
THE SCHWARZIAN DERIVATIVE AND DISCONJUGACY 
OF nth ORDER LINEAR DIFFERENTIAL EQUATIONS 

MEIRA LAVIE* 

1. Introduction. In this paper we deal with the number of zeros of a 
solution of the nth order linear differential equation 

(1.1) y™(z) + Pn-2(z)y<»-»(z) + . . . + p,(z)y(z) = 0, n = 2, 3, . . . , 

where the functions pj(z) (j = 0, 1, . . . , n — 2) are assumed to be regular 
in a given domain D of the complex plane. The differential equation (1.1) is 
called disconjugate in D, if no (non-trivial) solution of (1.1) has more than 
(n — 1) zeros in D. (The zeros are counted by their multiplicity.) 

The ideas of this paper are related to those of Nehari (7; 9) on second order 
differential equations. In (7), he pointed out the following basic relationship. 
The function 

<'-2> >«-£§• 
where yi(z) and y2(2) are two linearly independent solutions of 

(1.3) y"(z)+p(z)y(z) =0, 

is univalent in D, if and only if no solution of equation (1.3) has more than one 
zero in D, i.e., if and only if (1.3) is disconjugate in D. 

The coefficient p(z) of (1.3) is expressed in terms of the function (1.2) by 
the identity 

(1.4) 2p(z) = {f,z), 

where {/, z) denotes the Schwarzian derivative of f(z) with respect to z, 
namely 

( L 5 ) l ; , 2 i ~7(*) ~2\f\z)J-
It is well known that the Schwarzian derivative (1.5) is invariant under a 
linear transformation 

(1.6) 7 ? = = Ç M ^ § • AD-BC*0. 

Thus, (1.4) is independent of our choice of the solutions yi(z) and y 2 (z) in (1.2). 
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236 MEIRA LA VIE 

By making use of the duality relationship between disconjugacy of (1.3) 
and univalence of (1.2) (for the necessary condition), and of an integral 
inequality (for the sufficient condition), Nehari proved the following theorem 
(7, Theorem 1), which we state here as a disconjugacy criteria. In order that 
equation (1.3) be disconjugate in \z\ < 1, it is necessary that 

(1.7) \p{z)\^j~^y, H < 1 , 

and sufficient that 

(i-8) IM*)|£ (Ti^py5 ' | z i < L 

Both conditions are sharp as shown by the Koebe function and by an example 
due to Hille (6). 

2. (n — 2) parameter family of univalent functions. Our study of 
equation (1.1) starts with a problem suggested to us by Nehari. In view of 
(7; 9), what are, if any, the function-theoretic aspects of disconjugacy of 
wth order linear differential equations? In the following, we shall prove that a 
disconjugate equation (1.1) is related to an (n — 2) parameter family of 
univalent functions. 

In analogy with (1.2), we consider the function 

(2.1) f(z, au a2, . . . , a,_2) = 2 l g l y 

where yi(z) and y2(z) are two linearly independent solutions of (1.1), which 
vanish on a given set 5 of (n — 2) points ai, a2, . . . , aw_2 of D. (Some of these 
zeros may coincide, giving rise to zeros of higher order.) The existence of at 
least two such linear independent solutions is an immediate consequence of 
the existence of a fundamental set of n linearly independent solutions 
171(3), 772(2), • . . , Vn(z) of equation (1.1). Indeed, setting now, 

n 

y(z) = £ akrik(z)t 
k = l 

and writing 

(2.2) y{as) = 0, j = 1, 2, . . . , (n - 2), 

one obtains a system of (n — 2) homogeneous equations for the n unknown 
constants ak, and there always exist at least two linearly independent solutions 
of (2.2). In case of a zero of higher order, e.g., 

#i = a2 = . . . = am, 1 < m ^ n — 2, 
(2.2) is replaced by 

y {ax) = 0, / (ax) = 0, . . . , y^fai) = 0, y(am+1) = 0, . . . 9y(a^2) = 0, 

and the same conclusion follows. Moreover, if m = n — 2, then there exist 
exactly two linearly independent solutions which vanish (n — 2) times at the 
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point ai £ 2); however, for 1 ^ m < n — 2 it does not follow from the 
general existence theorem that any three solutions of (1.1) which vanish on a 
set of (n — 2) points are linearly dependent. In the following lemma we give 
two sufficient conditions which guarantee such a situation. 

