Bull. Austral. Math. Soc.

EXISTENCE AND L_{∞} ESTIMATES FOR A CLASS OF SINGULAR ORDINARY DIFFERENTIAL EQUATIONS

J.M. Gomes

We prove the existence of a positive solution to an equation of the form $(1 / \Phi(t))$ $\left(\Phi(t) u^{\prime}(t)\right)^{\prime}=f(u(t))$ with Dirichlet conditions where the friction term Φ^{\prime} / Φ is increasing. Our method combines variational and topological arguments and provides an L_{∞} estimate of the solution.

1. Introduction and main result

We are interested in the existence and estimation of the L_{∞}-norm of a positive solution to the problem

$$
\begin{gather*}
\left(\Phi(t) u^{\prime}(t)\right)^{\prime}+\Phi(t) f(u(t))=0 \tag{1}\\
u(0)=u(1)=0 \tag{2}
\end{gather*}
$$

We suppose that $\Phi \in C^{1}([0,1])$,

$$
\begin{equation*}
\Phi \geqslant m>0 \text { in }] 0,1] \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\Phi^{\prime}(t)}{\Phi(t)} \text { is an increasing function. } \tag{4}
\end{equation*}
$$

Moreover we assume that f is locally Lipchitz,

$$
\begin{equation*}
f(0)=0 \tag{5}
\end{equation*}
$$

and that there exists $M_{0}>0$ such that

$$
\begin{equation*}
f(t)<0 \text { if } t<M_{0}, \text { and } f(t)>0 \text { if } t>M_{0} \tag{6}
\end{equation*}
$$

Note that an equivalent formulation to problem (1)-(2) is

$$
u^{\prime \prime}(t)+a(t) u^{\prime}(t)+f(u(t))=0, \quad u(0)=u(1)=0
$$

Received 15th June, 2004

The author would like to thank Prof. Luis Sanchez for helpful discussions and suggestions. The author is supported by Fundação para a Ciência e a Tecnologia, [POCTI-FEDER].
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 \$A2.00+0.00.
where the friction term $a(t)$ is an increasing function. There is a vast literature dealing with existence of solutions of singular boundary value problems (see for instance $[1$, $3,4,5]$ and the references therein). In this work, however, by restricting ourselves to a particular class of equations, we manage to provide L_{∞} estimates to the solutions even when the non-linear term $f($.$) has arbitrary growth. Our method is inspired by$ the topological shooting method (see for instance [2]) and the classical mountain pass theorem of Ambrosetti and Rabinowitz [6] and it is settled in Section 2. In Section 3 we prove our main result:

Theorem 1. Suppose that $\left.\left.\Phi \in C^{1}(] 0,1\right]\right), f$ is a locally Lipchitz continuous function and that conditions (3)-(6) are satisfied. Moreover suppose that

$$
\begin{equation*}
\frac{\Phi(s)}{\Phi(t)} \leqslant K \text { for some } K>0 \text { and every } 0<t \leqslant s \leqslant 1 \tag{7}
\end{equation*}
$$

and that there exists a nonnegative $v \in H_{0}^{1}([0,1[)$ such that

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{1} \Phi(t) v^{\prime}(t)^{2} d t<\int_{0}^{1} \Phi(t) F(v(t)) d t<\infty \tag{8}
\end{equation*}
$$

where $F(v)=\int_{0}^{v} f(s) d s$.
Then Problem (1)-(2) has a positive solution u such that $M_{0}<\max u \leqslant\|v\|_{\infty}$.
As motivating examples we may consider $\Phi(t)=t^{-\alpha}$ or $\Phi(t)=\exp \left(t^{-\alpha}\right)$ with $\alpha>0$ (the reader may easily verify that these functions fulfill conditions (3), (4) and (7)).

2. Variational setting and auxiliary results

Throughout this section we assume that there exist $m, m^{*}, L>0$ such that, for all $t \in] 0,1[$,

$$
\begin{equation*}
0<m \leqslant \Phi(t) \leqslant m^{*},\left|\Phi^{\prime}(t)\right| \leqslant L \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\Phi^{\prime}(t)}{\Phi(t)} \text { is a strictly increasing function. } \tag{10}
\end{equation*}
$$

Since we are looking for positive solutions we assume that f is extended by zero in $]-\infty, 0]$. The reader may easily verify that any non-trivial solution to (1)-(2) where f has been extended by zero should be positive in $] 0,1[$ therefore being a solution of the initial problem. We shall consider the Sobolev space $H=H_{0}^{1}(] 0,1[)$ consisting of absolutely continuous functions u such that

$$
\|u\|^{2}=\int_{0}^{1} u^{\prime 2}(t) d t<\infty, u(0)=u(1)=0
$$

Problem (1)-(2) may be viewed as the Euler-Lagrange equation of the functional $J: H$ $\rightarrow \mathbb{R}$ defined by:

$$
J(u)=\frac{1}{2} \int_{0}^{1} \Phi(t) u^{\prime 2}(t) d t-\int_{0}^{1} \Phi(t) F(u(t)) d t
$$

where $F(u)=\int_{0}^{u} f(s) d s$. We shall suppose that J satisfies the following property:

$$
\begin{equation*}
\exists v \in H: J(v)<0 \tag{11}
\end{equation*}
$$

Remark 1. Property (11) is trivially satisfied if, for some $\varepsilon>0, f(u) \geqslant \varepsilon u^{\alpha}-C$ for all $u \geqslant 0$, where $\alpha>1$ and $C>0$.

