
JFP 27, e25, 18 pages, 2017. c© Cambridge University Press 2017

doi:10.1017/S0956796817000181

1

PhD Abstracts

GRAHAM HUTTON

University of Nottingham, UK

(e-mail: graham.hutton@nottingham.ac.uk)

Many students complete PhDs in functional programming each year. As a service

to the community, the Journal of Functional Programming publishes the abstracts

from PhD dissertations completed during the previous year.

The abstracts are made freely available on the JFP website, i.e. not behind any

paywall. They do not require any transfer of copyright, merely a license from the

author. A dissertation is eligible for inclusion if parts of it have or could have

appeared in JFP, that is, if it is in the general area of functional programming. The

abstracts are not reviewed.

We are delighted to publish 12 abstracts in this round and hope that JFP readers

will find many interesting dissertations in this collection that they may not otherwise

have seen. If a student or advisor would like to submit a dissertation abstract for

publication in this series, please contact the series editor for further details.

Graham Hutton

PhD Abstract Editor

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


2 G. Hutton

Formal Dependability Analysis using
Higher-Order-Logic Theorem Proving

WAQAR AHMAD

National University of Sciences and Technology, Pakistan

Date: August 2017; Advisor: Osman Hasan
URL: http://tinyurl.com/ycjdwloe

Dependability is an umbrella concept that subsumes many key properties about

a system, including reliability, maintainability, safety, availability, confidentiality,

and integrity. Various dependability modeling techniques have been developed to

effectively capture the failure characteristics of systems over time. Traditionally,

dependability models are analyzed using paper-and-pencil proof methods and

computer based simulation tools but their results cannot be trusted due to their

inherent inaccuracy limitations. To overcome these limitations, we propose to

leverage upon the recent developments in probabilistic analysis support in higher-

order-logic theorem proving to conduct accurate and rigorous dependability analysis.

This thesis provides a semantic language embedding of the dependability concept

that relies on a theory for probabilistic reasoning to develop a framework for formal

dependability analysis within the sound environment of higher-order-logic theorem

proving.

In this thesis, we mainly focus on the formalization of two widely used dependabil-

ity modeling techniques: (i) Reliability Block Diagrams – a graphical technique used

to determine the reliability of overall system by utilizing the failure characteristics of

individual system components; and (ii) Fault Trees – used for graphically analyzing

the conditions and the factors causing an undesired top event, i.e., a critical event,

which can cause the whole system failure upon its occurrence. In particular, we

present a RBD and FT-based formal dependability analysis framework that has

the ability to accurately and rigorously determine the formal reliability, failure,

availability and unavailability of safety-critical systems with arbitrary number of

components. To illustrate the practical effectiveness of our proposed infrastructure,

we present the formal dependability analysis of several real-world safety-critical

systems, including smart grids, WSN data transport protocols, satellite solar arrays,

virtual data centers, oil and gas pipeline systems and an air traffic management

system using the HOL4 theorem prover.

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


PhD Abstracts 3

Fibred Computational Effects

DANEL AHMAN

University of Edinburgh, UK

Date: September 2017; Advisor: Gordon Plotkin
URL: http://tinyurl.com/y9dofhoy

We study the interplay between dependent types and computational effects, two

important areas of modern programming language research. On the one hand,

dependent types underlie proof assistants such as Coq and functional programming

languages such as Agda, Idris, and F*, providing programmers a means for encoding

detailed specifications of program behaviour using types. On the other hand,

computational effects, such as exceptions, nondeterminism, state, I/O, probability,

etc., are integral to all widely-used programming languages, ranging from imperative

languages, such as C, to functional languages, such as ML and Haskell. Separately,

dependent types and computational effects both come with rigorous mathematical

foundations, dependent types in the effect-free setting and computational effects in

the simply typed setting. Their combination, however, has received much less attention

and no similarly exhaustive theory has been developed. In this thesis we address this

shortcoming by providing a comprehensive treatment of the combination of these

two fields, and demonstrating that they admit a mathematically elegant and natural

combination.