LEMMA 1. / / there exist more than two linearly independent solutions of equation 
(1.1), which vanish on the set S of (n — 2) points of D, then equation (1.1) is 
conjugate in D and at least one of the functions of the type (2.1) is non-univalent 
in D. 

Proof. Assume that there exist three linearly independent solutions yi (z)> 
y2(s), and 3/3(2), which vanish on S. Let 6 £ D, such that 3/2(6) ^ 0, and set 

y*(z) = «13/1(2) + a*y2(z) + «33^3(2), y*(b) = 0,y*'(b) = 0. 

I t follows that there always exists a non-trivial solution 3/* (2) which vanishes 
at least n times in D. Moreover, y*(z)/y2(z)y which is a function of the type 
(2.1) is non-univalent in D. 

We are now ready to formulate the connection between the function (2.1) 
and the equation (1.1). 

THEOREM 1. Equation (1.1) is disconjugate in D if and only if all the functions 
of the type (2.1) are univalent in D; i.e., if and only if the ratio of any two linearly 
independent solutions, which vanish at (n — 2) points of D, is univalent in D. 

Proof, (i) Disconjugacy implies univalence. If jf(6i) = f(b2) = — /far1, it 
follows from (2.1) that the solution «3/1(2) + £3/2(2) has n zeros in D at the 
points ai, a2, . . . , an-2l 61, 62, and (1.1) is conjugate in D. 

(ii) Univalence implies disconjugacy. Suppose that there exists a solution 
yi(z) which vanishes at ai, a2, . . . , an. There always exists a solution 3/2(2) 
which vanishes at ai, #2, . . . , aw_2and is linearly independent of yi(z). Now, if 

(2.3) y*{a*-i) * 0, y2(an) * 0, 

then the function (2.1) is non-univalent in D. Thus, suppose that (2.3) is false 
and denote by 2 the set of common zeros of yi(z) and 3/2(2). We may assume, 
without loss of generality, that an-i Ç S. Let now b Ç D, such that H 2. 
There exists a solution 3/3(2) = «13/1(2) + «23/2(2), which vanishes at b and 
at all the points of S. Moreover, there exists another solution 3/4(2) which 
vanishes at b and at &i, . . . , an_3 and is linearly independent of 3/3(2). Now, 
3/4(0*1-2) 5e 0, yA(an-i) 9^ 0 since, suppose that 3/4(<2re_2) = 0, then by Lemma 1 
it follows from the univalence of all the functions of the type (2.1), that 3/4(2) 
is a linear combination of 3/1(2) and 3/2(2); i.e., 3/4(2) = 1813/1(2) + 1823/.2(2). 
However, since 3/3(2) and 3/4(2) are linearly independent and since 3/3(6) = 0 
and 3/4(6) = 0, it follows that 3/1(6) = 3/2(6) = 0, which contradicts our 
assumption that & $ S. Therefore, 3/4(2) does not vanish at aw_2 nor at aw_i. 
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Considering now the function 

(2.4) f(z,ah...,an-s,b)=^, 

we obtain that (2.4) is non-univalent in D. 

3. Quantities invariant under linear transformations. Our next goal 
is to express the coefficients of (1.1) in terms of the function (2.1). Replace
ment of the solutions yi(z) and y2(z) in (2.1) by the linearly independent 
solutionsyz(z) = Ayx(z) + By2(z) and^4(s) = Cy\{z) + Dy2(z), respectively, 
would have resulted in a function Tf, where T is of the type (1.6). Hence, any 
identity connecting the coefficients of equation (1.1) with the function (2.1) 
should be expressed by quantities invariant under the transformation (1.6). 
The simplest quantity of this type is the Schwarzian derivative 

