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EXISTENCE AND !,«, ESTIMATES FOR A CLASS OF
SINGULAR ORDINARY DIFFERENTIAL EQUATIONS

J.M. GOMES

We prove the existence of a positive solution to an equation of the form (l/$(£))
(<&(i)u'(i)) = f(u(t)) with Dirichlet conditions where the friction term $'/$ is in-
creasing. Our method combines vaxiational and topological arguments and provides
an Loo estimate of the solution.

1. INTRODUCTION AND MAIN RESULT

We are interested in the existence and estimation of the Loo-norm of a positive
solution to the problem

(1) (*(t)u'(t))'+ «(*)/(«(*)) = 0

(2) u(0) = u(l) - 0

We suppose that $ G Cl(}0,1]),

(3) $ ^ m > 0 in ]0,1],

and

(4) is an increasing function.
<P(t)

Moreover we assume that / is locally Lipchitz,

(5) /(0) = 0,

and that there exists Mo > 0 such that

(6) f(t) < 0 if t < Mo, and f(t) > 0 if t> Mo.

Note that an equivalent formulation to problem (l)-(2) is

u"{t) + a{t)u'{t) + f(u(t)) - 0, u(0) = u(l) = 0
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430 J.M. Gomes [2]

where the friction term a(t) is an increasing function. There is a vast literature dealing
with existence of solutions of singular boundary value problems (see for instance [1,
3, 4, 5] and the references therein). In this work, however, by restricting ourselves
to a particular class of equations, we manage to provide L^ estimates to the solutions
even when the non-linear term /(.) has arbitrary growth. Our method is inspired by
the topological shooting method (see for instance [2]) and the classical mountain pass
theorem of Ambrosetti and Rabinowitz [6] and it is settled in Section 2. In Section 3 we
prove our main result:

THEOREM 1 . Suppose that $ e ^QO, 1]), / is a locally Lipchitz continuous

function and that conditions (3)-(6) are satisfied. Moreover suppose that

$(s)
(7) —j-t ^ K for some K >0 and every 0<t^s^l,

and that there exists a nonnegative v 6 H^(]0,1[) such that

(8) i f ${t)v'(t)2dt< [ <f>(t)F(v{t)) dt < oo,
2 Jo Jo

r
where F(v) — I f(s) ds.

Jo
Then Problem (l)-(2) has a positive solution u such that Mo < maxu ^ IMIoo-

As motivating examples we may consider $(<) = t~a or $(£) = exp (t~°) with a > 0
(the reader may easily verify that these functions fulfill conditions (3), (4) and (7)).

2. VARIATIONAL SETTING AND AUXILIARY RESULTS

Throughout this section we assume that there exist m,m*,L > 0 such that, for all

(9) 0 < m ^ $ ( t ) sCm* , |$'(t)| ^ L,

and

$'(t)
(10) • is a strictly increasing function.

9(1)

Since we are looking for positive solutions we assume that / is extended by zero in
] — oo,0]. The reader may easily verify that any non-trivial solution to (l)-(2) where
/ has been extended by zero should be positive in ]0,1[ therefore being a solution of
the initial problem. We shall consider the Sobolev space H = i/,}(]0,1[) consisting of
absolutely continuous functions u such that

H I 2 - ful2{t)
JO

dt < oo , w(0) = u(l) = 0.
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[3] Singular ordinary differential equations 431

Problem (l)-(2) may be viewed as the Euler-Lagrange equation of the functional J : H

-> K defined by:

J{n) = \f *(t)u'2(t) dt - f Mt)F{u(t)) dt
* Jo Jo

where F(u) = I f(s) ds. We shall suppose that J satisfies the following property:
Jo

(11) 3v eH :J(v) <0.

R E M A R K 1. Property (11) is trivially satisfied if, for some e > 0, f(u) ^ eua — C for
all u ^ 0, where a > 1 and C > 0.

