ if n is in $Q_{A ; T}$ and $=0$ otherwise.

In Section 2 we establish a sum for $Q_{A ; \mathrm{T}}(x)$ where the set A is multiplicative. Some known and some new results follow as corollaries. In Section 3 we give an estimate for a certain class of quasi k-free numbers.

2. The arithmetic sum

Lemma 2.1. Let T be any nonempty set of positive integers and let A be any nonempty set of positive integers whose characteristic function $a(n)$ is
multiplicative. Then

$$
Q_{A ; T}(x)=\sum_{\substack{n \leq \leq \\(n, T)=1}} a^{*}(n)\left[\frac{x}{n}\right]
$$

where $[x]$ is the bracket function and $a^{*}(n)=\Sigma_{d \mid n} a(d) \mu(n / d)$ or, equivalently, $a(n)=\Sigma_{d \mid n} a^{*}(d)$. More generally, for h a positive integer,

$$
Q_{A ; \mathrm{T}}(x ; h)=\sum_{(a, h)=\left(u, T_{j}=1\right.} a^{*}(d) \phi\left(\frac{x}{d}, h\right)
$$

where $\phi(x, h)$ is the number of positive integers $\leqq x$ and relatively prime to h.
Proof. Let $n=n_{1} n_{2}$ where n_{1} is the largest divisor of n such that $\left(n_{1}, T\right)=1$. Then

$$
q_{A ; T}(n)=q_{A ; T}\left(n_{1} n_{2}\right)=q_{A ; T}\left(n_{1}\right)=a\left(n_{1}\right)=\sum_{d \mid n_{1}} a^{*}(d)
$$

so that

$$
q_{A ; T}(n)=\sum_{\substack{d \mid n \\(d, T)=1}} a^{*}(d)
$$

Now let $\varepsilon(n, T)$ be defined by

$$
\varepsilon(n, T)= \begin{cases}1, & (n, T)=1 \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
q_{A ; T}(n)=\sum_{d \mid n} a^{*}(d) \varepsilon(d, T)
$$

Hence

$$
\begin{aligned}
Q_{A ; T}(x) & =\sum_{n \leqq x} q_{A ; T}(n)=\sum_{\substack{n \leq x \\
d \mid n}} a^{*}(d) \varepsilon(d, T) \\
& =\sum_{\substack{n \leq x \\
(n . T)=1}} a^{*}(n)\left[\frac{x}{n}\right] .
\end{aligned}
$$

The proof of the more general result is similar and will be omitted.
In the rest of this paper we take $T=\{m\}$, the set consisting of the single element m, where m is a square-free integer. For convenience we write $Q_{k ; m}$ in the place of $Q_{k:\{m\}}$.

Corollary 2.2. For K the set of all k-free integers,

$$
Q_{K ; m}(x)=\sum_{\substack{n \leqq x \\(n . m)=1}} \mu_{k}(n)\left[\frac{x}{n}\right]
$$

where $\mu_{k}(n)$ is the multiplicative function given for powers of an arbitrary prime pby

$$
\mu_{k}\left(p^{a}\right)=\left\{\begin{aligned}
1, & a=0 \\
-1, & a=k \\
0, & \text { otherwise }
\end{aligned}\right.
$$

The corollary follows from the well-known result:

$$
q_{K}(n)=\sum_{d \mid n} \mu_{k}(d)=\sum_{d^{k_{\mid n}}} \mu(d)
$$

Corollary 2.3. More generally,

$$
Q_{K ; m}(x ; h)=\sum_{\substack{n \leq x \\(n, m n)=1}} \mu_{k}(n) \phi\left(\frac{x}{n}, h\right)
$$

Corollary 2.4. Let U be the set $\{1\}$. For $A=U$, and $m=p$, a prime,

$$
Q_{U ; p}(x)=\sum_{\substack{n \leq x \\(n, p)=1}} \mu(n)\left[\frac{x}{n}\right]
$$

a result attributed to Newman by Gupta [I, p. 445].
Corollary 2.5. For $A=U=\{1\}$,

$$
Q_{U ; m}(x)=\sum_{\substack{n \leq x \\(n, m)=1}} \mu(n)\left[\frac{x}{n}\right]
$$

This result is due to Gupta [1] (as being the number of divisors of m^{s}, where $s=\log _{2} x$, which do not exceed x.