{6A) ${Z) f'(z) 2 \ / ' (^) / • 
Other invariant quantities may be obtained by differentiating (3.1) and by 
producing various combinations of s(z) and its derivatives. But, basically, 
all these invariant quantities are derived from s(z). A different way of obtain
ing invariant quantities is by expanding the function 

lW m— 
/(» + f) - / ( f ) 

into a power series of the form 

(3.2) g{*)=\+ Ê IMW. 
j=0 

I t is easily checked that the coefficients Ijlf(£)] (J' = 1, 2, . . .) are invariant 
under a linear transformation (1.6). Examination of the first coefficients 
shows that 

(3.3) 7l[/(f)] = _i[C_|(ry] = _£|) 
and 

(3.4) I2[fG-)] - - i [Ç - ^ + 3(C)3] = - ^ . 

While for Ij{f(£)] (J = 2, 3, . . .) we have, by a recent result due to Ahronov 
(1), that the following recursion formula holds: 

(3.5) (i + 3 ) I m [ f ( f ) ] = I/[/G-)] - g /* t f ( f ) ]W/G-) ] , j = 1, 2 , . . . . 

In view of (3.3), it now follows from (3.5) that all the invariants 
Ij\f] U = 1» 2, . . .) are also derived from (3.1). This information raises the 
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question of whether there exists (at all) an invariant quantity which is not 
derived from the Schwarzian derivative s(z). In the following theorem we 
answer this question in the negative, provided the function/(s) is meromorphic 
in D, with at most simple poles, and such tha t / ' ( s ) ^ 0. We shall say that 
such functions belong to the restricted class in D (see 10), and denote the class 
by RC(D). Evidently, for/(z) 6 RC(£>), (3.1) is a regular function. 

THEOREM 2. Let f(z) Ç RC(£>) and let 

(3.6) E[f(z)] = E[f(z)J'(z), . . . ,/<»>(*)] = I(z) 

be a differential operator of order n, operating on f{z). If (3.6) is invariant whenf 
is subject to a linear transformation (1.6), namely, if 

(3.7) E[Tf(z)] = £[/(*)] = !(*), z € D, 

then I(z) is derived from s(z)} and E[f(z)] is identical to a differential operator of 
order (n — 3), operating on s(z), i.e., 

(3.8) I(z) = E[f(z)] = £*[*(*)] = E*[s(z), s'(z) *o-»(*)]. 

Proof. Let Zo G D. We may assume without loss of generality that 

(3.9) /(so) = 0, /'(so) = 1, /"(*,) = 0. 

Since, if (3.9) is not true and /(*<,) = a,f'M = P 9* 0, and f"(z0) = 2 7 , 
then the function 

F W ° V + 7[f(«) - «]' ^ ~ > 
satisfies (3.9), and by (3.7) we have that E[F(z)] = £[/(*)]. If a = œ, then 
apply first a transformation /—>/ _ 1 and then proceed as before. Setting 
z = so in (3.1) and (3.4), it follows by (3.9) that 

(3.10) s(*o) =/ ' " (so) 

and 

(3.11) 5'(so) = / ( 4 ) ( s 0 ) . 

By differentiation of (3.4) and by induction we obtain 

« ^ <->/ N /(W+3)(S) , PW +2[f ( m + 2 )(S) , . . . , f(2)] _ . _ 
(3.12) s ( z ) = — ; T — — H - , +2 , m = 0 , 1 , 2 , . . . , 

where Pm+2 is a homogeneous polynomial of order (m + 2), in which the highest 
degree of/'(2) is m. Using (3.9), it follows from (3.10), (3.11), and (3.12) that 

(3.13) s<»>(a0) =/<m+3)(z„) 

+ P M + 2 [ / ( W + 2 ) ( 2 O ) , • • • ,/<5>(zo),s'(zo), 5(*o), 0, 1], m = 2, 3 

By elimination and induction, (3.13) implies that 

(3.14) /<*>(*„) = *<*-»(*„) + Q w [ s<*-«(*o) , . . . . 5(*o)], k = 3, 4 , . . . , 
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where Qk-i (k = 5, 6, . . .) is a polynomial of order (k — 1), free of terms of 
orders 0 and 1, and Q2 = Qz = 0. Insertion of (3.9) and (3.14) in (3.6) yields 

(3.15) J(*0) = E[0, 1, 0, s(zo), s'(zo),fW(z0), . . . ,/(w)(*o)] = 

E*[s(z0), s>(zo), . . . , si"-»(zo)]. 