Let M = \\v\\ao. Since J(w) ^ 0 for every w € H with H^Hoo ^ Mo, we have
M > MQ. Given M € [Mo, M], we shall consider the following subset of H:

<ZM = {u 6 H : maxu ^ M},

and the truncated functional JM : H -> R,

JM(U) = \f *(t)u'2(«) dt - f $(t)FM{u(t)) dt
* Jo Jo

where
/ F(u) i

R E M A R K 2. From the compact injection of HQ (]0,1[) in C([0,1]) we conclude that €M

is weakly sequentially closed and that JM is coercive and weakly lower semi-continuous.

The main result of this section is the following proposition whose proof will become

clear after a sequence of lemmas:

PROPOSITION 2 . Let f e C([0,+oo[) and $ € ^ ( [ 0 , 1 ] ) satisfy respectively
properties (5)-(6) and (9)-(10). Moreover, suppose that J satisfies property (11) and
let M = IMIoo- Then there exists a classical positive solution u to problem ( l)-(2) with
MQ < maxu ^ M.

We shall be interested in the family of minimisers UM of JM in <LM where
M e [M0,M]. By Remark 2 we know that u « exists for every M € [MOtM]. We
also know that:

LEMMA 3 . Let uM be a minimiser of JM in <LM- Then maxu = M.

P R O O F : Given w G <£M define

w(t) = min{w(t),M}.
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liw^w then,

and

/ $«/2< /
Jo Jo

f $FM(W)= f
Jo Jo

Therefore JM(W) < JM{W) and the lemma follows. D

Given M € [Mo, M], we define two types of minimisers of JM in €M-

D E F I N I T I O N : Let UM be a minimiser of JM in <£M.

(i) We say that uM is a minimiser of type A if there exists a unique to e]0,1[

such that u(to) — M.

(ii) We say that uM is a minimiser of type B if, given ^(respectively tp)
= min(respectively max){£ : u ^ ( t ) = M } , we have

«'-(*«) = «'+(^) = 0.

REMARK 3. If UM is a minimiser of type A then u satisfies equation (1) in ]0, £o[u]£o! 1[
since J'M(u)v = J'(u)v for every v € Co°(]0, toMfo, ![)• For the same reason, if vM is a
type B minimiser, it satisfies equation (1) in ]0, t a M ^ , 1[. If w is simultaneously of type
A and B, then w is a classical solution to problem (l)-(2).

LEMMA 4 . Let u be a minimiser ofJM in <tM. Then u is of type A or B (possibly
both).

PROOF: We may rephrase the lemma as:

Let ta (t0) = min(max) {t : u(t) = M}. Then either u'_{ta) = u'+(t0) = 0 or

ta = tg.

Integrating equation (1) between t\ and t2 and letting t i , t 2 —̂  ta (tp), we conclude
that u'_(ta) (u'+(tp)) is well defined. Suppose, in view of a contradiction, that ta < tp

and u'_(ta) > 0 (the case u'+{tp) < 0 is treated with similar arguments). Choose 9,e > 0
such that u'(t) ^ 9 for every t €]ta — e, ta[ (we may suppose e <tp — ta) and consider:

(12) ve(t) = -(\t-ta\-e)_.

We assert that, for a small e,

(13) lim •M» + " 0 - - M i Q < 0 .
V ; s-+0 s

If (13) holds, then for a sufficiently small s* > 0, we have u + s*ve € CM (since (u

+ s*v£)(tp) = M) and JM{U + s*vs) < JM{U) which contradicts the assumption that u is
a minimiser of JM in <ZM .
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(5) Singular ordinary differential equations 433

In fact, Lemma 3 and (12) imply u + s*ve ^ M. Therefore

(u + sve) - JM(u)
lim
s->0

= lim
s->0

J(u + sv£) — J(u)