Let $\bar{M}=\|v\|_{\infty}$. Since $J(w) \geqslant 0$ for every $w \in H$ with $\|w\|_{\infty} \leqslant M_{0}$, we have $\bar{M}>M_{0}$. Given $M \in\left[M_{0}, \bar{M}\right]$, we shall consider the following subset of H :

$$
\mathfrak{C}_{M}=\{u \in H: \max u \geqslant M\}
$$

and the truncated functional $J_{M}: H \rightarrow \mathbb{R}$,

$$
J_{M}(u)=\frac{1}{2} \int_{0}^{1} \Phi(t) u^{\prime 2}(t) d t-\int_{0}^{1} \Phi(t) F_{M}(u(t)) d t
$$

where

$$
F_{M}(u)=\left\{\begin{array}{rl}
F(u) & \text { if } u \leqslant M \\
F(M) & \text { if } u>M
\end{array} .\right.
$$

Remark 2. From the compact injection of $H_{0}^{1}(] 0,1[)$ in $C([0,1])$ we conclude that \mathfrak{C}_{M} is weakly sequentially closed and that J_{M} is coercive and weakly lower semi-continuous.

The main result of this section is the following proposition whose proof will become clear after a sequence of lemmas:

Proposition 2. Let $f \in C\left(\left[0,+\infty[)\right.\right.$ and $\Phi \in C^{1}([0,1])$ satisfy respectively properties (5)-(6) and (9)-(10). Moreover, suppose that J satisfies property (11) and let $\bar{M}=\|v\|_{\infty}$. Then there exists a classical positive solution u to problem (1)-(2) with $M_{0}<\max u \leqslant \bar{M}$.

We shall be interested in the family of minimisers u_{M} of J_{M} in \mathfrak{C}_{M} where $M \in\left[M_{0}, \bar{M}\right]$. By Remark 2 we know that u_{M} exists for every $M \in\left[M_{0}, \bar{M}\right]$. We also know that:

Lemma 3. Let u_{M} be a minimiser of J_{M} in \mathfrak{C}_{M}. Then $\max u=M$.
Proof: Given $w \in \mathfrak{C}_{M}$ define

$$
\bar{w}(t)=\min \{w(t), M\}
$$

If $\bar{w} \neq w$ then,

$$
\int_{0}^{1} \Phi \bar{w}^{2}<\int_{0}^{1} \Phi w^{\prime 2}
$$

and

$$
\int_{0}^{1} \Phi F_{M}(\bar{w})=\int_{0}^{1} \Phi F_{M}(w)
$$

Therefore $J_{M}(\bar{w})<J_{M}(w)$ and the lemma follows.
Given $M \in\left[M_{0}, \bar{M}\right]$, we define two types of minimisers of J_{M} in \mathfrak{C}_{M} :
Definition: Let u_{M} be a minimiser of J_{M} in \mathfrak{C}_{M}.
(i) We say that u_{M} is a minimiser of type A if there exists a unique $\left.t_{0} \in\right] 0,1[$ such that $u\left(t_{0}\right)=M$.
(ii) We say that u_{M} is a minimiser of type B if, given t_{α} (respectively t_{β}) $=\min ($ respectively $\max)\left\{t: u_{M}(t)=M\right\}$, we have

$$
u_{-}^{\prime}\left(t_{\alpha}\right)=u_{+}^{\prime}\left(t_{\beta}\right)=0
$$

REMARK 3. If u_{M} is a minimiser of type A then u satisfies equation (1) in $] 0, t_{0}[\cup] t_{0}, 1$ [since $J_{M}^{\prime}(u) v=J^{\prime}(u) v$ for every $v \in C_{0}^{\infty}(] 0, t_{0}[\cup] t_{0}, 1[)$. For the same reason, if v_{M} is a type B minimiser, it satisfies equation (1) in $] 0, t_{\alpha}[\cup] t_{\beta}, 1[$. If w is simultaneously of type A and B , then w is a classical solution to problem (1)-(2).

Lemma 4. Let u be a minimiser of J_{M} in \mathfrak{C}_{M}. Then u is of type A or B (possibly both).

Proof: We may rephrase the lemma as:
Let $t_{\alpha}\left(t_{\beta}\right)=\min (\max)\{t: u(t)=M\}$. Then either $u_{-}^{\prime}\left(t_{\alpha}\right)=u_{+}^{\prime}\left(t_{\beta}\right)=0$ or $t_{\alpha}=t_{\beta}$.