As (3.15) holds for every z0 G D, it implies the identity (3.8). 

4. Relations between the coefficients of (1.1) and the Schwarzian 
derivative. If equation (1.1) is disconjugate in D, then, by Theorems 1 and 2, 
any connection between the coefficients of (1.1) and the function (2.1) has 
to be expressed in terms of the Schwarzian derivative of (2.1). However, when 
(1.1) is conjugate in D, (2.1) may or may not belong to RC(D) and Theorem 2 
may not be applied. To take care of this problem, we replace the (n — 2)-
parameter family of functions (2.1) by a one-parameter subfamily of functions 
f(z, a) defined by 

<4.i) >*•>-£«' 
where yi(z) and 3̂ 2(2) are linearly independent solutions of (1.1), which vanish 
(n — 2) times at the point a Ç D. Now, even if (1.1) is conjugate in D, we 
have that 

and f(z,a) Ç RC(iV(a)), where N(a) is some neighbourhood in D of the 
point a. If 

(4.2) s(z, a) = {f(z,a),z} 

and 

*Wb, a) -£*&£, , = 1,2,..., 

it follows that s(z, a) and s<r)(z, a) are regular functions in N(a). We are now 
ready to establish a relation between some of the coefficients of (1.1) and the 
derivatives of s(z, a). 

THEOREM 3. Assume that 

(4 .3 ) Pn^{z) s 0, Pn-Z{z) s 0, . . . , />»-*+! (*) = 0, £„ -* (* ) fà 0, 

2 S k g », 

where pj(z) (J = 0, 1, . . . , » — 2) are /Ae coefficients of equation (1.1). TTze» 

(4.4) *(a, a) = 0, *'(a, a) = 0, . . . , *<*-«(af a) = 0, 3 g £ ^ », 

a»d 

(4 '5) P-M = t ( t + + l ) U n - 2 ) ! ^ (a ' a ) ' 2 = * = " 
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Proof. Let y\{z) and y2(2) be two solutions of (1.1) which satisfy the follow
ing initial conditions. 

(4.6) yi(a) = 0,yi'(a) = 0, . . . ^ ^ ( a ) = ( ^ - « ( a ) = (» - 1)!, 

(4.7) y2(a) = 0, y J (a) = 0, . . . , 3>2^-3>(a) = 0, 

3,2(«-2)(a) = (n _ 2)!,y2
(^-1)(a) = 0. 

By (1.1), (4.3), and (4.6), it follows that 

(4.8) yx(z) = (z - a)n~l[l + a{z - a)k + . . .], 2 ̂  & ̂  », 

with 

a<» _ yi^"'^) pn-,{a)y,in-l\a) _ pn.k(a)(n - 1)1 
^ J a (n + k-l)l (n + k-l)\ (* + * - l ) ! ' 

and in a similar way, 

(4.10) y2(z) = (z - a)n-*[l + ${z - a)k + . . .], 2 ̂  k ̂  », 

with 

f 4 i n * - _ ^ * ( a ) ( n - 2 ) ! 

By inserting (4.8) and (4.10) in (4.1) we obtain 

(4.12) /(a, a) = (s - a)[l + (a - 0)(s - a)* + . . .], 2 ̂  k ̂  n. 

Hence, 

(4.13) / (a , a) = 0, / ' (a , a) = 1, / " (a , a) = 0, . . . , / « ( a , a) = 0, 

/(H-i>(a, a) = (* + l)!(a - 0), 2 :g fe g ». 

