
Introduction

Quantum fields and quantization are concepts that come from quantum physics,
the most intriguing physical theory developed in the twentieth century. In our
work we would like to describe in a coherent and comprehensive way basic aspects
of their mathematical structure.

Most of our work is devoted to the simplest kinds of quantum fields and of
quantization. We will mostly discuss mathematical aspects of free quantum fields.
We will consider the quantization only on linear phase spaces. The reader will
see that even within such a restricted scope the subject is rich, involves many
concepts and has important applications, both to quantum theory and to pure
mathematics.

A distinguished role in our work will be played by representations of the
canonical commutation and anti-commutation relations. Let us briefly discuss the
origin and the meaning of these concepts.

Let us start with canonical commutation relations, abbreviated commonly as
the CCR. Since the early days of quantum mechanics it has been noted that the
position operator x and the momentum operator D = −i∇ satisfy the following
commutation relation:

[x,D] = i1l. (1)

If we set a∗ = 1√
2
(x− iD), a = 1√

2
(x + iD), called the bosonic creation and

annihilation operators, we obtain

[a, a∗] = 1l. (2)

We easily see that (1) is equivalent to (2).
Strictly speaking, the identities (1) and (2) are ill defined because it is not

clear how to interpret the commutator of unbounded operators. Weyl proposed
replacing (1) by

eiηxeiqD = e−iqη eiqD eiηx , η, q ∈ R, (3)

which has a clear mathematical meaning. (1) is often called the CCR in the
Heisenberg form and (3) in the Weyl form.

It is natural to ask whether the commutation relations (1) determine the
operators x and D uniquely up to unitary equivalence. If we assume that we
are given two self-adjoint operators x and D acting irreducibly on a Hilbert
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space and satisfying (3), then the answer is positive, as proven by Stone and von
Neumann.

Relations (1) and (2) involve a classical system with one degree of freedom.
One can also generalize the CCR to systems with many degrees of freedom.
Systems with a finite number of degrees of freedom appear e.g. in the quantum
mechanical description of atoms or molecules, while systems with an infinite
number of degrees of freedom are typical for quantum many-body physics and
quantum field theory.

In the case of many degrees of freedom it is often useful to use a more abstract
setting for the CCR. One can consider a family of self-adjoint operators φ1 , φ2 , . . .

satisfying the relations

[φj , φk ] = iωjk1l, (4)

where ωjk is an anti-symmetric matrix. Alternatively, one can consider the
Weyl (exponentiated) form of (4) satisfied by the so-called Weyl operators
exp
(
i
∑

i yiφi

)
, where yi are real coefficients.

A typical example of CCR with many, possibly an infinite number of, degrees
of freedom appears in the context of second quantization, where one introduces
bosonic creation and annihilation operators a∗

i , aj satisfying an extension of (2):

[ai, aj ] = [a∗
i , a

∗
j ] = 0,

[ai, a
∗
j ] = δij1l.

(5)

The Stone–von Neumann theorem can be extended to the case of regular
CCR representations for a finite-dimensional symplectic matrix ωjk . Note that
in this case the relations (4) are invariant with respect to the symplectic group.
This invariance is implemented by a projective unitary representation of the
symplectic group. It can be expressed in terms of a representation of the two-
fold covering of the symplectic group – the so-called metaplectic representation.

Symplectic invariance is also a characteristic feature of classical mechanics. In
fact, one usually assumes that the phase space of a classical system is a sym-
plectic manifold and its symmetries, including the time evolution, are described
by symplectic transformations. One of the main aspects of the correspondence
principle is the fact that the symplectic invariance plays an important role both
in classical mechanics and in the context of canonical commutation relations.

