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Abstract

Additive perturbation results for the generalized Drazin inverse of Banach space operators are presented.
Precisely, if Ad denotes the generalized Drazin inverse of a bounded linear operator A on an arbitrary
complex Banach space, then in some special cases (A + B)d is computed in terms of Ad and Bd. Thus,
recent results of Hartwig, Wang and Wei (Linear Algebra Appl. 322 (2001), 207-217) are extended to
infinite dimensional settings with simplified proofs.
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1. Introduction

Let X denote an arbitrary complex Banach space and J?(X) denote the Banach
algebra of all bounded operators on X. If A e -S?(X), then ^?(A), jf{A) and a (A),
respectively, denote the range, kernel and spectrum of A.

If 5 is a subset of the complex plane, then ace 5 and iso 5, respectively, denote the
set of all points of accumulation and the set of all isolated points of S.

If 0 £ aceo(A), then the function z K / ( Z ) can be defined as f(z) = 0 in
a neighbourhood of 0 and f (z) = 1/z in a neighbourhood of a(A) \ {0}. Then
z !->• / (z) is regular in a neighbourhood of a (A) and the generalized Drazin inverse
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of A is defined using the functional calculus as Ad = f (A) (see the well-known
Koliha's paper [14]). Notice that AdA = AAd, AdAAd = Ad and that AAdA - A
is quasinilpotent. We say that A e -£?(X) is GD-invertible if 0 £ ace a (A). If
A is GD-invertible, then the spectral idempotent P of A corresponding to {0} is
given by P — I — AAd. The matrix form of A with respect to the decomposition
X = JV{P) 0 @-(P) is given by A = [A

o' £ ] , where Ax is invertible and A2 is
quasinilpotent. We can also write

A-C. + * . C.

and A = CA + QA is known as the core-quasinilpotent decomposition of A.
If A is GD-invertible, then the resolvent function z *-*• (zl — A)"1 is defined in a

punctured neighbourhood of {0}. If z = 0 is a pole of the resolvent function of A,
then the order of this pole is known as the Drazin index of A, denoted by ind(A). In
this case we say that A is D-invertible. If ind(A) = k, then Ad reduces to the ordinary
Drazin inverse of A, denoted by AD. Thus, AD is the unique operator satisfying
conditions

(2) Am+lAD = Am, ADAAD=AD, AAD = ADA,

and m is the least integer ind(A) such that (2) is satisfied. Now the core-quasinilpotent
decomposition reduces to the core-nilpotent decomposition. Precisely, ind(A) = it
holds if and only if k is the least integer (if it exists) such that A* = 0 (recall notations
from(l)).

If ind(A) < 1, then AD is known as the group inverse of A, denoted by A*. Also,

ind(A) = 0 if and only if A is invertible and in this case AD = A~l. Notice that

ind(CA) < 1 always holds and C*A = [ ^ ° ] (see (1)).

The Drazin inverse in semigroups and associative rings was first introduced in
[7]. The Drazin inverse of complex square matrices was investigated, among other
papers and books, in [1] and [2]. A detailed treatment of the Drazin inverse in
infinite dimensional spaces is given in [3] and [10]. The generalized Drazin inverse in
Banach algebras was introduced in [14]. We mention that an alternative definition of
a generalized Drazin inverse in a ring is also given in [9, 10, 11]. These two concepts
of a generalized Drazin inverse are equivalent in the case when the ring is actually a
complex Banach algebra with a unit.

In this paper we investigate the generalized Drazin inverse (A + B)d in terms of
Ad and Bd. Hartwig, Wang and Wei investigated this problem in a finite dimensional
case (see [13]). In this paper we generalize their results to infinite dimensional setting,
using an alternative approach based on matrix representation of operators relative to a
space decomposition. This enables us to simplify the proofs.
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2. Results

First we state the following auxiliary result.

LEMMA 2.1. If P, Qe 3f(X) are quasinilpotent and PQ = 0or PQ = QP, then
P + Qis also quasinilpotent. Hence, (P + Q)d — 0.

PROOF. Case I. Let P Q = 0 and X # 0. Then X - P and X - Q are invertible and
consequently X - P - Q = X~l(X- P)(X - Q) is invertible.

Case II. Let P Q = QP and let a (P, Q) denote the Harte joint spectrum of (P, Q).
It follows that CT(P, Q) = {(0,0)}. An application of the spectral mapping theorem
for this spectrum leads to CT(P + Q) = {0} (see [10] for details). Thus, the proof is
completed. •

The following result is a generalization of [13, Lemma 1.1].