By (4.13) it follows from (3.12) that 

$<m>(a, a) =/<w+a>(a, a), m = 0, 1, 2, . . . , (k - 2), 2 ̂  jfe ^ », 

which implies (4.4) and (4.5). 
Since any solution of (1.1), which has a zero of order (» — 2) at the point a, 

is a linear combination of the two particular solutions (4.8) and (4.10), a 
different choice of the two solutions in (4.1) would replace/ by Tf, where T 
is of the form (1.6). However, s(z, a) and s(T)(z, a) are invariant under the 
transformation (1.6) ; hence, (4.4) and (4.5) hold for any choice of the 
solutions yi(z) and y2(z) regardless of the initial conditions (4.6) and (4.7). 

Remark. If for » = 2, (4.1) is interpreted as (1.2), then (4.5) implies the 
known relation (1.4). 
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5. Linear transformations of equation (1.1). We shall now use (4.4) 
and (4.5) in order to study the result of a linear transformation 

(5.1) z = ^qr|> AD-BC^O, 

upon the differential equation (1.1). We start by considering the effect of 
(5.1) on s(z, a). 

Suppose that z = z(Ç) is a one-to-one analytic transformation which maps 
the domain A onto D and a 6 A to a Ç D, then 

(5.2) f(z,a) = / [ s ( f ) ,a ] = * ( f , a ) . 

The Schwarzian derivative when subject to a transformation z = 2(f) obeys 
the following rule, namely, 

'• a)W (5.3) ff(f,«) = j ( « , a ) y + {«GO, fl, 
where 

o-(f.a) = {*(r ,a) . r} , 5(z, a) = {/(z, a ) ,z} . 

If z(f ) is of the form (5.1), then {z(f ), f} s 0, and 

(5.3)' ^( f ,a) = 5 ( z , a ) ( ^ ) 2 . 

By (5.3)', we have that s(a, a) — 0 if and only if a (a, a) = 0. Differentiation 
of (5.3)' with respect to f yields 

(5.4) <r'(f(«) = / ( z , a ) ( | ) 3 + 2 , ( z , a ) | | | . 

Suppose that 5 (a, a) = 0, then 

or'(a, a) = 5'(a, a) (^~j 

and s'(a, a) = 0 if and only if </(a, a) = 0. By successive differentiation of 
(5.3)' and by assuming (4.4), we obtain 

a(a, a) = 0, <r'(a, a) = 0, . . . , a(k~d) (at a) = 0, 3 g ife ^ w, 

( 5 ' 5 ) a™ («, a) = s™ (a, a) ( | ) * | ^ 2 £ * g », 

which can be rewritten as 

r = 0, 1,2, . . . , £ - 2. » — " " < . . « ) d ) ' + ! (5.6) „ " ' ( « , « ) - s " ' ( u 

Formula (5.6) provides us now with a deeper understanding of the mechanism 
which determines the form into which equation (1.1) is transformed when 
subject to a linear transformation (5.1). We now give a new proof to two 
theorems stated by Hadass for the case k = n\ see (5, Theorems 1 and 2). 
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THEOREM 4. Equation (1.1) with the additional assumption (4.3) is trans
formed by a one-to-one transformation 

(5.7) z = 2(f) , a/(f) = y[a(f)]r(f), r(f) * 0, 

in/0 an equation of the same form, namely, 

(5.8) «<"»(?) + Sn-2(r)w<B-2)(f) + . . . + <ZoGXf) = 0, 

(5.9) 

?«-2(f) = 0 , . . . , g-B-t+iCf) = 0, 

dz gn_,(r) = ^_J2(r)]( | )*, 2^k^n, 

if and only if z(£) is of the form (5.1). 

Proof. Substitution of z = s(f) and co(f) = y[z(f)] in (1.1) leads us to 

WW(f) + J^iO-JcoC-DCf) + . . . + 2?o(f)«(f) = 0. 