The symplectic invariance of the CCR plays an important role in many prob-
lems of quantum theory and of partial differential equations. An interesting –
and historically perhaps the first – non-trivial application of this invariance is
due to Bogoliubov, who used it in the theory of superfluidity of the Bose gas;
see Bogoliubov (1947b). Since then, applications of symplectic transformations
to the study of bosonic systems often go in the physics literature under the name
Bogoliubov method.
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Let us now discuss the canonical anti-commutation relations, abbreviated com-
monly as the CAR. They are closely related to the so-called Clifford relations,
which appeared in mathematics before quantum theory, in Clifford (1878). We
say that operators φ1 , . . . , φn satisfy Clifford relations if

[φi, φj ]+ = 2gij1l, (6)

where gij is a symmetric non-degenerate matrix and [A,B]+ := AB + BA

denotes the anti-commutator of A and B. It is not difficult to show that if the
representation (6) is irreducible, then it is unique up to a unitary equivalence for
n even, and there are two inequivalent representations for n odd.

In quantum physics, CAR appeared in the description of fermions. If a∗
1 , . . . , a

∗
m

are fermionic creation and a1 , . . . , am fermionic annihilation operators, then they
satisfy

[a∗
i , a

∗
j ]+ = 0, [ai, aj ]+ = 0, [a∗

i , aj ]+ = δij1l.

If we set φ2j−1 := a∗
j + aj , φ2j := 1

i (a
∗
j − aj ), then they satisfy the relations (6)

with n = 2m and gij = δij . Besides, the operators φi are then self-adjoint.
Another family of operators satisfying the CAR in quantum physics are the

Pauli matrices used in the description of spin 1
2 particles. The Dirac matrices

also satisfy Clifford relations, with gij equal to the Minkowski metric tensor.
Clearly, the relations (6) with gij = δij are preserved by orthogonal transfor-

mations applied to (φ1 , . . . , φn ). The orthogonal invariance of CAR is imple-
mented by a projective unitary representation. It can be also expressed in terms
of a representation of the double covering of the orthogonal group, called the
Pin group.

The orthogonal invariance of CAR relations appears in many disguises in alge-
bra, differential geometry and quantum physics. In quantum physics its appli-
cations are again often called the Bogoliubov method. A particularly interesting
application of this method can be found in the theory of superconductivity and
goes back to Bogoliubov (1958).

The notion of CCR and CAR representations is quite elementary in the case
of a finite number of degrees of freedom. It becomes much deeper for an infinite
number of degrees of freedom. In this case there exist many inequivalent CCR
and CAR representations, a fact that was not recognized before the 1950s.

The most commonly used CCR and CAR representations are the so-called Fock
representations, acting on bosonic, resp. fermionic Fock spaces. These spaces have
a distinguished vector Ω called the vacuum, killed by annihilation operators and
cyclic with respect to creation operators.

In the case of an infinite number of degrees of freedom, the symplectic or
orthogonal invariance of representations of CCR, resp. CAR becomes much more
subtle. In particular, not every symplectic, resp. orthogonal transformation is
unitarily implementable on the Fock space. The Shale, resp. Shale–Stinespring
theorem say that implementable symplectic, resp. orthogonal transformations
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belong to a relatively small group Spj(Y), resp. Oj(Y). Other interesting objects
in the case of an infinite number of degrees of freedom are the analogs of the
metaplectic and Pin representation.

CCR and CAR representations provide a convenient setting to describe various
forms of quantization. By a quantization we usually mean a map that transforms
a function on a classical phase space into an operator and has some good prop-
erties. Of course, this is not a precise definition – actually, there seems to be no
generally accepted definition of the term “quantization”. Clearly, some quanti-
zations are better and more useful than others.

We describe a number of the most important and useful quantizations. In
the case of CCR, they include the Weyl, Wick, anti-Wick, x,D- and D,x-
quantizations. In the case of CAR, we discuss the anti-symmetric, Wick and
anti-Wick quantizations. Among these quantizations, the Weyl, resp. the anti-
symmetric quantization play a distinguished role, since they preserve the under-
lying symmetry of the CCR, resp. CAR – the symplectic, resp. orthogonal group.
However, they are not very useful for an infinite number of degrees of freedom, in
which case the Wick quantization is much better behaved. The x,D-quantization
is a favorite tool in the microlocal analysis of partial differential equations.