Specifically, we develop a core effectful dependently typed language, eMLTT, based

on Martin-Löf’s intensional type theory and a clear separation between (effect-free)

values and (possibly effectful) computations familiar from simply typed languages

such as Levy’s Call-By-Push-Value and Egger et al.’s Enriched Effect Calculus. A

novel feature of our language is the computational sigma-type, which we use to give

a uniform treatment of type-dependency in sequential composition. In addition,

we define and study a class of category-theoretic models, called fibred adjunction

models, that are suitable for defining a sound and complete interpretation of eMLTT.

Specifically, fibred adjunction models naturally combine standard category-theoretic

models of dependent types (split closed comprehension categories) with those of

computational effects (adjunctions). We discuss and study various examples of these

models, including a domain-theoretic model, so as to extend eMLTT with general

recursion.

We also investigate a dependently typed generalisation of the algebraic treatment

of computational effects by showing how to extend eMLTT with fibred algebraic

effects and their handlers. In particular, we specify fibred algebraic effects using a

dependently typed generalisation of Plotkin and Pretnar’s effect theories, enabling us

to capture precise notions of computation such as state with location-dependent store

types and dependently typed update monads. For handlers, we observe that their

conventional term-level definition leads to unsound program equivalences becoming

derivable in languages that include a notion of homomorphism, such as eMLTT.

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


4 G. Hutton

To solve this problem, we propose a novel type-based treatment of handlers via a

new computation type, the user-defined algebra type, which pairs a value type (the

carrier) with a family of value terms (the operations). This type internalises Plotkin

and Pretnar’s insight that handlers denote algebras for a given equational theory of

computational effects. We demonstrate the generality of our type-based treatment of

handlers by showing that their conventional term-level presentation can be routinely

derived, and that this treatment provides a useful mechanism for reasoning about

effectful computations. Finally, we show that these extensions of eMLTT can be

soundly interpreted in a fibred adjunction model based on the families of sets

fibration and models of Lawvere theories.

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


PhD Abstracts 5

Models of Type Theory with Strict Equality

PAOLO CAPRIOTTI

University of Nottingham, UK

Date: July 2016; Advisor: Venanzio Capretta
URL: http://tinyurl.com/y9s7fwzq

This thesis introduces the idea of two-level type theory, an extension of Martin

Löf type theory that adds a notion of strict equality as an internal primitive.

A type theory with a strict equality alongside the more conventional form of

equality, the latter being of fundamental importance for the recent innovation of

homotopy type theory (HoTT), was first proposed by Voevodsky, and is usually

referred to as HTS.

Here, we generalise and expand this idea, by developing a semantic framework

that gives a systematic account of type formers for two-level systems, and proving a

conservativity result relating back to a conventional type theory like HoTT.

Finally, we show how a two-level theory can be used to provide partial solutions

to open problems in HoTT. In particular, we use it to construct semi-simplicial types,

and lay out the foundations of an internal theory of (∞, 1)-categories.

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


6 G. Hutton

Dependent Pattern Matching and Proof-Relevant Unification

JESPER COCKX

Catholic University of Leuven, Belgium

Date: June 2017; Advisor: Frank Piessens and Dominique Devriese
URL: http://tinyurl.com/yckcbovh

Dependent type theory is a powerful language for writing functional programs

with very precise types. It is used to write not only programs but also mathematical

proofs that these programs satisfy certain properties. Because of this, languages

based on dependent types – such as Coq, Agda, and Idris – are used both as

programming languages and as interactive proof assistants. While dependent types

give strong guarantees about your programs and proofs, they also impose equally

strong requirements on them. This often makes it harder to write programs in a

dependently typed language compared to one with a simpler type system. For this

reason certain techniques have been developed, such as dependent pattern matching

and specialization by unification. These techniques provide an intuitive way to write

programs and proofs in dependently typed languages.

Previously, dependent pattern matching had only been shown to work in a limited

setting. In particular, it relied on the K axiom – also known as the uniqueness of

identity proofs – to remove equations of the form x = x. This axiom is inadmissible

in many type theories, particularly in the new and promising branch known as

homotopy type theory (HoTT). As a result, programs and proofs in these new

theories cannot make use of dependent pattern matching and are as a result much

harder to write, modify, and understand. Additionally, the interaction of dependent

pattern matching with small but practical features such as eta-equality for record

types and postponing of unification constraints was poorly understood, resulting

in subtle bugs and inconsistencies. In this thesis, we develop dependent pattern

matching and unification in a general setting that does not require the K axiom,

both from a theoretical perspective and a practical one. In particular, we present a

proof-relevant unification algorithm, where each unification rule produces evidence

of its correctness. This evidence guarantees that all unification rules are correct by

construction, and also gives a computational characterization to each unification

rule.