= [ $(t)u'(t)v'e(t)dt- f $(t)f(u(t))ve(t)dt
Jo Jo

«C-0 f $(*) + f ${t)u'{t)dt- f $(t)f(u(t))ve(t)dt.
Jta-e Jta Jta-c

We observe that, by (9),

(14) -ff / $(i) ^ -mde

and for some C > 0 independent of e,

/

•ta+e
)

-a-e

Also, by Holder's inequality, (9) and Lemma 3, for j(t) €]0,1[,

rta+e rta+e

/ ${t)u'(t)dt= / ($(ta) + $'(ta + 'y(t){t-ta))(t-ta))u'(t)dt
Jta Jta

(16) ^ *(*o)(ti(*o + e)-M) + L\\u\\e3'2 ^ L\\u\\s3'2.

Therefore, by (14), (15) and (16) we have

{u + sv£)-JM(u)
lim
s->0

-mOe + Ce2 + L\\u\\

and the assertion follows for sufficiently small e. 0

In the next lemma we provide a sharper characterisation of a type A minimiser.

LEMMA 5 . Let u be a minimiser of JM in <LM of type A. Then

(i) u'_(t0) > 0 and u'+{t0) < 0 or

(ii) u'(t0) = 0.

P R O O F : In view of a contradiction, suppose that u'_(t0) = 0 and u'+(t0) < 0 (the
reversed case is proved with similar arguments). Consider the following perturbation
function:

0 if 0 s$ t ^ t0 - e

4(f - t0 + e) if to - £ < t ^ t0 - e/2
-6( t - t0 + e/2) + 2e if t0 - e/2 < t ^ t0

t - t0 - e if t0 < t $ t0 + e
0 if t0 + e < t ^ 1
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Trivially, for sufficiently small e, wE 6 H. Given A > 0, since FM is a Lipchitz function,
we have for some C\ > 0 independent of e,

(17) / *(t)FM{u + \we){t)dt2 / $(t)FM(u(t))dt-Cl£
2X.

Also

to-e
i rto+e pto+e \2 pto+e

= - / $(tW2(t) dt + X *(i)u'(iX(t) dt+\ $(t)w'e
2{t) dt

^ Jto-e Jto-e 2 Jto-e
i rto+e pto+e

(18) ^ - / $(t)u'2(t)dt + \ $(t)u'(t)w'e(t)dt + C2\
2e,

^ Jto-e Jto-e

where C2 = 36m'. Note that, by (17) and (18), we have

(19) JM(u + \Wc)

with
to+e

where C = max{Ci,C2}. Our purpose is to show the existence of A,e > 0 such that
^(X,e) < 0 and u + Xwe e <LM, obtaining a contradiction from (19). Since u'_(tQ) = 0
and u'+(t0) < 0, by (9) we may take e0,0 > 0 such that, for every 0 < e < e0,

| $ ( s ) u ' ( s K ' ( s ) | <9/2 if s 6 [to-£,to]

and
$(s)u'(s) ^ -0\i s € [to,to + e].

Then
^ ( A , e ) ^ - - A ^ + CAe(e + A),

and, if we fix A = 0/(4C), we have, for e < min{^/(4C),e0},

(20)

In order to insure that u + Xw£ £ <£M, take $i such that if s G]io — £i, to[, then

(21) 6A - u'(s) > 2A.

We have, for s < min{^/(4C) ,e l l e 0 } ,

/ C\ fto-(e/2)
(U + XWe) (t0 - - J = (U + XWe)(t0) + (u'+ Xw'£)(s) ds

= M-Xe+ f° {6X-u'{s))ds,
Jto-(e/2)
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and by (21),

(u + Xwe) (t0 - | )

then u + Xwe e <LM and the proof is concluded. D

In the next lemma we establish an important fact concerning the coexistence of type

A and type B minimisers of JM in CM-

LEMMA 6 . Suppose that for a certain M S [Mo, M] there exist minimisers u and
v ofJM in <LM such that u is of type A and v is of type B. Then u is of type B (therefore
being a classical solution to problem (1)-(2)J.