Integrating equation (1) between t_{1} and t_{2} and letting $t_{1}, t_{2} \rightarrow t_{\alpha}\left(t_{\beta}\right)$, we conclude that $u_{-}^{\prime}\left(t_{\alpha}\right)\left(u_{+}^{\prime}\left(t_{\beta}\right)\right)$ is well defined. Suppose, in view of a contradiction, that $t_{\alpha}<t_{\beta}$ and $u_{-}^{\prime}\left(t_{\alpha}\right)>0$ (the case $u_{+}^{\prime}\left(t_{\beta}\right)<0$ is treated with similar arguments). Choose $\theta, \varepsilon>0$ such that $u^{\prime}(t) \geqslant \theta$ for every $\left.t \in\right] t_{\alpha}-\varepsilon, t_{\alpha}\left[\right.$ (we may suppose $\varepsilon<t_{\beta}-t_{\alpha}$) and consider:

$$
\begin{equation*}
v_{\varepsilon}(t)=-\left(\left|t-t_{\alpha}\right|-\varepsilon\right)_{-} . \tag{12}
\end{equation*}
$$

We assert that, for a small ε,

$$
\begin{equation*}
\lim _{s \rightarrow 0} \frac{J_{M}\left(u+s v_{\epsilon}\right)-J_{M}(u)}{s}<0 . \tag{13}
\end{equation*}
$$

If (13) holds, then for a sufficiently small $s^{*}>0$, we have $u+s^{*} v_{\varepsilon} \in \mathfrak{C}_{M}$ (since (u $\left.\left.+s^{*} v_{\varepsilon}\right)\left(t_{\beta}\right)=M\right)$ and $J_{M}\left(u+s^{*} v_{\varepsilon}\right)<J_{M}(u)$ which contradicts the assumption that u is a minimiser of J_{M} in \mathfrak{C}_{M}.

In fact, Lemma 3 and (12) imply $u+s^{*} v_{\varepsilon} \leqslant M$. Therefore

$$
\begin{aligned}
& \lim _{s \rightarrow 0} \frac{J_{M}\left(u+s v_{\varepsilon}\right)-J_{M}(u)}{s} \\
&=\lim _{s \rightarrow 0} \frac{J\left(u+s v_{\varepsilon}\right)-J(u)}{s} \\
&=\int_{0}^{1} \Phi(t) u^{\prime}(t) v_{\varepsilon}^{\prime}(t) d t-\int_{0}^{1} \Phi(t) f(u(t)) v_{\varepsilon}(t) d t \\
& \leqslant-\theta \int_{t_{\alpha}-\varepsilon}^{t_{\alpha}} \Phi(t)+\int_{t_{\alpha}}^{t_{\alpha}+\varepsilon} \Phi(t) u^{\prime}(t) d t-\int_{t_{\alpha}-\varepsilon}^{t_{\alpha}+\varepsilon} \Phi(t) f(u(t)) v_{\varepsilon}(t) d t .
\end{aligned}
$$

We observe that, by (9),

$$
\begin{equation*}
-\theta \int_{t_{\alpha}-\varepsilon}^{t_{\alpha}} \Phi(t) \leqslant-m \theta \varepsilon \tag{14}
\end{equation*}
$$

and for some $C>0$ independent of ε,

$$
\begin{equation*}
\int_{t_{\alpha}-\varepsilon}^{t_{\alpha}+\varepsilon} \Phi(t) f(u(t)) v_{\varepsilon}(t) d t \leqslant C \varepsilon^{2} \tag{15}
\end{equation*}
$$

Also, by Holder's inequality, (9) and Lemma 3 , for $\gamma(t) \in] 0,1[$,

$$
\begin{align*}
\int_{t_{\alpha}}^{t_{\alpha}+\varepsilon} \Phi(t) u^{\prime}(t) d t & =\int_{t_{\alpha}}^{t_{\alpha}+\varepsilon}\left(\Phi\left(t_{\alpha}\right)+\Phi^{\prime}\left(t_{\alpha}+\gamma(t)\left(t-t_{\alpha}\right)\right)\left(t-t_{\alpha}\right)\right) u^{\prime}(t) d t \\
& \leqslant \Phi\left(t_{\alpha}\right)\left(u\left(t_{\alpha}+\varepsilon\right)-M\right)+L\|u\| \varepsilon^{3 / 2} \leqslant L\|u\| \varepsilon^{3 / 2} \tag{16}
\end{align*}
$$

Therefore, by (14), (15) and (16) we have

$$
\lim _{s \rightarrow 0} \frac{J_{M}\left(u+s v_{\varepsilon}\right)-J_{M}(u)}{s} \leqslant-m \theta \varepsilon+C \varepsilon^{2}+L\|u\| \varepsilon^{3 / 2}
$$

and the assertion follows for sufficiently small ε.
In the next lemma we provide a sharper characterisation of a type A minimiser.
Lemma 5. Let u be a minimiser of J_{M} in \mathfrak{C}_{M} of type A. Then
(i) $u_{-}^{\prime}\left(t_{0}\right)>0$ and $u_{+}^{\prime}\left(t_{0}\right)<0$ or
(ii) $u^{\prime}\left(t_{0}\right)=0$.