THEOREM 2.1. Let A, B, A + B € S£(X) be GD-invertible and AB = BA. Then
(A + B)d = (CA + CB)d[I + (CA + CB)d{QA + QB)]~\

PROOF. Let P be the spectral idempotent of A corresponding to {0}. Then A has
the matrix form A = [ ̂  £ ] with respect to the decomposition X = jV(P) ® @{P),
where Ax is invertible and A2 is quasinilpotent. Now we have CA = [AJ °] and
QA = [o A2 ]• Since B commutes with P, we conclude that B has the form

[B, 0] pK(P)l
[0 B2\-\_<%{P)\ \_

From a{B) = CT(B,) U CT(B2) we get that Bx and fi2 are GD-invertible. From the
definition of the generalized Drazin inverse and properties of the functional calculus
we get that Bd = [ *' £ ] , and CB = [ c»' £ \ QB = [ t G°B2 ]• From AB = BA
we conclude that A;S, = B,A, for i = 1,2. Let Pi be the spectral idempotent of
fii in the Banach algebra -£f {^/V(P)) corresponding to {0} and let P2 be the spectral
idempotent of B2 in the algebra jSf (^(P)) corresponding to {0}. We have the matrix
form of B, = [ Q3 £ ] with respect to the decomposition J/(P) = jV{Pi) 0 £?\P\),
where fl3 is invertible and B4 is quasinilpotent. The matrix form of B2 is given as
B2 = [ o5 B6]. with respect to the decomposition @\P) = Jf(P2)@ 2?\P2), where
B5 is invertible and B6 is quasinilpotent. Since A, commutes with P, for i = 1, 2, we
conclude that A i and A2, respectively, have the following matrix forms: A ] = [ A

o
3 4̂ ],

where A i and A3 are invertible, and A2 = [ ^5
 A°6 ], where A5 and A6 are quasinilpotent.

The last statement follows from the fact a(A2) = o{As) U o(A6).
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Notice that

A + B =

'A3 + B3

0
0
0

B4

0
0

0
0

0
0
0

SinceO £ ace <r(A + B) and <r(A + B) = (J*=3CT(A, + fly), we conclude that A,+ 5 ;

is GD-invertible for all i = 3,4,5,6. Since A* is invertible and B4 is quasinilpotent,
we get A4 + B4 = A4(I + A^XB4). Also, A4 commutes with B4. Hence, A4

lB4

is quasinilpotent and / + A+' B4 is invertible. We get that A4 + B4 is invertible.
Analogously, A5 + B5 is invertible. Finally, A6 + B6 is a sum of mutually commuting
quasinilpotent elements. From Lemma 2.1 it follows that A6 + B6 is quasinilpotent.

+ B.
0
0
0

> 0
A4

0
0

0
0
B5

0

0
0
0
0

Since A3 + B3 is GD-invertible and A4 and B5 are invertible, we conclude that CA + CB

is GD-invertible and

(CA + CB)d =

(A3 h B3)
0
0
0

a 0
A;1

0
0

0
0

B~l

0

0
0
0
0

We also have

QA + QB =

and

0
0 i
0
0

0

0
0

'0
0
0
0

0
0

A5

0 A6

0
A4-'B4

0
0

0
0
0
+1

B

0
0

-•/
0

0
0

\5 0
0
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Now it follows that

I
0 (/
0
0

0
+ A4 BA)

0 (I -\
0

0
0

-A5S5"1;
0

0
0

r1 0

and we easily conclude that

( Q + CB)d[I + (CA + CB)\QA + QB)]
d 0 0 0'

0 (A4 + B4)~' 0 0
0 0 (As + Bs)'1 0
0 0 0 0

= (A + B)d.

Thus, the proof is completed. •
Now we consider the non-commutative case. The following result is proved in [6]

(see also [12] and [17] for a finite dimensional case).

LEMMA 2.2. If A e Sf(X) and B 6 j£?(r) are GD-invertible, C €
andD e %{X, Y), then M = [£ £] and N = [*°B] are also GD-invertible and
M< = [ * $ ] . * [ * ]

S = (Ad)2\

and

= (Bd)d\2

V Rd ]> where

\{I-BBd

\U-AA'

.n=0

.n=O

(BdY-A "CB"

{Ad)2 - BdDAd.
n=O

We need one particular case of our main result.