PROOF: Since u is of type A let t0 be the point where u equals M. Since v is of
type B, let ^(respectively tp)= min(respectively max){i : v(t) = M} and

«'_(*«) = v'+{tp) = 0.

We have to ^ tp or to ^ ta. Suppose, in view of a contradiction, that io ^ tp and u is

not of type B (the other case is proved with similar arguments). Then by Lemma 5 we

have u'+(t0) < 0.

CLAIM. For every t ejtp, 1[, u(t) < v(t). In particular, u'(l) > u'(l).

Suppose that for some t* &)tp, 1[ we had u{V) = v{f) and u'(t*) > v'{f) (the case
u'(t*) = v'(t*) is excluded by the existence and uniqueness theorem). Moreover, suppose
that

(22) \ [ $u'2 - f *FM(u) ^ \ f $v'2dt - f *FM{v),

and let

„•(*) = ( " W tf « < « < * • .v ; I u(t) if r < t^ l

Then v* e H and

JM(V') ^ JM{V),

therefore v* is also a minimiser in CM- This is absurd since v* is not differentiate at t*
(see remark 3). In case where, instead of (22), we had the reversed inequality we get the
same contradiction by considering:

u'(t) = i U{t) if ° ^ * ^ **1 ; \ v(t) if f < t ^ 1 '

The strict inequality u'(l) > v'(l) is a consequence of the existence and uniqueness

theorem and the claim is proved.

Let

t = sup{t: to^t^l: u'{s) ^ 0 Vs G [to,t]}.
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We assert that
u(t) < Mo and u'(t) > v'[l).

In fact, if t = 1 the assertion simply follows from the previous claim. If t < 1, we may
conclude from equation (1) and our assumptions on / that u(t) < Mo and u'(t) — 0 (in
fact, u(t) is a local minimum of u).

Similarly, if we define

t = inf{t : t0 ^ t < 1 v'{s) ^ 0 Vs € [t, 1]},

we have that
v'(t) = 0 and v(t) > Mo

(in fact, v(t) is a local maximum of v). Then, if we consider in the phase plane (x, x')
the curves U and V corresponding to w|[t0)i) and v\^, they must intersect at some point
P = (M,M')

 m t n e fourth quadrant. That is, for some tx < t2,

u(ti) = v(t2) - fJ, and u'(h) = u'(t2) = n' < 0.

Moreover we may suppose tha t P is such that fi is minimal. Let T — t2 —1\ and consider

vT(t) = v(t + T). This t ranslate of v satisfies, for every t e ] t i , 1 — t2 + ti[,

(*(t + T) vT'{t))' = -*(« + T)f(vT(t)),

or equivalently

with initial conditions vT(t{) = u(ti) and «r( ' i ) = u'{h)- However, u is a solution to

u" = -

Since $ ' / ^ is strictly increasing and — u'{t{) = —v'T(ti) > 0, we obtain

(23) u"(ti) 4

Again, by considering in the phase plane (x,x') the curves corresponding to VT\[tui-t2+ti]
and u|[t,,i], we conclude from (23) the existence of (/I,/2') in the fourth quadrant, with
JI < H, such that, for some ti < t' < 1 — t\ +12,

u(ti) = vT(t') = £ and u'(ti) = vT(t') = /x',

or, for t3 — t' + t2 — ti,

u{tx) = v{t3) = V- aQd «'(*i) = w'(^) = /? < 0. '
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[9] Singular ordinary differential equations 437

But this contradicts our assumption that n is minimal. We may conclude that if t0 ^tp,

u must be of type B.

If Jo ^ ta the proof is identical and we shall jus t sketch it. By Lemma 5 we have

u'{t0) > 0. With a similar reasoning to the one in the claim we may prove t ha t i/(0)

> u'(0) > 0. We define

? = inf{t : 0 < t s£ t0 , u'(s) ^ 0 Vs € [t, t0}}

and

T = sup{ i : 0 ^ t s? tQ , v'(s) ^ 0 Vs G [0, t ]} .