To ensure that these techniques are sound and will stay so in face of future

extensions to type theory, we show how to translate them to more basic primitive

constructs, i.e. the standard datatype eliminators. During this translation, we pay

special attention to the computational content of all constructions involved. This

guarantees that the intuitions from regular pattern matching carry over to a

dependently typed setting.

Based on our work, we implemented a complete overhaul of the algorithm for

checking definitions by dependent pattern matching in Agda. Our new implemen-

tation fixes a substantial number of issues in the old implementation, and is at the

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


PhD Abstracts 7

same time less restrictive than the old ad-hoc restrictions. Thus it puts the whole

system back on a strong foundation. In addition, our work has already been used

as the basis for other implementations of dependent pattern matching, such as the

Equations package for Coq and the Lean theorem prover. The work in this thesis

eliminates all implicit assumptions introduced to the type theory by pattern matching

and unification. In the future, we may also want to integrate new principles with

pattern matching, for example the higher inductive types introduced by HoTT. The

framework presented in this thesis also provides a solid basis for such extensions to

be built on.

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


8 G. Hutton

Mechanizing Abstract Interpretation

DAVID DARAIS

University of Maryland, USA

Date: August 2017; Advisor: David Van Horn
URL: http://tinyurl.com/y8pnr8jp

It is important when developing software to verify the absence of undesir-

able behavior such as crashes, bugs and security vulnerabilities. Some settings

require high assurance in verification results, e.g., for embedded software in au-

tomobiles or airplanes. To achieve high assurance in these verification results,

formal methods are used to automatically construct or check proofs of their

correctness. However, achieving high assurance for program analysis results is

challenging, and current methods are ill suited for both complex critical domains and

mainstream use.

To verify the correctness of software we consider program analyzers—automated

tools which detect software defects—and to achieve high assurance in verification

results we consider mechanized verification—a rigorous process for establishing the

correctness of program analyzers via computer-checked proofs.

The key challenges to designing verified program analyzers are: (1) achieving

an analyzer design for a given programming language and correctness property;

(2) achieving an implementation for the design; and (3) achieving a mechanized

verification that the implementation is correct w.r.t. the design. The state of

the art in (1) and (2) is to use abstract interpretation: a guiding mathematical

framework for systematically constructing analyzers directly from programming

language semantics. However, achieving (3) in the presence of abstract interpretation

has remained an open problem since the late 1990’s. Furthermore, even the state-

of-the art which achieves (3) in the absence of abstract interpretation suffers from

the inability to be reused in the presence of new analyzer designs or programming

language features.

First, we solve the open problem which has prevented the combination of

abstract interpretation (and in particular, calculational abstract interpretation)

with mechanized verification, which advances the state of the art in designing,

implementing, and verifying analyzers for critical software. We do this through

a new mathematical framework Constructive Galois Connections which supports

synthesizing specifications for program analyzers, calculating implementations from

these induced specifications, and is amenable to mechanized verification.

Finally, we introduce reusable components for implementing analyzers for a

wide range of designs and semantics. We do this though two new frameworks Galois

Transformers and Definitional Abstract Interpreters. These frameworks tightly couple

analyzer design decisions, implementation fragments, and verification properties into

compositional components which are (target) programming-language independent

and amenable to mechanized verification. Variations in the analysis design are

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


PhD Abstracts 9

then recovered by simply re-assembling the combination of components. Using this

framework, sophisticated program analyzers can be assembled by non-experts, and

the result are guaranteed to be verified by construction.

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


10 G. Hutton

Fully Generic Programming Over
Closed Universes of Inductive-Recursive Types

LARRY DIEHL

Portland State University, USA

Date: June 2017; Advisor: Tim Sheard
URL: http://tinyurl.com/y8e4hbgy

Dependently typed programming languages allow the type system to express arbi-

trary propositions of intuitionistic logic, thanks to the Curry-Howard isomorphism.