Proof: In view of a contradiction, suppose that $u_{-}^{\prime}\left(t_{0}\right)=0$ and $u_{+}^{\prime}\left(t_{0}\right)<0$ (the reversed case is proved with similar arguments). Consider the following perturbation function:

$$
w_{\varepsilon}(t)=\left\{\begin{array}{rl}
0 & \text { if } 0 \leqslant t \leqslant t_{0}-\varepsilon \\
4\left(t-t_{0}+\varepsilon\right) & \text { if } t_{0}-\varepsilon<t \leqslant t_{0}-\varepsilon / 2 \\
-6\left(t-t_{0}+\varepsilon / 2\right)+2 \varepsilon & \text { if } t_{0}-\varepsilon / 2<t \leqslant t_{0} \\
t-t_{0}-\varepsilon & \text { if } t_{0}<t \leqslant t_{0}+\varepsilon \\
0 & \text { if } t_{0}+\varepsilon<t \leqslant 1
\end{array} .\right.
$$

Trivially, for sufficiently small $\varepsilon, w_{\varepsilon} \in H$. Given $\lambda>0$, since F_{M} is a Lipchitz function, we have for some $C_{1}>0$ independent of ε,

$$
\begin{equation*}
\int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon} \Phi(t) F_{M}\left(u+\lambda w_{\varepsilon}\right)(t) d t \geqslant \int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon} \Phi(t) F_{M}(u(t)) d t-C_{1} \varepsilon^{2} \lambda . \tag{17}
\end{equation*}
$$

Also

$$
\begin{aligned}
& \frac{1}{2} \int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon} \Phi(t)\left(u^{\prime}+\lambda w_{\varepsilon}^{\prime}\right)^{2}(t) d t \\
& \quad=\frac{1}{2} \int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon} \Phi(t) u^{\prime 2}(t) d t+\lambda \int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon} \Phi(t) u^{\prime}(t) w_{\varepsilon}^{\prime}(t) d t+\frac{\lambda^{2}}{2} \int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon} \Phi(t){w_{\varepsilon}^{\prime}}^{2}(t) d t \\
& \quad \leqslant \frac{1}{2} \int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon} \Phi(t) u^{\prime 2}(t) d t+\lambda \int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon} \Phi(t) u^{\prime}(t) w_{\varepsilon}^{\prime}(t) d t+C_{2} \lambda^{2} \varepsilon,
\end{aligned}
$$

where $C_{2}=36 m^{*}$. Note that, by (17) and (18), we have

$$
\begin{equation*}
J_{M}\left(u+\lambda w_{\varepsilon}\right) \leqslant J_{M}(u)+\Psi(\lambda, \varepsilon) \tag{19}
\end{equation*}
$$

with

$$
\Psi(\lambda, \varepsilon)=\lambda \int_{t_{0}-\varepsilon}^{t_{0}+\varepsilon} \Phi(t) u^{\prime}(t) w_{\varepsilon}^{\prime}(t) d t+C\left(\lambda^{2} \varepsilon+\varepsilon^{2} \lambda\right)
$$

where $C=\max \left\{C_{1}, C_{2}\right\}$. Our purpose is to show the existence of $\lambda, \varepsilon>0$ such that $\Psi(\lambda, \varepsilon)<0$ and $u+\lambda w_{\varepsilon} \in \mathfrak{C}_{M}$, obtaining a contradiction from (19). Since $u_{-}^{\prime}\left(t_{0}\right)=0$ and $u_{+}^{\prime}\left(t_{0}\right)<0$, by (9) we may take $\varepsilon_{0}, \theta>0$ such that, for every $0<\varepsilon<\varepsilon_{0}$,

$$
\left|\Phi(s) u^{\prime}(s) w_{\varepsilon}^{\prime}(s)\right|<\theta / 2 \text { if } s \in\left[t_{0}-\varepsilon, t_{0}\right]
$$

and

$$
\Phi(s) u^{\prime}(s) \leqslant-\theta \text { if } s \in\left[t_{0}, t_{0}+\varepsilon\right] .
$$

Then

$$
\Psi(\lambda, \varepsilon) \leqslant-\frac{\theta}{2} \lambda \varepsilon+C \lambda \varepsilon(\varepsilon+\lambda),
$$

and, if we fix $\lambda=\theta /(4 C)$, we have, for $\varepsilon<\min \left\{\theta /(4 C), \varepsilon_{0}\right\}$,

$$
\begin{equation*}
\Psi(\lambda, \varepsilon)<0 \tag{20}
\end{equation*}
$$

In order to insure that $u+\lambda w_{\varepsilon} \in \mathfrak{C}_{M}$, take ε_{1} such that if $\left.s \in\right] t_{0}-\varepsilon_{1}, t_{0}[$, then

$$
\begin{equation*}
6 \lambda-u^{\prime}(s)>2 \lambda \tag{21}
\end{equation*}
$$

We have, for $\varepsilon<\min \left\{\theta /(4 C), \varepsilon_{1}, \varepsilon_{0}\right\}$,

$$
\begin{aligned}
\left(u+\lambda w_{\varepsilon}\right)\left(t_{0}-\frac{\varepsilon}{2}\right) & =\left(u+\lambda w_{\varepsilon}\right)\left(t_{0}\right)+\int_{t_{0}}^{t_{0}-(\varepsilon / 2)}\left(u^{\prime}+\lambda w_{\varepsilon}^{\prime}\right)(s) d s \\
& =M-\lambda \varepsilon+\int_{t_{0}-(\varepsilon / 2)}^{t_{0}}\left(6 \lambda-u^{\prime}(s)\right) d s
\end{aligned}
$$

and by (21),

$$
\left(u+\lambda w_{\varepsilon}\right)\left(t_{0}-\frac{\varepsilon}{2}\right) \geqslant M
$$

then $u+\lambda w_{\varepsilon} \in \mathfrak{C}_{M}$ and the proof is concluded.
[
In the next lemma we establish an important fact concerning the coexistence of type A and type B minimisers of J_{M} in \mathfrak{C}_{M} :

Lemma 6. Suppose that for a certain $M \in\left[M_{0}, \bar{M}\right]$ there exist minimisers u and v of J_{M} in \mathfrak{C}_{M} such that u is of type A and v is of type B. Then u is of type B (therefore being a classical solution to problem (1)-(2)).