Then u ( ? ) < Mo and u ' ( ? ) < v'(0). Also v(7) > Mo and v'(T) = 0. Then the curves
ul{T-,to) anc* ul[o,t") m u s t intersect at some point P — {v,v') in the first quadrant of the

phase plane (x, x'). Let us assume that v is minimal and consider V_T the translate of

the left branch of v tha t , at some point t\, coincides with u with same image and same

positive derivative. Our assumption on the term <£'/<£ implies tha t u"(ti) < v'iT{t{) and

we get the same contradiction. D

We are now in a position to prove proposition 2.

P R O O F O F P R O P O S I T I O N 2: Let / = [Mo, M) and consider the following subsets I A

and 7B:

I A (IB) = {M € [Mo, M] : JM has a minimiser in <£.M of type A (B)} .

By Lemma 4 we have I = IAU IB- We assert tha t IA and IB are non-empty. We have

Mo € I A- In fact, let uMo be a minimiser of JMo in <£Mo. If UM0 is of type B then by the

existence and uniqueness theorem, UM0 = MQ, an obvious contradiction. Now, in order

to prove that 7g is non-empty, we have M € IB or M £ IB- Suppose tha t M £ IB and

let ujf be a minimiser of JJJ in <%-. By Lemma 5 there exists t0 such t ha t ujj(t0) = M,

uLj(to)_ > 0 and u ^ ^ o ) < 0. Then, for sufficiently small A,e > 0 we have

where ve was defined in (12) (see Lemma 4 for details). Then, by (11),

min Jjf < min Jji\cw < 0,

and the continuous embedding of H in C([0,1]) implies tha t a minimum of Jjj is a local

minimum of J. It is therefore a nontrivial classical solution to ( l ) - (2 ) with Mo < m a x u

^ M. In particular, it implies tha t IB is nonempty.

Finally, we state tha t IA and IB are closed subsets of / . We shall only consider

IA since the other case is identical. Let (M n ) be a sequence in IA such tha t Mn -» M.

Let un be a corresponding sequence of type A minimisers of JM^ in &Mn- Since (un) is

trivially bounded we may extract a weakly convergent subsequence (still denoted by un)
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such that Un —»• u. Since the weak convergence implies L^ convergence one gets that
u € CM and u is of type A. It remains to show that u is a minimiser of JM in <tM. Since

lim f $FMn(un) = f $FM(u)
"-*00 Jo Jo

/ $u'2 ^liminf / $un'2,
Jo n^°° Jo

and

we have
JM(u) ^ liminf J

Moreover, if we consider the sequence wn — (Mn/M)u, we have wn —¥ u in H and

wn € £Mn, for all n€N. Then

JM{u) = lim JMn(wn)

and •

JMn(wn) > JMn("n),

for all n € N. Consequently,

J M ( « ) ^ lim sup JMn(un) > liminf yMn(un) ^ JM(U),

or

lim JMn(«n) = ^M(W)-
n—>oo

If, for a certain u* in CM, JM(U*) < JM{U), then, for sufficiently large n, we would have

where w* = {Mn/M)u*, a contradiction. Then M £ IA and /^ is closed. With a similar
reasoning one proves that IB is closed. Then, by connectedness we have IA n /B ^ 0 and
by Lemma 6 we conclude the existence of a classical solution u with maxu 6 /x f l /B . D

REMARK 4. Note that the existence of a solution to problem (l)-(2) under the assump-
tions of proposition 2 could have been proved with the use of the Mountain Pass theorem
of Ambrosetti and Rabinowitz. However this theorem does not provide sharp estimates
on the LQO norm of the solutions.

