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C∗-Algebras of Infinite Graphs and
Cuntz-Krieger Algebras

Berndt Brenken

Abstract. The Cuntz-Krieger algebra OB is defined for an arbitrary, possibly infinite and infinite val-

ued, matrix B. A graph C∗-algebra G∗(E) is introduced for an arbitrary directed graph E, and is shown

to coincide with a previously defined graph algebra C∗(E) if each source of E emits only finitely many

edges. Each graph algebra G∗(E) is isomorphic to the Cuntz-Krieger algebra OB where B is the vertex

matrix of E.

0 Introduction

In [3] Cuntz and Krieger introduced C∗-algebras OA associated with square matrices

A with entries in the nonnegative integers Z+ and with each row and column nonzero.
In defining these algebras they first restricted themselves to the case where A had en-
tries in {0, 1} only, and then extended the definition to the more general A described
above by forming a certain {0, 1} matrix A ′ from the matrix A. A description of

this process is perhaps better understood in light of subsequent approaches to these
algebras.

Building on the results of [7], Kumjian, Pask, and Raeburn define the C∗-algebras
C∗(E) of directed graphs E whose vertices each emit only a finite number of edges
([6]). This C∗-algebra is the universal C∗-algebra generated by mutually orthogonal

projections indexed by the vertices of E, along with a set of partial isometries indexed
by the edges of E, and satisfying certain relations governed by relationships between
the edges and vertices. These graph algebras are clearly related to the Cuntz-Krieger
algebras. First note that the edge matrix AE of the graph E, is a square matrix with

entries in {0, 1}, and that zero rows of AE occur if there is a vertex of E with an
incoming edge but no outgoing edges. It follows that if E is a finite graph, so when
the vertex and edge sets of E are both finite, and if each vertex of E both receives and
emits edges then the graph C∗-algebra C∗(E) is the Cuntz-Krieger algebra OAE

. Thus

the graph algebras C∗(E) may be viewed as extending the setting of Cuntz-Krieger
algebras to graphs under the sole restriction that each vertex emits at most a finite
number of edges. In particular, infinite directed graphs, and graphs with vertices
which either emit or receive no edges are allowed.

This viewpoint is strengthened by subsequent results. In [4] much effort and in-

genuity is taken to extend—and then work with—the definition of a Cuntz-Krieger
algebra OA to the case of possibly infinite {0, 1}-valued matrices with no zero rows.
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In [5] the definition of a graph C∗-algebra C∗(E) is extended in a rather straightfor-
ward fashion to the case of a general directed graph E. It is furthermore shown in [5]

that for graphs E in which every vertex both receives and emits edges, the graph C∗-
algebra C∗(E) coincides with this newly defined Cuntz-Krieger algebra OAE

where AE

is again the edge matrix of E and is a possibly infinite {0, 1}-valued matrix with no
zero rows or columns.

These results have led to the conviction that graph C∗-algebras are Cuntz-Krieger
algebras, or at least the natural generalization of Cuntz-Krieger algebras to a wider
context. However, even in the case of certain finite graphs, this conviction is not as
straightforward as it seems. For example, consider the finite directed graph E with

two vertices v0 and v1 with one of them, v0 say, only emitting edges, the other, v1, only
receiving edges. If E has n edges, {ei | 1 ≤ i ≤ n}, then the C∗-algebra C∗(E) is the
universal one generated by two orthogonal projections ρ0, ρ1 and n partial isometries
σi , 1 ≤ i ≤ n, with initial projections ρ1 and orthogonal final projections with sum

ρ0. The edge matrix A = AE of this graph is the n × n zero matrix. Even if OA were
actually defined for such A it is clear that C∗(E) cannot be OA.

In this report we adopt as a guiding principle that graph algebras for arbitrary di-
rected graphs and Cuntz-Krieger algebras for arbitrary matrices should coincide, via

a natural linking of the data, as classes of algebras. To see this as a reality requires
overcoming several obstacles. Initially this involves extending the context of Cuntz-
Krieger algebras OA to completely arbitrary matrices, namely possibly infinite square
matrices A with nonnegative integer or infinite valued entries and any number of zero

rows or columns. The approach taken here not only simplifies the approach of [4], it
also parallels the original approach used by Cuntz and Krieger. A translation of the
relations governing the algebra OA into graph theoretical terms then yields an alter-
nate approach to defining the graph C∗-algebra, denoted here by G∗(E), associated