I t is well known that the coefficient of co(w_1)(f) can be removed by a suitable 
choice of the function r(f) in (5.7). Indeed, by setting 

-(f) =4-/^4 
one obtains equation (5.8). Thus, what we really have to prove is that (4.3) 
implies (5.9), if and only if z(f) is linear. Let yi(z) and y 2(2) be linearly 
independent solutions of (1.1) possessing zeros of order (n — 2) at a £ D; 
then ^ i ( f ) = 3>i[3(f)]rG") and ?e/2(f) = ^fcGOMf) are independent solutions 
of (5.8) with zeros of order (n — 2) at the pointa (z(a) = a), and 

(5 '10) ^ ô ) - ^Rf)] " / [ s ( r ) ' a] ~ * ( r ' a ) 

holds. 
Suppose now that s(f) is of the type (5.1). By Theorem 3, (4.3) implies 

(4.4) and (4.5) which imply (5.6). In view of (5.10), we may apply (4.5) to 
the coefficients gn_2(f), . . . , qn-k(Ç) of (5-8), and by (5.6), we obtain (5.9). 
Conversely, assume that 2(f) is not linear; then {z(f), f} ^ 0, i.e., there exists 
a point a £ A, such that {2(f), f}|r=« ^ 0. For 3 ^ k ^ n, it now follows 
from (5.3) and (4.4) that<r(a, a) 9e 0 which, by (4.5), implies that qn-2(a) 9^ 0. 
For k = 2, it is trivial that (5.3) implies (5.9) if and only if z(f) is a linear 
transformation. 

Remark. As noted by Hadass, the necessary condition goes back to a theorem 
by Wilczynski (11). 

6. Necessary condition for disconjugacy in the unit disk. We shall 
now use the results of Theorems 1, 3, and 4 to obtain a necessary condition for 
disconjugacy of equation (1.1) in the unit disk. 
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THEOREM 5. Let the coefficients of (1.1) be regular for \z\ < 1 and satisfy (4.3) 
there, and let equation (1.1) be disconjugate in the unit disk; then 

(6.1) \Pn-k(z)\ è ^ ( J - ^ i V - N 2 ) * ' 'Zi < h 2 ~ k ~ "' 
Proof. By Theorem 1, disconjugacy of (1.1) implies univalence of the func

tion (2.1). In particular, the function (4.1) is univalent in the unit disk for 
any \a\ < 1. Setting a = 0 in (4.1) and choosing yi(z) and ^ ( s ) as in (4.6) and 
(4.7), we obtain by (4.12) 

(4.12)' /(*, 0) = z + (a - (3)zk+1 + . . . , 2 ^ k ^ n, 

where a and 0 are given by (4.9) and (4.11). However, for the univalent 
function (4.12)' we may apply the known inequality (see 3; 4), 

(6.2) \a - 0| ^ 2/k, 

and equality holds in (6.2) if and only if 

(6.3) /(*, 0) = T 4oT27*, 0 S S < 2TT. 
(1 — e z ) 

By (4.9) and (4.11) it follows from (6.2) that 

(6.4) | /^(0)| ^ ^ H ^ 1 • 2 = k = n> 

which establishes (6.1) for z = 0. In order to prove (6.1) for any \z\ < 1, we 
apply a linear transformation 

(6-5) 2 = i r l ' W<1> 
which maps |f| < 1 onto \z\ < 1. By Theorem 4, equation (1.1) is transformed 
into equation (5.8), and by (5.9) 

(6.6) g_*(0) = Pn-*<fi)(j$ 

Since disconjugacy is preserved by the transformation (5.7), which in our case 
means that (1.1) is disconjugate in the unit circle if and only if (5.8) is, we 
may apply (6.4) to qn-k(0). Using the fact that for transformations of the unit 
circle on itself, 

\dz\ 

r=o 

(6.7) 
d? 