3. PROOF OF THE MAIN RESULT

In this section we extend proposition 2 to the case where $ may have a singularity at
zero. Our technique relies in a simple approximation procedure to problem (l)-(2). The
results established in the previous section obviously remain true when initial conditions
imposed to equation (1) are u(a) — u(b) = 0 (where a < 6).
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PROOF OF THEOREM 1: We may assume that the function v given by (8) has
support contained in [e0,1], where e0 > 0 is sufficiently small (the more general assertion
can be obtained as a limit case). Take no € N such that 0 < I/no < £o, and for every
n > no, define:

*„(«)= « p ( | l

Note that $'n/$n is strictly increasing and $„ —»• «J> uniformly. Then, taking

H = HQ\](1/TI), l [ J , (8) implies that (11) is proven for large n if we consider the

restriction of v to [ ( l / n ) , l ] . We can therefore apply proposition 2 to the family of

problems

obtaining a sequence of solutions (un) such that Mo < maxun < M. We may suppose

that the un's are extended by zero in ]0,l].

CLAIM. The sequence (un) is equicontinuous.

Let tn e ] (1/n), 1 [ be such that un(tn) — maxun^/n)^]. For any t e [(1/n), l ] , we
have

f
Jt

If 1/n ^ t ^ tn, assumption (7) implies

(24)

where / = max | / | . Since un(tn) ^ MQ we may conclude the existence of I > 0 indepen-
[0,M]

dent of n such that tn ^ I. Then, for any tn ^ t ^ 1, we have, by (3),

(25) KW|
and the claim follows from (24)-(25).

We can therefore take a subsequence (still denoted by (un)) such that un —> u
uniformly and by standard arguments, u is a solution of (l)-(2). Since Mo < max un ^ M
for all n, we conclude that u is nontrivial and Mo < max u ^ M (the case max u = Mo

is excluded by the existence and uniqueness theorem). D

REMARK 5. If we consider the change of variables t = 1 - t' we may restate theorem 1

for a class of functions $ € C^QO, 1[) having a singularity at 1:

Suppose that / satisfies (5)-(6) and:

(1) *(i) > m > 0 Vt € [0,1[,
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(2) <£'/<!> is a decreasing function,

(3) ($(i)/$(s)) ^ K for some K > 0 and every 0 ^ t ^ s < 1,

(4) There exists a nonnegative u € ^(]0,1[) such that

i f $(t)v'(t)2dt < [ *(<)F(«(t)) eft < oo,
^ 7o Jo

where F(v) = / f(s) ds.
Jo

Then Problem (l)-(2) has a positive solution u such that MQ < maxu < ||̂ ||oo-

REMARK 6. Note that the method only requires that / > 0 in [Mo, \\vH^ [ where ||u||oo
is given by (8). The behaviour of / in [HuHocOof is not relevant for our existence-
estimation result.

REFERENCES

[1] Ft. Agarwal, D. ORegan and P. Wong, Positive solutions of differential, difference and
integral equations (Kluwer Academic Publishers, Dordrecht, 1999).

[2] H. Berestycki, P.L. Lions and L.A. Peletier, 'An ODE approach to the existence of positive
solutions for semilinear problems in M^', Indiana Univ. Math. J. 30 (1981), 141-157.

[3] L.E. Bobisud and D. O'Regan, 'Positive solutions for a class of nonlinear singular bound-
ary value problems at resonance', J. Math. Anal. Appl. 184 (1994), 263-284.

[4] D. O'Regan, Solvability of some two point boundary value problems of Dirichlet, Neu-
mann, or periodic type, Dynam. Systems Appl. 2 (1993), 163-182.

[5] D. O'Regan, 'Nonresonance and existence for singular boundary value problems', Non-
linear Anal. 23 (1994), 165-186.

[6] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential
equations, CBMS Reg. Conf. Series in Math. 65 (Amer. Math. Soc, Providence R.I.,
1986).

CMAF-Faculdade de Ciencias da Universidade de Lisboa
Avenida Professor Gama Pinto, 2
1649-003 Lisboa
Portugal
e-mail: zemaria@cii.fc.ul.pt

https://doi.org/10.1017/S0004972700034675 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034675