Corollary 2.6. Let V be the set of all positive integers which are k-th powers, $k \geqq 2$. Then

$$
Q_{V ; m}(x)=\sum_{\substack{n \leq x \\(n, m)=1}} \lambda_{k}(n)\left[\frac{x}{n}\right]
$$

where $\lambda_{k}(n)$ is the multiplicative function defined for powers of an arbitrary prime p by

$$
\lambda_{k}\left(p^{a}\right)=\left\{\begin{aligned}
1, & a \equiv 0 \quad(\bmod k) \\
-1, & a \equiv 1 \quad(\bmod k) \\
0, & \text { otherwise }
\end{aligned}\right.
$$

This result is due to Gupta [2].
Corollary 2.7. Let R be the set of all (k, r)-numbers, that is, the set of all positive integers whose k-free parts are r-free, where $0<r<k$ (Subbarao and Harris [3]). Then

$$
Q_{R, m}(x)=\sum_{\substack{n \leq x \\(n, m)=1}}^{\sum} \lambda_{k \cdot r}(x)\left[\frac{x}{n}\right]
$$

where $\lambda_{k r}(n)$ is the multiplicative function def.ned for powers of an arbitrary prime p by

$$
\lambda_{k, r}\left(p^{a}\right)=\left\{\begin{aligned}
1, & a \equiv 0 \quad(\bmod k) \\
-1, & a \equiv r \quad(\bmod k) \\
0, & \text { otherwise }
\end{aligned}\right.
$$

3. Application to quasi \boldsymbol{k}-free numbers

Let $J_{k}(n)$ be the Jordan totient, $\phi(n)$ be Euler's phi-function, $\zeta(k)$ be the Riemann zeta function and $\sigma_{s}^{*}(m)$ be the sum of the s-th powers of the square-free divisors of m.

Theorem 3.1. Let $h=h_{1} h_{2}$ where h_{1} is the largest divisor of h such that $\left(h_{1}, m\right)=1$. Then

$$
Q_{K ; m}(x ; h)=\frac{m^{k} h^{k} \phi\left(h_{1}\right) \phi((m, h))}{(m, h) h_{1} J_{k}(m h)} \frac{x}{\zeta(k)}+0\left(\frac{\phi(m h)}{m h} \sigma_{-s}^{*}(h) x^{1 / k}\right)
$$

uniformly with respect to m, h and x for any $s, 0<s<1 / k$.
Proof. By Corollary 2.3,

$$
\begin{aligned}
Q_{K ; m}(x ; h) & =\sum_{\substack{d \leq x \\
(d \cdot m h)=1}} \mu_{k}(d) \phi\left(\frac{x}{d}, h\right) \\
& =\sum_{\substack{d \leq x \\
(d, m h)=1}} \mu_{k}(d)\left\{\frac{x}{d} \frac{\phi(h)}{h}+0\left(\frac{x^{s}}{d^{s}} \sigma_{-s}^{*}(h)\right)\right\}
\end{aligned}
$$

for every s where $0<s<1$, by Cohen [4]. Continuing,

$$
\begin{aligned}
Q_{K ; m}(x ; h)= & \frac{\phi(h)}{h} x \sum_{\substack{d \leq x \\
(d, m h)=1}} \frac{\mu_{k}(d)}{d}+0\left(\sum_{\substack{d \leq x \\
d, m h)=1}} \mu_{k}(d) \frac{x^{s}}{d^{s}} \sigma_{-s}^{*}(h)\right) \\
= & \frac{\phi(h)}{h} x \sum_{\substack{d=1 \\
(d, m h)=1}}^{\infty} \frac{\mu_{k}(d)}{d}-\frac{\phi(h)}{h} \sum_{\substack{d>x \\
(d, m h)=1}} \frac{\mu_{k}(d)}{d} \\
& +0\left(\sum_{\substack{d \leq x \\
(d, m h)=1}} \mu_{k}(d) \frac{x^{s}}{d^{s}} \sigma_{-s}^{*}(h)\right), \\
= & I_{1}+I_{2}+I_{3}
\end{aligned}
$$

say. We investigate I_{1}, I_{2}, I_{3} in turn. First,

$$
\begin{aligned}
I_{1} & =\frac{\phi(h)}{h} x \sum_{\substack{d=1 \\
(d, m h)=1}}^{\infty} \frac{\mu_{k}(d)}{d}=\frac{\phi(h)}{h} x \prod_{(p, m h)=1}\left(1-\frac{1}{p^{k}}\right) \\
& =\frac{\phi(h)}{h} \times \frac{\prod_{p \mid m h}}{\prod_{p}} \frac{\left(1-\frac{1}{p^{k}}\right)}{\left(1-\frac{1}{p^{k}}\right)}=\frac{\phi(h)}{h} \times \frac{1}{\zeta(k)} \frac{(m h)^{k}}{J_{k}(m h)} \\
& =\frac{x}{\zeta(k)} m^{k} h^{k} \frac{1}{J_{k}(m h)} \frac{\phi\left(h_{1}\right)}{h_{1}} \frac{\phi\left(h_{2}\right)}{h_{2}} \\
& =\frac{x}{\zeta(k)} m^{k} h^{k} \frac{1}{J_{k}(m h)} \frac{\phi((m, h))}{(m, h)} \frac{\phi\left(h_{1}\right)}{h_{1}} .
\end{aligned}
$$