Proof: Since u is of type A let t_{0} be the point where u equals M. Since v is of type B , let t_{α} (respectively $\left.t_{\beta}\right)=\min$ (respectively $\left.\max \right)\{t: v(t)=M\}$ and

$$
v_{-}^{\prime}\left(t_{\alpha}\right)=v_{+}^{\prime}\left(t_{\beta}\right)=0
$$

We have $t_{0} \leqslant t_{\beta}$ or $t_{0} \geqslant t_{\alpha}$. Suppose, in view of a contradiction, that $t_{0} \leqslant t_{\beta}$ and u is not of type B (the other case is proved with similar arguments). Then by Lemma 5 we have $u_{+}^{\prime}\left(t_{0}\right)<0$.
Claim. For every $t \in] t_{\beta}, 1\left[, u(t)<v(t)\right.$. In particular, $u^{\prime}(1)>v^{\prime}(1)$.
Suppose that for some $\left.t^{*} \in\right] t_{\beta}, 1\left[\right.$ we had $u\left(t^{*}\right)=v\left(t^{*}\right)$ and $u^{\prime}\left(t^{*}\right)>v^{\prime}\left(t^{*}\right)$ (the case $u^{\prime}\left(t^{*}\right)=v^{\prime}\left(t^{*}\right)$ is excluded by the existence and uniqueness theorem). Moreover, suppose that

$$
\begin{equation*}
\frac{1}{2} \int_{t^{*}}^{1} \Phi u^{\prime 2}-\int_{t^{*}}^{1} \Phi F_{M}(u) \leqslant \frac{1}{2} \int_{t^{*}}^{1} \Phi v^{2} d t-\int_{t^{*}}^{1} \Phi F_{M}(v) \tag{22}
\end{equation*}
$$

and let

$$
v^{*}(t)=\left\{\begin{array}{ll}
v(t) & \text { if } 0 \leqslant t \leqslant t^{*} \\
u(t) & \text { if } t^{*}<t \leqslant 1
\end{array} .\right.
$$

Then $v^{*} \in H$ and

$$
J_{M}\left(v^{*}\right) \leqslant J_{M}(v)
$$

therefore v^{*} is also a minimiser in \mathfrak{C}_{M}. This is absurd since v^{*} is not differentiable at t^{*} (see remark 3). In case where, instead of (22), we had the reversed inequality we get the same contradiction by considering:

$$
u^{*}(t)=\left\{\begin{array}{ll}
u(t) & \text { if } 0 \leqslant t \leqslant t^{*} \\
v(t) & \text { if } t^{*}<t \leqslant 1
\end{array} .\right.
$$

The strict inequality $u^{\prime}(1)>v^{\prime}(1)$ is a consequence of the existence and uniqueness theorem and the claim is proved.

Let

$$
\widehat{t}=\sup \left\{t: t_{0} \leqslant t \leqslant 1: u^{\prime}(s) \leqslant 0 \forall s \in\left[t_{0}, t\right]\right\} .
$$

We assert that

$$
u(\hat{t})<M_{0} \text { and } u^{\prime}(\hat{t})>v^{\prime}(1)
$$

In fact, if $\widehat{t}=1$ the assertion simply follows from the previous claim. If $\widehat{t}<1$, we may conclude from equation (1) and our assumptions on f that $u(\hat{t})<M_{0}$ and $u^{\prime}(\hat{t})=0$ (in fact, $u(\hat{t})$ is a local minimum of $u)$.

Similarly, if we define

$$
\bar{t}=\inf \left\{t: t_{\boldsymbol{\beta}} \leqslant t \leqslant 1 v^{\prime}(s) \leqslant 0 \forall s \in[t, 1]\right\}
$$

we have that

$$
v^{\prime}(\bar{t})=0 \text { and } v(\bar{t})>M_{0}
$$

(in fact, $v(\hat{t})$ is a local maximum of v). Then, if we consider in the phase plane $\left(x, x^{\prime}\right)$ the curves U and V corresponding to $\left.u\right|_{\left[t_{0}, t\right]}$ and $\left.v\right|_{[t, 1]}$, they must intersect at some point $P=\left(\mu, \mu^{\prime}\right)$ in the fourth quadrant. That is, for some $t_{1}<t_{2}$,

$$
u\left(t_{1}\right)=v\left(t_{2}\right)=\mu \text { and } u^{\prime}\left(t_{1}\right)=u^{\prime}\left(t_{2}\right)=\mu^{\prime}<0
$$