with an arbitrary directed graph E. If every source vertex of E, namely those vertices
of E that receive no edges, emits only finitely many edges then G∗(E) coincides with
C∗(E). In particular G∗(E) and C∗(E) coincide if there are no sources. Thus one
may view G∗(E) as an alternate way to extend the graph algebras C∗(E) of [6] for

row finite graphs E to arbitrary graphs E. In general G∗(E) is an ideal of C∗(E). The
algebra G∗(E) is also invariant under a standard operation on graphs E for certain E,
as is the case for the classical Cuntz-Krieger algebras, while there are examples of E,
necessarily with sources emitting an infinite number of edges, where C∗(E) does not

display this invariance.
We briefly discuss the procedure Cuntz and Krieger employed to extend the C∗-

algebra from the context of {0, 1} matrices with no zero rows or columns to that of
Z+ valued matrices B. The {0, 1}matrix B ′ formed from B can be viewed in various

ways. For example, a viewpoint that in some form or another has been around for
some while is that if E = EB is the directed graph associated to B, i.e., E has a vertex
matrix B, then B ′ is the edge matrix AE of E. Thus OB was defined as OAE

, which (for
these matrices) is C∗(E).

In [2] a slightly different perspective is taken, which in this project then led directly
to extending the Cuntz-Krieger approach to arbitrary matrices B. The view in [2] is
that the {0, 1} matrix B ′ is the complete in-split matrix Bw of B. This in-splitting
process can be naturally extended to completely arbitrary matrices B, including those
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with any number of zero rows or columns, allowing one to then define OB in terms
of relations determined by the matrix Bw. The congruence between the in-split ma-

trix Bw and the edge matrix AE of the graph E = EB fails to be preserved once one
has naturally extended the in-splitting process. What one does have is that if E is a
directed graph with no sinks, so each vertex of E emits edges, then Bw = AE, where
B = BE is the vertex matrix of E and AE is the edge matrix of E.

A quick overview of the paper follows. In Section 1 the processes connecting
square matrices, square bipartite graphs and directed graphs are described. The in-

splitting process, which plays a major role in the sequel, is introduced in a more
general setting than that of [2], where the basic structure of a partial order for this
procedure and its inverse was explored. Here those results are briefly described in
this more general context. In Section 2 the Cuntz-Krieger algebra OB is defined for

an arbitrary square matrix B. Translating these relations to a graph context defines
a graph C∗-algebra G∗(E) which is isomorphic to OB, B the vertex matrix for E. We
then show that G∗(E) exists as a universal C∗-algebra and that it is an ideal of C∗(E).
In Section 3 we describe how the algebra OB behaves under proper in-splitting of

matrices, extending known results for the usual finite matrix Cuntz-Krieger algebras.
We conclude with a simple example where G∗(E) is not isomorphic to C∗(E).

I would like to thank Neal Fowler for several conversations concerning the recent
progress for graph C∗-algebras.

Notation The nonnegative integers are denoted Z+ while Z
∞

+ denotes Z+ ∪ {∞}.
Here infinite refers to countably infinite. The transpose of a matrix A is At , and
square matrices are n × n matrices where n = ∞ is also possible. For a, b elements

of a set S, δa is the function on S defined by δa(b) = δa,b =

{

1 if b = a

0 otherwise.

1 Directed and Bipartite Graphs, and Their Matrices

In the following a directed graph E = (E0, E1, r, s) has a countable set of vertices E0,
a countable set of edges E1, and maps r, s : E1 → E0, respectively denoting the range

and source maps. Associate with a directed graph its vertex matrix B = BE, which is
a square matrix of size |E0| with entries in Z

∞

+ , where BE(v,w) = |{e ∈ E1 | s(e) = v

and r(e) = w}|. Conversely, given such a square matrix B, denote by EB the directed
graph with vertex matrix B. Say that B has v-row finite if

∑

w B(v,w) < ∞, and B is

row-finite if each row of B is finite. If E = EB then E is said to be row finite if B is, so
E is row finite if and only if each vertex v ∈ E0 emits only finitely many edges.

A bipartite graph G = G(V,W ) has initial state set V , terminal or final set W and
an edge set E. If e ∈ E then i(e) ∈ V denotes its initial vertex and t(e) ∈ W its
terminal vertex. Associate a matrix B = BG with entries in Z

∞

+ to a bipartite graph G

by setting B(b, a) = |{e ∈ E | i(e) = a and t(e) = b}|. The matrix B has |W | rows,

|V | columns and is the transpose of the usual adjacency matrix of a bipartite graph.
This is done for covariance reasons connected to the index of an endomorphism of a
sum of type I factors [2]. It is also historically how matrices and bipartite graphs are
associated with each other in the AF-algebra context. Write G = GB for the bipartite
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graph corresponding to a matrix B.