Taking full advantage of this type system requires defining more types than usual, in

order to encode logical correctness criteria into the definitions of datatypes. While

an abundance of specialized types helps ensure correctness, it comes at the cost of

needing to redefine common functions for each specialized type.

This dissertation makes an effort to attack the problem of code reuse in depen-

dently typed languages. Our solution is to write generic functions, which can be

applied to any datatype. Such a generic function can be applied to datatypes that

are defined at the time the generic function was written, but they can also be applied

to any datatype that is defined in the future. Our solution builds upon previous

work on generic programming within dependently typed programming.

Type theory supports generic programming using a construction known as a

universe. A universe can be considered the model of a programming language, such

that writing functions over it models writing generic programs in the programming

language. Historically, there has been a trade-off between the expressive power of

the modeled programming language, and the kinds of generic functions that can

be written in it. Our dissertation shows that no such trade-off is necessary, and

that we can write future-proof generic functions in a model of a dependently typed

programming language with a rich collection of types.

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


PhD Abstracts 11

Sequent Calculus:
A Logic and a Language for Computation and Duality

PAUL DOWNEN

University of Oregon, USA

Date: June 2017; Advisor: Zena M. Ariola
URL: http://tinyurl.com/yb8fy94n

Truth and falsehood, questions and answers, construction and deconstruction;

most things come in dual pairs. Duality is a mirror that reveals the new from the old

via opposition. This idea appears pervasively in logic, where duality inverts “true”

with “false” and “and” with “or.” However, even though programming languages

are closely connected to logics, this kind of strong duality is not so apparent in

practice. Sum types (disjoint tagged unions) and product types (structures) are dual

concepts, but in the realm of programming, natural biases obscure their duality.

To better understand the role of duality in programming, we shift our perspective.

Our approach is based on the Curry-Howard isomorphism which says that programs

following a specification are the same as proofs for mathematical theorems. This

thesis explores Gentzen’s sequent calculus, a logic steeped in duality, as a model for

computational duality. By applying the Curry-Howard isomorphism to the sequent

calculus, we get a language that combines dual programming concepts as equal

opposites: data types found in functional languages are dual to co-data types

(interface-based objects) found in object-oriented languages, control flow is dual

to information flow, induction is dual to co-induction. This gives a duality-based

semantics for reasoning about programs via orthogonality: checking safety and

correctness based on a comprehensive test suite.

We use the language of the sequent calculus to apply ideas from logic to issues

relevant to program compilation. The idea of logical polarity reveals a symmetric

basis of primitive programming constructs that can faithfully represent all user-

defined data and co-data types. We reflect the lessons learned back into a core

language for functional languages, at the cost of symmetry, with the relationship

between the sequent calculus and natural deduction. This relationship lets us derive

a pure λ-calculus with user-defined data and co-data which we further extend by

bringing out the implicit control-flow in functional programs. Explicit control-flow

lets us share and name control the same way we share and name data, enabling

a direct representation of join points, which are essential for tractable optimization

and compilation.

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


12 G. Hutton

Higher-Dimensional Types in the Mechanization of Homotopy Theory

KUEN-BANG HOU (FAVONIA)

Carnegie Mellon University, USA

Date: May 2017; Advisor: Robert Harper
URL: http://tinyurl.com/ydas4saa

Mechanized reasoning has proved effective in avoiding serious mistakes in software

and hardware, and yet remains unpopular in the practice of mathematics. My thesis

is aimed at making mechanization easier so that more mathematicians can benefit

from this technology. Particularly, I experimented with higher-dimensional types,

an extension of ordinary types with a hierarchy of stacked relations, and managed

to mechanize many important results from classical homotopy theory in the proof

assistant Agda. My work thus suggests higher-dimensional types may help mechanize

mathematical concepts.