Moreover we may suppose that P is such that μ is minimal. Let $T=t_{2}-t_{1}$ and consider $v_{T}(t)=\dot{v}(t+T)$. This translate of v satisfies, for every $\left.t \in\right] t_{1}, 1-t_{2}+t_{1}[$,

$$
\left(\Phi(t+T) v_{T}^{\prime}(t)\right)^{\prime}=-\Phi(t+T) f\left(v_{T}(t)\right)
$$

or equivalently

$$
v_{T}^{\prime \prime}=-f\left(v_{T}(t)\right)-v_{T}^{\prime}(t) \frac{\Phi^{\prime}(t+T)}{\Phi(t+T)}
$$

with initial conditions $v_{T}\left(t_{1}\right)=u\left(t_{1}\right)$ and $v_{T}^{\prime}\left(t_{1}\right)=u^{\prime}\left(t_{1}\right)$. However, u is a solution to

$$
u^{\prime \prime}=-f(u(t))-u^{\prime}(t) \frac{\Phi^{\prime}(t)}{\Phi(t)}
$$

Since Φ^{\prime} / Φ is strictly increasing and $-u^{\prime}\left(t_{1}\right)=-v_{T}^{\prime}\left(t_{1}\right)>0$, we obtain

$$
\begin{equation*}
u^{\prime \prime}\left(t_{1}\right)<v_{T}^{\prime \prime}\left(t_{1}\right) \tag{23}
\end{equation*}
$$

Again, by considering in the phase plane $\left(x, x^{\prime}\right)$ the curves corresponding to $\left.v_{T}\right|_{\left[t_{1}, 1-t_{2}+t_{1}\right]}$ and $\left.u\right|_{[t, 1]}$, we conclude from (23) the existence of $\left(\hat{\mu}, \hat{\mu}^{\prime}\right)$ in the fourth quadrant, with $\widehat{\mu}<\mu$, such that, for some $t_{1}<t^{\prime}<1-t_{1}+t_{2}$,

$$
u\left(t_{1}\right)=v_{T}\left(t^{\prime}\right)=\widehat{\mu} \text { and } u^{\prime}\left(t_{1}\right)=v_{T}\left(t^{\prime}\right)=\widehat{\mu}^{\prime}
$$

or, for $t_{3}=t^{\prime}+t_{2}-t_{1}$,

$$
u\left(t_{1}\right)=v\left(t_{3}\right)=\widehat{\mu} \text { and } u^{\prime}\left(t_{1}\right)=v^{\prime}\left(t_{3}\right)=\widehat{\mu}^{\prime}<0
$$

But this contradicts our assumption that μ is minimal. We may conclude that if $t_{0} \leqslant t_{\beta}$, u must be of type B.

If $t_{0} \geqslant t_{\alpha}$ the proof is identical and we shall just sketch it. By Lemma 5 we have $u^{\prime}\left(t_{0}\right)>0$. With a similar reasoning to the one in the claim we may prove that $v^{\prime}(0)$ $>u^{\prime}(0)>0$. We define

$$
\hat{t}^{*}=\inf \left\{t: 0 \leqslant t \leqslant t_{0}, u^{\prime}(s) \geqslant 0 \forall s \in\left[t, t_{0}\right]\right\}
$$

and

$$
\bar{t}^{*}=\sup \left\{t: 0 \leqslant t \leqslant t_{\alpha}, v^{\prime}(s) \geqslant 0 \forall s \in[0, t]\right\} .
$$

Then $u\left(\hat{t}^{*}\right)<M_{0}$ and $u^{\prime}\left(\hat{t}^{*}\right)<v^{\prime}(0)$. Also $v(\vec{t})>M_{0}$ and $v^{\prime}\left(\vec{t}^{*}\right)=0$. Then the curves $\left.u\right|_{\left\{t^{*}, t_{0}\right]}$ and $\left.v\right|_{\left[0, \vec{t}^{*}\right]}$ must intersect at some point $P=\left(\nu, \nu^{\prime}\right)$ in the first quadrant of the phase plane $\left(x, x^{\prime}\right)$. Let us assume that ν is minimal and consider v_{-T} the translate of the left branch of v that, at some point t_{1}, coincides with u with same image and same positive derivative. Our assumption on the term Φ^{\prime} / Φ implies that $u^{\prime \prime}\left(t_{1}\right)<v_{-T}^{\prime \prime}\left(t_{1}\right)$ and we get the same contradiction.

We are now in a position to prove proposition 2.
Proof of Proposition 2: Let $I=\left[M_{0}, \bar{M}\right]$ and consider the following subsets I_{A} and I_{B} :

$$
I_{A}\left(I_{B}\right)=\left\{M \in\left[M_{0}, \bar{M}\right]: J_{M} \text { has a minimiser in } \mathfrak{C}_{M} \text { of type } \mathrm{A}(\mathrm{~B})\right\} .
$$

By Lemma 4 we have $I=I_{A} \cup I_{B}$. We assert that I_{A} and I_{B} are non-empty. We have $M_{0} \in I_{A}$. In fact, let $u_{M_{0}}$ be a minimiser of $J_{M_{0}}$ in $\mathfrak{C}_{M_{0}}$. If $u_{M_{0}}$ is of type B then by the existence and uniqueness theorem, $u_{M_{0}} \equiv M_{0}$, an obvious contradiction. Now, in order to prove that I_{B} is non-empty, we have $\bar{M} \in I_{B}$ or $\bar{M} \notin I_{B}$. Suppose that $\bar{M} \notin I_{B}$ and let $u_{\bar{M}}$ be a minimiser of $J_{\bar{M}}$ in $\mathfrak{C}_{\bar{M}}$. By Lemma 5 there exists t_{0} such that $u_{\bar{M}}\left(t_{0}\right)=\bar{M}$, $u_{\bar{M}}^{\prime}\left(t_{0}\right)_{-}>0$ and $u_{\bar{M}}^{\prime}\left(t_{0}\right)_{+}<0$. Then, for sufficiently small $\lambda, \varepsilon>0$ we have