The non-uniqueness of CCR or CAR representations for an infinite number
of degrees of freedom is a motivation for adopting a purely algebraic point of
view, without considering a particular representation. This leads to the use of
operator algebras in the description of the CCR and CAR. This is easily done
in the case of the CAR, where there exists an obvious candidate for the CAR
C∗-algebra corresponding to a given Euclidean space. This algebra belongs to
the well-known class of uniformly hyper-finite algebras, the so-called UHF(2∞)
algebra. We also have a natural CAR W ∗-algebra. It has the structure of the
well-known injective type II1 factor.

In the case of the CCR, the choice of the corresponding C∗-algebra is less
obvious. The most popular choice seems to be the C∗-algebra generated by the
Weyl operators, called sometimes the Weyl CCR algebra. One can, however,
argue that the Weyl CCR algebra is not very physical and that there are other
more natural choices of the C∗-algebra of CCR.

Essentially all CCR and CAR representations used in practical computations
belong to the so-called quasi-free representations. They appear naturally, e.g. in
the description of thermal states of the Bose and Fermi gas. They have interesting
mathematical properties from the point of view of operator algebras. In partic-
ular, they provide interesting and physically well motivated examples of factors
of type II and III. They also give good illustrations for the Tomita–Takesaki
modular theory and for the so-called standard form of a W ∗-algebra.

The formalism of CCR and CAR representations gives a convenient language
for many useful aspects of quantum field theory. This is especially true in the
case of free quantum fields, where representations of the CCR and CAR con-
stitute, in one form or another, a part of the standard language. More or less
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explicitly they are used in all textbooks on quantum field theory. Usually the
authors first discuss quantum fields classically. In other words, they just describe
algebraic relations satisfied by the fields without specifying their representation.
In relativistic quantum field theory these relations are usually derived from some
form of classical field equations, like the Klein–Gordon equation for bosonic fields
and the Dirac equation for fermionic fields.

In the next step a representation of CCR or CAR relations on a Hilbert space
is introduced. The choice of this representation usually depends on the dynamics
and the temperature. At the zero temperature, it is usually the Fock
representation determined by the requirement that the dynamics should be
implemented by a self-adjoint, bounded from below Hamiltonian. At positive
temperatures one usually chooses the GNS representation given by an appropri-
ate KMS state.

Another related topic is the problem of the unitary implementability of various
symmetries of a given theory, such as for example Lorentz transformations in
relativistic models. If the generator of the dynamics depends on time, one can
also ask whether there exists a time-dependent Hamiltonian that implements the
dynamics.

Models of quantum field theory that appear in realistic applications are usually
interacting, meaning that they cannot be derived from a linear transformation of
the underlying phase space. Interacting models are usually described as formal
perturbations of free ones. Various terms in perturbation expansions are graph-
ically depicted with diagrams. The diagrammatic method is a standard tool for
the perturbative computation of various physical quantities.

In the 1950s, mathematical physicists started to apply methods from spectral
theory to construct rigorously interacting quantum field theory models. After a
while, this subject became dominated by the so-called Euclidean methods. The
main idea of these methods is to make the real time variable purely imaginary.
The Euclidean point of view is nowadays often used as the basic one, at both
zero and positive temperature.

Many concepts that we discuss in our work originated in quantum physics and
have a strong physical motivation. We believe that our work (or at least some of
its parts) can be useful in teaching some chapters of quantum physics. In fact,
we believe that the mathematical style is often better suited to explaining some
concepts of quantum theory than the style found in many physics textbooks.

Note, however, that the reader does not have to know physics at all in order to
follow and, it is hoped, to appreciate our work. In our opinion, essentially all the
concepts and results that we discuss are natural and appealing from the point
of view of pure mathematics.