THEOREM 2.2. IfP,Qe &{X) are GD-invertible, Q € Jf (X) w quasinilpotent
andPQ = 0, tfien P + Q is GD-invertible and (P + Q)d = J^Lo Q"(.Pd)n+1 •

PROOF. Since P is GD-invertible, we conclude that P has the matrix form [ Q1 °2 ],
where P{ is invertible and P2 is quasinilpotent. From P Q = 0 we conclude that
Q has the matrix form Q = [Q, Q J , where P2Gi = 0 and P2(?2 = 0. Since
{0} = a(Q) = {0} U (T(Q2), we conclude that £2 is quasinilpotent. Now we have

a
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where Pi is invertible and P2 + Q2 is quasinilpotent (see Lemma 2.1). From Lemma 2.2
we get that

+ QY ' " °
" IZZo

By induction on n and using P2Q\ —0 and P2 Q2 = 0, we prove that (P2 + Q2)" Q\ =
Q\ Qx holds for all n > 0. Hence,

n=0 n=0

On the other hand,

r [ e r e i Q \ l 0 O

- r
"L

Thus, the proof is completed. •

The following result is a generalization of [13, Theorem 2.1].

THEOREM 2.3. IfP,Qe 3f(X) are GD-imertible and PQ = 0, then P + Q is
GD-invertible and

( P + Q)d = (I - QQ") S~* Qn(Pd)n \Pd +
I '—I

L n=0 J L »=0

(I - PPd).

PROOF. Since Q is GD-invertible, we can write 6 = [ o' a ]»where Q\ is invertible
and Q2 is quasinilpotent. From P Q = 0 we obtain that P = [£ £j ], where Px Q2 = 0
and P2 Q2 = 0. From a(P) = {0} U cr(P2) and 0 i acca(P) we conclude that P2 is
GD-invertible. Now we have

[
Ql Pl 10 P2+Q2\-

From Theorem 2.2 we know that P2 + Q2 is GD-invertible. Hence, using Lemma 2.2
we get that P + Q is GD-invertible and

where

s = £ QTn~2Pi(P2 + Qi)" [I - (P2 + Q2XP2 + Q2Y] - Gr1 W 2 + Qi)d.
L"=o I
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Using P, Q2 = 0 and P2 Qi = 0 we prove Pi(P2+ Q2)
n = PiP2" for all n > 0. Now,

using Lemma 2.2, Theorem 2.2, and facts Pi Q2 = 0 and P2 £?2 = 0, we compute

[/ - (Pi + Qi)(Pi + QiY]
_n=0

n=X

n=l

n=l

/ -

"I

J

n=0

Also, using Theorem 2.2 we get

n=0

On the other hand, notice that from Lemma 2.2 we get Pd = ° />l(^2> . Hence we

have

[Pd + J2 Qn(pd)d)n+l
r

L
+\Qd

L
|_0 P2

d\ £-*> [0 /J |_ 0 Q^\ [0 (P2
d)n+i J

+ [o o 0 / -

x p2"-! (/ -

Thus, the proof is completed. •

We can also prove the following result, generalizing [13, Corollary 2.2].
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THEOREM 2.4. Let A,H € Jf(X) and let A be a GD-invertible operator. Let
F e 3?(X) be an idempotent commuting with A such that FH = H. IfR = (A-H)F
is GD-invertible, then A — H is GD-invertible and

00

(A - H)d = Rd-^2(Rd)n+2H(I-F)An(I-AAd)
n=0 oo

- F)Ad - (/ - RRd) ^ ( A - H)nH(I - F)(Ad)n+2.
n=0

PROOF. Since F2 = F, we have X = St(F) © J^(F) and F = [ J g] with respect
to this decomposition. Operators A and F mutually commute, hence A = [AJ £ ] .
From a (A) = o{A{) U a(A2) we know that A, e -Sf(^(F)) and A2 € &{jY(F))
are GD-invertible and Ad = A

o' A°, I. Since FH = // , we conclude that the matrix
form of H is given by H = [ 'J "2 ]. Now we have

— [ v -":]•
Notice that /? = [Ai~0

Hl °0] is GD-invertible, implying that A, - Hi e S£{3f,{F)) is
GD-invertible. From Lemma 2.2 it follows that A — H is GD-invertible and

ro
(A- ti)~ = \ Q A r f | + 0

where
oo

S = (Ai- Hl)
dH2A

d
2 - Y] [(Ai - Hi)d]"+2 H2A"2{1 - A2A

d)

n=0

Notice that Rd = [(A|^)
W')'' " ] • Now a straightforward computation shows:

(/ - RRd)(A - H)"H(I - F)(Ad)n+2

[0 [/ - (A, - HX){A{ - Z/O^CA, - Hx)
nH2{Ad

2)
0

+ 2 l
J '

A2 J

and

(Rd)n+2H(I - F)An(I - AAd) = ° (^1~-^1^) ^2A2(/-A2A^

Hence, the proof is completed. D
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Campbell and Meyer (see [2]) investigated the continuity properties of the Drazin
inverse of complex square matrices, but they did not establish the norm estimates
for the perturbation of the Drazin inverse. Their results are extended to infinite
dimensional settings by Rakodevic (see [4]) and Koliha and Rako£evic (see [15]), but
norm estimates are not established there. It is interesting to mention that special cases
of these perturbation results are already known. For example, see [20] for complex
square matrices, [5] for complex Banach algebras and [8] for unbounded operators
on Banach spaces. See also Case (4) of the following section. Hence, in this paper
we partially solve the previous problem of Campbell and Meyer and extend some
well-known results from previous papers.

3. Special cases

Many interesting special cases of our Theorem 2.4 are considered in [13] for
matrices. Some of them are generalizations of well-known results.
Case (1). If HF = 0, then (A - H)"FH = AnH for n > 0. Consequently,

00

(A - H)d = AdF - ^(AdY+2HAH(l - AAd)
n=O oo

+ V-F + AdH)Ad - ^2 A" (I - AAd)H(Ad)n+2.

Case (la). If HF = 0 and F = AAd, then HAd = HAAd = 0 and (A - H)d =E7o
Case (lb). If HF = 0 and F = / - AAd, then AdH = 0 and (A - H)d =
A" -TZo A"H(Ad)n+\
Case (2). If F = AAd, then (A - H)d = Rd - YlZo(Rd)"+2H'A"(I - AAd).
Case (2a). Let F = AAd and let U = I - AdHAAd be invertible. Recall notation
from Theorem 2.4, noticing that A\ is invertible and A2 is quasinilpotent. Then
U = '~A£Hl ° • Since U is invertible, then / — A~[XHX is invertible and Ai - Hx =
Ai(/ - A\XH\) is invertible. Hence, ind(/?) < 1,

R* = ["(/-A-HO-Ar1 01

L o oj
and (A - H)d = R* - £~0(fl#)n+2//A'1(/ - AAd).

Let V = I - AAdHAd = ['-"*>' °1 and W = I - AdH = \'-A~<'Hl ^ ' " ' l

Notice that U is invertible if and only if 1 £ a{A^Hx), if and only if 1 1

since it is well-known that for T € 3?(X, Y) and 5 e &{Y, X)

(3)
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Hence, U is invertible if and only if V is invertible if and only if W is invertible. We
also easily verify R* = U~lAd = AdV~1. Hence, this result generalizes the main
results in [16,18,20,19].
Case (2b). If F = I - AAd, then AdH = AdF = 0,

R = A(I - AAd) - (I - AAd)H(I - AAd)

and (A - H)d = Rd + (I + RdH)Ad - (I - RRd) J2Zo(A ~ H)nH(Ad)n+2.
Case (3). Let AAdHF = HFAA" = HF, let U = / - AdHF be invertible and
{AF)* exists. Recall notation from Theorem 2.4. Then AF = [ „' £]• implying
ind(A,) < 1. From AAdHF = HFAAd=HF we conclude A,A*H,= HyAxA*= Hx.
We also have

Let

V = I - HFAd =V =

By (3) we conclude that U is invertible if and only if V is invertible. Now a matrix
computation shows R = AFU = VFA. From A\(I - HXA\) = (/ - A\HX)A* we
get the equality AdF V = UAdF. Let Y = U~*AdF = ArfF V~!. Then it is easy to
verify Y = R*. Finally, we have (A - H)d = /?* - E^o( / ?*)"+ 2^( / ~ ^ M " -
Case (4). If FH = HF = F, then (A - # ) d = /?rf + (/ - F)/K Moreover, if
F = AA" and U = I - A ' # is invertible, then (A - H)d = Rd = U~lAd.

Case (4) shows that results of this paper are more general than the corresponding
results in [20]. Analogous results are proved in complex Banach algebras in [5].
Results of this paper are more general then results in [5] if we consider a Banach
algebra of all operators on a fixed complex Banach space. We expect that all results of
this paper should be valid in an arbitrary complex Banach algebra with a unit, but this
will be a matter of further investigations. It is interesting to mention results related to
this Case (4), concerning the Drazin inverse for closed linear operators, as it is done
in [8].
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