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


PhD Abstracts 13

Web Session Security:
Formal Verification, Client-Side Enforcement and Experimental

Analysis

WILAYAT KHAN

Ca’ Foscari University of Venice, Italy

Date: February 2015; Advisor: Michele Bugliesi
URL: http://tinyurl.com/y8fds8bk

Web applications are the dominant means to provide access to millions of on-line

services and applications such as banking and e-commerce. To personalize users

web experience, servers need to authenticate the users and then maintain their

authentication state throughout a set of related HTTP requests and responses called

a web session. As HTTP is a stateless protocol, the common approach, used by most

of the web applications to maintain web session, is to use HTTP cookies. Each

request belonging to a web session is authenticated by having the web browser to

provide to the server a unique long random string, known as session identifier stored

as cookie called session cookie. Taking over the session identifier gives full control

over to the attacker and hence is an attractive target of the attacker to attack on

the confidentiality and integrity of web sessions. The browser should take care of

the web session security: a session cookie belonging to one source should not be

corrupted or stolen or forced, to be sent with the requests, by any other source.

This dissertation demonstrates that security policies can in fact be written down

for both, confidentiality and integrity, of web sessions and enforced at the client side

without getting any support from the servers and without breaking too many web

applications. Moreover, the enforcement mechanisms designed can be proved correct

within mathematical models of the web browsers. These claims are supported in this

dissertation by 1) defining both, end-to-end and access control,security policies to

protect web sessions; 2) introducing a new and using exiting mathematical models of

the web browser extended with confidentiality and integrity security policies for web

sessions; 3) offering mathematical proofs that the security mechanisms do enforce

the security policies; and 4) designing and developing prototype browser extensions

to test that real-life web applications are supported.

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


14 G. Hutton

Streaming for Functional Data-Parallel Languages

FREDERIK MEISNER MADSEN

University of Copenhagen, Denmark

Date: September 2016; Advisor: Andrzej Filinski
URL: http://tinyurl.com/yddxykgw

In this thesis, we investigate streaming as a general solution to the space

inefficiency commonly found in functional data-parallel programming languages.

The data-parallel paradigm maps well to parallel SIMD-style hardware. However,

the traditional fully materializing execution strategy, and the limited memory in these

architectures, severely constrains the data sets that can be processed. Moreover, the

language-integrated cost semantics for nested data parallelism pioneered by NESL

depends on a parallelism- flattening execution strategy that only exacerbates the

problem. This is because flattening necessitates all sub-computations to materialize

at the same time. For example, naive n by n matrix multiplication requires n3 space

in NESL because the algorithm contains n3 independent scalar multiplications. For

large values of n, this is completely unacceptable.

We address the problem by extending two existing data-parallel languages: NESL

and Accelerate. In the extensions we map bulk operations to data-parallel streams

that can evaluate fully sequential, fully parallel or anything in between. By a dataflow,

piecewise parallel execution strategy, the runtime system can adjust to any target

machine without any changes in the specification. We expose streams as sequences

in the frontend languages to provide the programmer with high-level information

and control over streamable and non-streamable computations. In particular, we

can extend NESLs intuitive and high-level workdepth model for time complexity

with similarly intuitive and high-level model for space complexity that guarantees

streamability.

Our implementations are backed by empirical evidence. For Streaming Accelerate

we demonstrate performance on par with Accelerate without streams for a series

of benchmark including the PageRank algorithm and a MD5 dictionary attack

algorithm. For Streaming NESL we show that for several examples of simple, but

not trivially parallelizable, text-processing tasks, we obtain single-core performance

on par with off-the-shelf GNU Coreutils code, and near-linear speedups for multiple

cores.

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


PhD Abstracts 15

Reasonably Programmable Syntax

CYRUS OMAR

Carnegie Mellon University, USA

Date: May 2017; Advisor: Jonathan Aldrich
URL: http://tinyurl.com/y7aoqcrt

Programming languages commonly provide “syntactic sugar” that decreases the

syntactic cost of working with certain standard library constructs. For example,

Standard ML builds in syntactic sugar for constructing and pattern matching on lists.

Third-party library providers are, justifiably, envious of this special arrangement.

After all, it is not difficult to find other situations where library-specific syntactic

sugar might be useful. For example, (1) clients of a “collections” library might like

syntactic sugar for finite sets and dictionaries; (2) clients of a “web programming”

library might like syntactic sugar for HTML and JSON values; (3) a compiler

writer might like syntactic sugar for the terms of the object language or various

intermediate languages of interest; and (4) clients of a chemistry library might like

syntactic sugar for chemical structures based on the SMILES standard.