We expect that the reader is familiar and comfortable with a relatively broad
spectrum of mathematics. We freely use various basic facts and concepts from
linear algebra, real analysis, the theory of operators on Hilbert spaces, operator
algebras and measure theory.

https://doi.org/10.1017/9781009290876.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.001


6 Introduction

The theory of the CCR and CAR involves a large number of concepts coming
from algebra, analysis and physics. Therefore, it is not surprising that the litera-
ture about this subject is very scattered, and uses various conventions, notations
and terminology.

We have made an effort to introduce terminology and notation that is as
consistent and transparent as possible. In particular, we tried to stress close
analogies between the CCR and CAR. Therefore, we have tried to present both
formalisms in a possibly parallel way. We make an effort to present many topics in
their greatest mathematical generality. We believe that this way of presentation
is efficient, especially for mathematically mature readers.

The literature devoted to topics contained in our book is quite large. Let us
mention some of the monographs. The exposition of the C∗-algebraic approach
to the CCR and CAR can be found in Bratteli–Robinson (1996). This mono-
graph also provides extensive historical remarks. One could also consult an older
monograph, Emch (1972). Modern exposition of the mathematical formalism of
second quantization can be also found e.g. in Glimm–Jaffe (1987) and Baez–
Segal–Zhou (1991). We would also like to mention the book by Neretin (1996),
which describes infinite-dimensional metaplectic and Pin groups, and review arti-
cles by Varilly–Gracia-Bondia (1992, 1994). A very comprehensive article devoted
to CAR C∗-algebras was written by Araki (1987). Introductions to Clifford alge-
bras can be found in Lawson–Michelson (1989) and Trautman (2006).

The book can be naturally divided into four parts.

(1) Chapters 1, 2, 3, 4, 5 6 and 7 are mostly collections of basic mathematical
facts and definitions, which we use in the remaining part of our work. Not all
the mathematical formalism presented in these chapters is of equal impor-
tance for the main topic of work. Perhaps, most readers are advised to skip
these chapters on the first reading, consulting them when needed.

(2) Chapters 8, 9, 10 and 11 are devoted to the canonical commutation relations.
We discuss in particular various kinds of quantization of bosonic systems and
the bosonic Fock representation. We describe the metaplectic group and its
various infinite-dimensional generalizations.

(3) In Chaps. 12, 13, 14, 15 and 16 we develop the theory of canonical anti-
commutation relations. It is to a large extent parallel to the previous chap-
ters devoted to the CCR. We discuss, in particular, the fermionic Fock rep-
resentation. As compared with the bosonic case, a bigger role is played by
operator algebras. We give also a brief introduction to Clifford relations for
an arbitrary signature. We discuss the Pin and Spin groups and their various
infinite-dimensional generalizations.

(4) The common theme of the remaining part of the book, that is, Chaps. 17,
18, 19, 20, 21 and 22, is the concept of quantum dynamics – one-parameter
unitary groups that describe the evolution of quantum systems. In all these
chapters we treat the bosonic and fermionic cases in a parallel way, except
for Chaps. 21 and 22, where we restrict ourselves to bosons.

https://doi.org/10.1017/9781009290876.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290876.001


Introduction 7

In Chap. 17 we discuss quasi-free states. These usually arise as KMS states
for a physical system equipped with a free dynamics. In Chaps. 18 and 19
we study quantization of free fields, first in the abstract context, then on a
(possibly, curved) space-time. Chapters 20, 21 and 22 are devoted to inter-
acting quantum field theory. In Chap. 20 we discuss in an abstract setting
the method of Feynman diagrams. In Chap. 21 we describe the Euclidean
method, used to construct interacting bosonic theories. In Chap. 22 we apply
Euclidean methods to construct the so-called space-cutoff P (ϕ)2 model.
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