Next,

$$
\begin{aligned}
\left|I_{2}\right| & \leqq x \frac{\phi(h)}{h} \sum_{\substack{d>x \\
(d, m h)=1}} \frac{\left|\mu_{k}(d)\right|}{d} \leqq \frac{x \phi(h)}{h} \sum_{\substack{d^{k}>x \\
(d, m h)=1}} \frac{1}{d^{k}} \\
& \leqq x \frac{\phi(h)}{h} 0\left(\frac{1}{x^{1-1} / k}\right)=0\left(\frac{\phi(h)}{h} x^{1 / k}\right) .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
I_{3} & =x^{s} \sigma_{-s}^{*}(h) 0\left(\sum_{\substack{d \leq x \\
(d, m h)=1}} \frac{\mu_{k}(d)}{d^{s}}\right) \\
& \leqq x^{s} \sigma_{-s}^{*}(h) 0\left(\sum_{\substack{d^{k} \leq x \\
(d, m h)=1}} \frac{1}{d^{k s}}\right) \\
& \leqq x^{s} \sigma_{-s}^{*}(h) 0\left(\sum_{\substack{d \leq x \\
(d, m h)=1}} \frac{1}{d^{k s}}\right)
\end{aligned}
$$

and so

$$
I_{3}=x^{1 / k} \sigma_{-s}^{*}(h) \frac{\phi(m h)}{m h}
$$

if we can show

$$
\sum_{\substack{n \leq y \\(n, u)=1}} \frac{1}{n^{s}}=0\left(\frac{\phi(u)}{u} y^{1-s}\right), \quad 0<s<1
$$

This result is established as the

Lemma 3.2.

$$
\sum_{\substack{1 \leqq n \leqq y \\(n, u)=1}} \frac{1}{n^{s}}=0\left(\frac{\phi(u)}{u} y^{1-s}\right)
$$

for u a positive integer and any s in $0<s<1$.

Proof. Let

$$
\eta(n, u)= \begin{cases}1 & \text { if }(n, u)=1 \\ 0 & \text { otherwise }\end{cases}
$$

Thus

$$
\sum_{\substack{1 \leqq n \leqq y \\(n, u)=1}} \frac{1}{n^{s}}=\sum_{1 \leqq n \leqq y} \frac{\eta(n, u)}{n^{s}}
$$

Since by the same lemma of Cohen as used earlier

$$
\sum_{n \leqq y} \eta(n, u)=\phi(y, u)=y \frac{\phi(u)}{u}+0\left(y^{s} \sigma_{-s}^{*}(u)\right)
$$

the sum can be evaluated by a standard method (see, for example, Hardy and Wright [5]) to be

$$
\begin{aligned}
\sum_{\substack{1 \leq n \leqq y \\
(n, u)=1}} \frac{1}{n^{s}}= & {\left[y \frac{\phi(u)}{u}+0\left(y^{s} \sigma_{-s}^{*}(u)\right] \frac{1}{y^{s}}\right.} \\
& -\int_{1}^{y}\left[\frac{t \phi(u)}{u}+0\left(t^{s} \sigma_{-s}^{*}(u)\right)\right] \frac{-s}{t^{s+1}} d t \\
= & 0\left(y^{1-s} \frac{\phi(u)}{u}\right) .
\end{aligned}
$$

The theorem follows upon combining the results of evaluating I_{1}, I_{2} and I_{3}.
Corollary 3.3 to theorem 3.1. Taking $m=1$ in theorem 3.1, we see that $h_{1}=h, h_{2}=1$, so that we have the following result: $Q_{K ; 1}(x ; h)=$ The number of k-free integers $\leqq x$ which are relatively prime to h is given by

$$
Q_{K ; 1}(x ; h)=\frac{h^{k-1} \phi(h)}{J_{K}(h)} \cdot \frac{x}{\zeta(k)}+0\left(\frac{\phi(h)}{h} \sigma_{-s}^{*}(h) x^{1 / k}\right),
$$

uniformly with respect to h and x, for any such that $0<s<1 / k$.
This result has been very recently proved under a slightly different notation by Suryanarayana [8] as an improvement in the 0-estimates of the error term obtained in his earlier papers ([6] and [7]).

References

[1] H. Gupta,'A sum involving the Möbius function’, Proceedings American Math. Soc.19(1968), 445-447.
[2] H. Gupta, 'An arithmetical sum', Indian J. Math. Vol. 10 (1968), 83-86.
[3] M. V. Subbarao and V. C. Harris, 'A new generalization of Ramanujan's sum,' J. London Math. Soc. 41 (1966), 595-604.
[4] E. Cohen, 'Remark on a set of integers', Acta Scientiarum Mathematicarum (Szeged) XXV (1964), 179-180.
[5] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, (Fourth Edition) (Oxford, 1960), 346.
[6] D. Suryanarayana, 'The number and sum of k-free integers $\leqq x$ which are prime to n ', Indian J. Math. 11 (1969), 131-139.
[7] D. Suryanarayana, 'Uniform 0-estimates of certain error functions connected with k-free integers', J. Austral. Math. Soc. 11 (1970), 242-250.
[8] D. Suryanarayana, 'A remark on uniform 0 -estimates of certain error functions connected with k-free integers', J. Austral. Math. Soc. 15 (1973), 177-178.

San Diego State College, San Diego, California, U.S.A.
University of Alberta, Edmonton, Alberta, Canada