\z\ 
l - I f l 2 

holds, we obtain (6.1). 
In view of (3.14) and (5.6), it is possible to state Theorem 5 also as a 

necessary condition for univalence of f(z) in \z\ < 1. 
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THEOREM 5'. Assume that f(z) is univalent for \z\ < 1 and let s(z) = {/(z), z). 
Suppose that 

s(a) = sf(a) = . . . = s<m-»(a) = 0, \a\ < 1; 
then 

7. The equation y®m) + py = 0. For k = n = 2, (6.1) reduces to (1.7) 
which is the necessary condition given by Nehari for the disconjugacy of 
equation (1.3). The natural question to be asked next is whether it is possible 
to establish a sufficient condition for disconjugacy, which will generalize the 
sufficient condition (1.8). (Sufficient conditions of different type were given by 
Nehari in (8).) I t is obvious that the easiest case to handle is that of the 
equation 

(7.1) ?<»>(*) +p(z)y(z) = 0, 

where we have only one coefficient. For (7.1) we have the following conjecture. 

CONJECTURE. Assume that p(z) is regular in \z\ < 1. In order that (7.1) be 
disconjugate in \z\ < 1, it is sufficient that 

(7.2) l^) l^(rq| j - W<i. 
with a suitable constant 0 < A (n) S 2(2n — l)\/n2(n — 2)!. 

Unfortunately, we have not succeeded in proving this conjecture nor in 
disproving it. Yet, weaker results partially supporting (7.2) were obtained for 
equations of even order 

(7.3) y<aw>(s) + P(z)y(z) = 0 , m = 1, 2, 

In the following theorem we prove that a condition of the type (7.2) guaran
tees the non-existence of a solution of equation (7.3) possessing two zeros of 
order m. 

THEOREM 6. Assume that p(z) is regular in \z\ < 1 and satisfies 

(7.4) \p(z)\£ d ^ f f i ) * » . W < 1 -

where 
m 

(7.5) 5(2) = 1, 5(4) = 9, B(2m) = 9 ] 1 (4* - 3), m = 3 , 4 , . . . ; 

then no solution of (7.3) has two zeros, of order m in \z\ < 1. 

To prove Theorem 6 we need an integral inequality, which will be established 
in the following lemma. 
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LEMMA 2. Let U(x) be a real function with m continuous derivatives in the 
interval [ — 1, 1], possessing zeros of order m at the points x — dbl; then 

(7.6) J [U(m)(x)]2dx > B(2m) J *+1 P+1 [U(x)]2dx 
(1 - x2)2n m = 1 , 2 , . . . , 

where B(2m) are constants defined in (7.5). 

Proof. (7.6) was proved for m = 1 by Nehari (7). By a slight change in 
Nehari's proof we first establish the following inequality 

for the real continuous function V(x) with zeros of order k at ± 1 . Expansion 
and integration by parts of the trivial inequality 

12 

a 
V'(x) . yxV(x) 

+ .a -xY ' (i -xy 
leads us to 

dx ^ 0 

f+1 [ F ' ( * ) ] 2 ^ f + 1 1 + (4k - 3 - y)x2
 2 

J_x (1 - XT"' ~ J J - i (1 - x2)25 [ P ( X ) ] rfx' * = L 2. • • • • 

Setting now y = 4k — 3, (7.7) follows. Equality may hold in (7.7) if and only 
if 

(7.8) V(x) = C(l - x2)2*-3/2, k = 1, 2, 

For fe = 1, (7.8) does not satisfy our hypotheses; thus, equality in (7.7) is 
excluded; however, for k = 2, 3, . . . , equality may hold in (7.7). Applying 
(7.7) successively to the functions V(x) = U{m-l) (x) (k = 1), V(x) = 
U^Kx) (k = 2), . . . , V(x) = U'{x) (k = m - 1), we obtain 

1 • 5 • 9 • . . . (4m - 3) J 
+ 1 [U(x)f 

(1 - x2)2m 

Hence 

dx. 

(7.9) f+ [U{m)(x)fdx> ft ( 4 * - 3 ) r ' ^ ^ l L d x . 