$$
J_{\bar{M}}\left(u_{\bar{M}}+\lambda v_{\varepsilon}\right)<J_{\bar{M}}\left(u_{\bar{M}}\right)
$$

where v_{ε} was defined in (12) (see Lemma 4 for details). Then, by (11),

$$
\min J_{\bar{M}}<\left.\min J_{\bar{M}}\right|_{c_{\bar{M}}}<0
$$

and the continuous embedding of H in $C([0,1])$ implies that a minimum of $J_{\bar{M}}$ is a local minimum of J. It is therefore a nontrivial classical solution to (1)-(2) with $M_{0}<\max u$ $\leqslant \bar{M}$. In particular, it implies that I_{B} is nonempty.

Finally, we state that I_{A} and I_{B} are closed subsets of I. We shall only consider I_{A} since the other case is identical. Let $\left(M_{n}\right)$ be a sequence in I_{A} such that $M_{n} \rightarrow M$. Let u_{n} be a corresponding sequence of type A minimisers of $J_{M_{n}}$ in $\mathfrak{C}_{M_{n}}$. Since (u_{n}) is trivially bounded we may extract a weakly convergent subsequence (still denoted by u_{n})
such that $u_{n} \rightharpoonup u$. Since the weak convergence implies L_{∞} convergence one gets that $u \in \mathfrak{C}_{M}$ and u is of type A. It remains to show that u is a minimiser of J_{M} in \mathfrak{C}_{M}. Since

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \Phi F_{M_{n}}\left(u_{n}\right)=\int_{0}^{1} \Phi F_{M}(u)
$$

and

$$
\int_{0}^{1} \Phi u^{\prime 2} \leqslant \liminf _{n \rightarrow \infty} \int_{0}^{1} \Phi u_{n}^{\prime 2},
$$

we have

$$
J_{M}(u) \leqslant \liminf J_{M_{n}}\left(u_{n}\right) .
$$

Moreover, if we consider the sequence $w_{n}=\left(M_{n} / M\right) u$, we have $w_{n} \rightarrow u$ in H and $w_{n} \in \mathfrak{C}_{M_{n}}$, for all $n \in \mathbb{N}$. Then

$$
J_{M}(u)=\lim _{n \rightarrow \infty} J_{M_{n}}\left(w_{n}\right)
$$

and

$$
J_{M_{n}}\left(w_{n}\right) \geqslant J_{M_{n}}\left(u_{n}\right),
$$

for all $n \in \mathbb{N}$. Consequently,

$$
J_{M}(u) \geqslant \limsup _{n \rightarrow \infty} J_{M_{n}}\left(u_{n}\right) \geqslant \liminf _{n \rightarrow \infty} J_{M_{n}}\left(u_{n}\right) \geqslant J_{M}(u),
$$

or

$$
\lim _{n \rightarrow \infty} J_{M_{n}}\left(u_{n}\right)=J_{M}(u) .
$$

If, for a certain u^{*} in $\mathfrak{C}_{M}, J_{M}\left(u^{*}\right)<J_{M}(u)$, then, for sufficiently large n, we would have

$$
J_{M_{n}}\left(w_{n}^{*}\right)<J_{M_{n}}\left(u_{n}\right),
$$

where $w_{n}^{*}=\left(M_{n} / M\right) u^{*}$, a contradiction. Then $M \in I_{A}$ and I_{A} is closed. With a similar reasoning one proves that I_{B} is closed. Then, by connectedness we have $I_{A} \cap I_{B} \neq \emptyset$ and by Lemma 6 we conclude the existence of a classical solution u with $\max u \in I_{A} \cap I_{B}$. \square
Remark 4. Note that the existence of a solution to problem (1)-(2) under the assumptions of proposition 2 could have been proved with the use of the Mountain Pass theorem of Ambrosetti and Rabinowitz. However this theorem does not provide sharp estimates on the L_{∞} norm of the solutions.

3. Proof of the main result

In this section we extend proposition 2 to the case where Φ may have a singularity at zero. Our technique relies in a simple approximation procedure to problem (1)-(2). The results established in the previous section obviously remain true when initial conditions imposed to equation (1) are $u(a)=u(b)=0$ (where $a<b$).

Proof of Theorem 1: We may assume that the function v given by (8) has support contained in $\left[\varepsilon_{0}, 1\right]$, where $\varepsilon_{0}>0$ is sufficiently small (the more general assertion can be obtained as a limit case). Take $n_{0} \in \mathbb{N}$ such that $0<1 / n_{0}<\varepsilon_{0}$, and for every $n>n_{0}$, define:

$$
\Phi_{n}(t)=\exp \left(\frac{t^{2}}{2 n}\right) \Phi(t)
$$

Note that $\Phi_{n}^{\prime} / \Phi_{n}$ is strictly increasing and $\Phi_{n} \rightarrow \Phi$ uniformly. Then, taking $H=H_{0}^{1}(](1 / n), 1[)$, (8) implies that (11) is proven for large n if we consider the restriction of v to $[(1 / n), 1]$. We can therefore apply proposition 2 to the family of problems