Defining a “library-specific” syntax dialect in each of these situations is prob-

lematic, because library clients cannot combine dialects like these in a manner that

conserves syntactic determinism (i.e. syntactic conflicts can and do arise.) Moreover,

it can become difficult for library clients to reason abstractly about types and

binding when examining the text of a program that uses unfamiliar forms. Instead,

they must reason transparently, about the underlying expansion. Typed, hygienic

term-rewriting macro systems, like Scalas macro system, while somewhat more

reasonable, offer limited syntactic control.

This thesis formally introduces typed literal macros (TLMs), which give library

providers the ability to programmatically control the parsing and expansion, at

“compile-time”, of expressions and patterns of generalized literal form. Library clients

can use any combination of TLMs in a program without needing to consider the

possibility of syntactic conflicts between them, because the context-free syntax of

the language is never extended (instead, literal forms are contextually repurposed.)

Moreover, the language validates each expansion that a TLM generates in order to

maintain useful abstract reasoning principles. Most notably, expansion validation

maintains:

• a type discipline, meaning that the client can reason about types while holding

the literal expansion abstract; and

• a strictly hygienic binding discipline, meaning that the client can always be sure

that:

1. spliced terms, i.e. terms that appear within literal bodies, cannot capture

bindings hidden within the literal expansion; and

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


16 G. Hutton

2. the literal expansion does not refer to definition-site or applicationsite

bindings directly. Instead, all interactions with bindings external to the

expansion go explicitly through spliced terms or parameters.

In short, we formally define a programming language in the ML tradition with a

reasonably programmable syntax.

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


PhD Abstracts 17

A Type-Theoretical Study of Non-Termination

NICCOLÒ VELTRI

Tallinn University of Technology, Estonia

Date: May 2017; Advisor: Tarmo Uustalu and James Chapman
URL: http://tinyurl.com/y82dmtk9

In this thesis, we continue the study of Capretta’s coinductive delay monad

in Martin-Löf type theory. The delay monad constitutes a viable constructive

alternative to the maybe monad and allows the implementation of possibly non-

terminating computations. Its applications range from the representation of general

recursive functions to the formalization of domain theory, from the operational

semantics for While languages to normalization by evaluation.

In all these applications, one is only interested in the terminating/non-terminating

behavior of a computation, and not in its rate of convergence. This is equivalent

to working with the delay datatype quotiented by weak bisimilarity. Our first main

result is the discovery that the delay datatype quotiented by weak bisimilarity does

not inherit the monad structure immediately. This has to do with the coinductive

nature of the delay datatype and the bad interaction between inductive-like quotients

in the style of Hofmann and infinitary types such as non-wellfounded trees. In order

to construct a monad structure on the delay type, we need to postulate additional

classical or semi-classical principles, such as the limited principle of omniscience

or a certain weak version of the axiom of countable choice. These principles are

also necessary for proving that the quotiented delay monad delivers free ω-complete

pointed partial orders.

We can say that the quotiented delay monad is an useful tool for modeling

partiality as an effect in type theory. Our second main result is to make the latter

statement rigorous. We introduce a class of monads for encoding non-termination

as an effect. A monad in this class is named a ω-complete pointed classifying

monad, which formally is a monad whose Kleisli category is a restriction category

à la Cockett and Lack, which moreover is ωCPPO-enriched with respect to the

restriction order and in which pure maps are total. We show that the quotiented

delay monad is the initial ω-complete pointed classifying monad in type theory. This

universal property singles it out from among other examples of such monads, for

examples from other partial map classifiers specified in terms of countably-complete

dominances.

From a more general point of view, we ask ourselves whether type-theoretical

approaches to partiality could possibly benefit from category-theoretical ones.

Although we do not have a complete answer to this question yet, we present the

first steps in this direction. Our last main result consists of an Agda formalization of

the first chapters of the theory of Cockett and Lack’s restriction categories. Notably,

it includes the proof of their completeness with respect to partial map categories,

the latter being the standard generalization of sets and partial functions to more

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181


18 G. Hutton

general categories. We hope that our development can become the cornerstone of

a flexible framework for partiality in dependently typed programming languages,

allowing one to program and reason about partial functions on different levels of

abstraction.

https://doi.org/10.1017/S0956796817000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000181