Now, (7.9) differs from (7.6) only by a constant. To prove (7.6) one has to use 
Beesack's inequality (2, p. 494), 

(7.io) £\v"(x)]2dx > 9j_7 [
(7- ]Iy' 

which holds for the real function V(x) with two continuous derivatives in the 
interval [—1, 1], possessing zeros of second order at ± 1 . Beesack mentioned 
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that for V(x) = C(l — x2)3/2, both sides of (7.10) are +00. However, 
since (1 — x2)3/2 does not satisfy our hypotheses, (7.10) always holds for the 
class of functions defined above. Applying (7.10) to V{x) — [7(w~2)(x) we 
obtain 

[U(m) (x)]2dx>9 ±~ W- dx. 
-1 «/- l (I — X ) 

Proceeding now as before by applying (7.7) successively, (7.6) follows. 

Remark. By substituting px for x in (7.6) we obtain a modified form of 
inequality (7.6), 

(7.6)' P [U{m){x)fdx > B(2m)p2m f }H(x)]\%, m = 1, 2, . . . , 
J-P J-p (p — x ) 

which holds for the real function U(x) with m continuous derivatives in the 
interval [ — p,p], possessing zeros of order m a t d=p. 

Proof of Theorem 6. Suppose that the theorem is false and that there exists 
a solution y(z) with two zeros Z\ and z2 (|zi|, |s2| < 1) each of multiplicity m. 
By a suitable choice of the parameters a and 6 in 

(7.11) f (z) = e" ^ — - ^ , |a| < 1, 0 ^ 0 < 2TT, 
1 — az 

it is possible to map \z\ < 1 onto |f | < 1 and 21 and £2 on two symmetric points 
of the real axes ±p . By Theorem 4, the differential equation (7.3) is trans
formed into 

(7.12) w<2*>(f) + <zG>(f) = 0 

with 

*Cr> = *Ks)(f)" 
By (6.7) and (7.4), it follows that 

(7.4)' iffooi = b(«)i • ( fE-f f)2 m ^ 7 f = ^ p « ifi < L 

Thus, our assumption that (7.3) has a solution with two zeros of order m 
implies that (7.12) has a solution w>i(f) possessing two zeros of order m at dtp, 
while (7.4)' holds. We now write (7.12) for «>i(f), multiply by î^i(f), and 
integrate along the real axes. This leads us to 

f*p r*p 

I Wi(2m)(x)wi(x) dx + I g(x)|^i(x)|2(/x = 0. 

By integrating by parts m times, and by noting that all the integrated parts 
vanish, we obtain 

( - l ) m J ' \wiM(pc)\*dx = - J" q{x)\wx{x)\2 dx. 
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Hence, 

(7.13) I \w!(m)(x)|2dx = \ q(x)\wl(x)\'ldx\ ^ I \g(x)\ [wi(x)|2dx. 

Writing ^i(x) = u(x) + iv(x), we have that 

|Wl|2 = u2 + v\ |WW) |2 = [uwY + b ( w )]2 , 

and (7.13) takes the form 

(7.13)' P ([u(m)(x)]2 + [v(m)(x)]*)dx S V \q(x)\[u\x) +v\x)]dx 

which, by (7.4)', implies that 

(7.14) £ ([uim\x)f + [v(m)(x)f) dx ^ B(2m) £ ^ f J ' J ^ dx < 

J-p (p — X ) 

Since Wi(x) = u(x) + iv(x) is supposed to have zeros of order m at x = ± p , 
the same is true for u(x) and v(x) separately. By the remark following Lemma 2 
we therefore obtain 

(7.15) P ([u{m\x)f + [v(m)(x)]2) dx > B(2m)P
2m P ^ M ^ 4 ^ dx 

J-P *>-p \p — x ) 

which contradicts (7.14). Thus, we have proved that no solution of (7.3) can 
have two zeros of order m in the unit circle if p(z) satisfies (7.4). 

Remark 1. For a fourth-order equation (m = 2), Theorem 6 is included in 
(5, Theorem 6), while for m ^ 3, our Theorem 6 may serve as a comple
mentary theorem to (5, Theorem 6). 

Remark 2. With regards to the sharpness of Theorem 6, the question is still 
open. I t seems that for m = 2, B(A) = 9 is the best constant, while for 
m è 3, B (2m) are not the best. 

I am grateful to Professor Z. Nehari for his valuable advice offered during 
many discussions. 
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