$$
\begin{aligned}
\left(\Phi_{n}(t) u^{\prime}(t)\right)^{\prime}+\Phi_{n}(t) f(u(t)) & =0 \\
u\left(\frac{1}{n}\right)=u(1) & =0
\end{aligned}
$$

obtaining a sequence of solutions $\left(u_{n}\right)$ such that $M_{0}<\max u_{n} \leqslant \bar{M}$. We may suppose that the u_{n} 's are extended by zero in $\left.] 0,1\right]$.
Claim. The sequence (u_{n}) is equicontinuous.
Let $\left.t_{n} \in\right](1 / n), 1\left[\right.$ be such that $u_{n}\left(t_{n}\right)=\max u_{n[(1 / n), 1]}$. For any $t \in[(1 / n), 1]$, we have

$$
\Phi_{n}(t) u_{n}^{\prime}(t)=\int_{t}^{t_{n}} \Phi_{n}(s) f\left(u_{n}(s)\right) d s
$$

If $1 / n \leqslant t \leqslant t_{n}$, assumption (7) implies

$$
\begin{equation*}
\left|u_{n}^{\prime}(t)\right| \leqslant \int_{t}^{t_{n}} \frac{\Phi_{n}(s)}{\Phi_{n}(t)}\left|f\left(u_{n}(s)\right)\right| d s \leqslant \exp \left(\frac{1}{2 n}\right) K \bar{f} \tag{24}
\end{equation*}
$$

where $\bar{f}=\max _{[0, \bar{M}]}|f|$. Since $u_{n}\left(t_{n}\right) \geqslant M_{0}$ we may conclude the existence of $l>0$ independent of n such that $t_{n} \geqslant l$. Then, for any $t_{n} \leqslant t \leqslant 1$, we have, by (3),

$$
\begin{equation*}
\left|u_{n}^{\prime}(t)\right| \leqslant \int_{t_{n}}^{1} \frac{\Phi_{n}(s)}{\Phi_{n}(t)}\left|f\left(u_{n}(s)\right)\right| d s \leqslant(1-l) \exp \left(\frac{1}{2 n}\right) \frac{\bar{f}}{m} \max _{[l, 1]} \Phi \tag{25}
\end{equation*}
$$

and the claim follows from (24)-(25).
We can therefore take a subsequence (still denoted by (u_{n})) such that $u_{n} \rightarrow u$ uniformly and by standard arguments, u is a solution of (1)-(2). Since $M_{0}<\max u_{n} \leqslant \bar{M}$ for all n, we conclude that u is nontrivial and $M_{0}<\max u \leqslant \bar{M}$ (the case $\max u=M_{0}$ is excluded by the existence and uniqueness theorem).
Remark 5. If we consider the change of variables $t=1-t^{\prime}$ we may restate theorem 1 for a class of functions $\Phi \in C^{1}([0,1])$ having a singularity at 1 :

Suppose that f satisfies (5)-(6) and:
(1) $\Phi(t) \geqslant m>0 \forall t \in[0,1[$,
(2) Φ^{\prime} / Φ is a decreasing function,
(3) $(\Phi(t) / \Phi(s)) \leqslant K$ for some $K>0$ and every $0 \leqslant t \leqslant s<1$,
(4) There exists a nonnegative $v \in H_{0}^{1}(10,1[)$ such that

$$
\frac{1}{2} \int_{0}^{1} \Phi(t) v^{\prime}(t)^{2} d t<\int_{0}^{1} \Phi(t) F(v(t)) d t<\infty
$$

where $F(v)=\int_{0}^{v} f(s) d s$.
Then Problem (1)-(2) has a positive solution u such that $M_{0}<\max u \leqslant\|v\|_{\infty}$.
REMARK 6. Note that the method only requires that $f>0$ in [$M_{0},\|v\|_{\infty}$ [where $\|v\|_{\infty}$ is given by (8). The behaviour of f in $\left[\|v\|_{\infty}, \infty[\right.$ is not relevant for our existenceestimation result.

References

[1] R. Agarwal, D. ORegan and P. Wong, Positive solutions of differential, difference and integral equations (Kluwer Academic Publishers, Dordrecht, 1999).
[2] H. Berestycki, P.L. Lions and L.A. Peletier, 'An ODE approach to the existence of positive solutions for semilinear problems in \mathbb{R}^{N}, Indiana Univ. Math. J. 30 (1981), 141-157.
[3] L.E. Bobisud and D. O'Regan, 'Positive solutions for a class of nonlinear singular boundary value problems at resonance', J. Math. Anal. Appl. 184 (1994), 263-284.
[4] D. O'Regan, Solvability of some two point boundary value problems of Dirichlet, Neumann, or periodic type, Dynam. Systems Appl. 2 (1993), 163-182.
[5] D. O'Regan, 'Nonresonance and existence for singular boundary value problems', Nonlinear Anal. 23 (1994), 165-186.
[6] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Series in Math. 65 (Amer. Math. Soc., Providence R.I., 1986).

CMAF-Faculdade de Ciências da Universidade de Lisboa
Avenida Professor Gama Pinto, 2
1649-003 Lisboa
Portugal
e-mail: zemaria@cii.fc.ul.pt