The collection of bipartite graphs may be trivially viewed as properly contained in
the collection of directed graphs, however, for our purposes it will be far more useful
to view the collection of directed graphs as properly contained in the collection of

bipartite graphs. The collection of directed graphs consist of those bipartite graphs
G = G(V,V ) whose initial and terminal spaces are identical as sets. Call these bipar-
tite graphs square. This is seen by viewing E = (E0, E1, r, s) as the bipartite graph
G = GE with G = G(E0, E0) and where an edge e ∈ E1 with s(e) = a and r(e) = b

corresponds to an edge e
∼
∈ E of G with i(e

∼
) = a, t(e

∼
) = b. Intuitively speaking each

vertex v ∈ E0 is split into two halves, one part is viewed as the emitting half which
is in the top row of G, while the other is the receiving half. This process is clearly
reversible: given G = G(V,V ) coalesce the corresponding vertices of V to a single

point v ∈ E0
= V .

Reversing the direction of every edge in a directed graph E yields a directed graph
denoted Et . The bipartite graph obtained by exchanging the initial and terminal state

spaces and exchanging the initial and terminal vertices of each edge is denoted by Gt .
It is clear for example that EBt = (EB)t for a square matrix B with entries in Z

∞

+ , and
GEt = (GE)t for a directed graph E. It is straightforward to check that travelling along
two sides of the triangle below yields the same result as travelling along the third side

and taking the ‘transpose’.

{G | G a square bipartite graph}

-
E

� B

{B | B a square matrix}

@
@

@
@@I

B

@
@

@
@@R

G

{E | E a directed graph}

�
�

�
���

E

�
�

�
��	

G

Thus, for example, EBt = EGB
, GEt = GBE

and so on.

Example 1.1 Let E be the directed graph u u--� k?. Then its corresponding

bipartite graph GE is

s s

s s�
�@
@@
@ . The vertex matrix BE = B is

[

0 2
1 1

]

while the bipartite

graph GB is

s s

s s����@
@ , which is Gt

E.

A vertex v ∈ E0 of a directed graph E is a sink if s−1(v) = φ, and a source if
r−1(v) = φ. A vertex of E is both a source and a sink if it emits and receives no edges.
A vertex v ∈ E0 is a sink if and only if the v-row of B is zero, where B = BE is the

vertex matrix of E. If G = GB is the bipartite graph corresponding to B then v is a sink
if and only if there are no edges of G with terminal state v. Given the important role
that sinks play in the following development we denote the subset of E0 consisting of
sinks by F.
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Given a square bipartite graph G = G(V,V ) we adopt verbatim the process of
forming an in-split bipartite graph G̃ = G(Ṽ , Ṽ ) of G as described in [2] and [8],

with the natural additional but already implicit condition that a vertex l ∈ V is left
untouched if El = {e ∈ E | t(e) = l} = φ, so if, in other words, there are no edges
into l. We quickly review this procedure. For each v ∈ V partition Ev, the set of edges
with terminal state v, into sets E1

v , . . . ,E
m(v)
v . Replace the vertex v with m(v) vertices

v1, . . . , vm(v) of G̃. If e ∈ E is an edge of G with terminal state v and initial state w,
then e is an element of one of the partition sets E

p
v where p ∈ {1, . . . ,m(v)}. Now

replace each e ∈ E
p
v with m(w) edges of G̃, each having the same terminal state vp,

with the m(w) initial states w1, . . . ,wm(w). If for each v ∈ V the partition of the edges

in Ev is the maximal one consisting of one element sets then the resulting bipartite
graph is the complete in-split of G and is denoted by Gω . The complete in-split of Gω
is denoted by Gω,ω or by Gω2

.

The process of forming in-amalgamations described in [2] must be slightly
adapted to this more general context, where vertices v of G are allowed that are not
in the range of t , in order to form an inverse process to in-splitting. For G = G(V,V )
we form G(V

∼
,V
∼

) an in-amalgamation of G as follows: for m ∈ Z
∞

+ , v ∈ V let

Sm
v = {w ∈ V | w is connected to v with multiplicity m} and let T = {Tk | k ∈ I}

be the ‘base’ partition of V defined by the collection of subsets Sm
v (v ∈ V , m ∈ Z

∞

+ )
along with the singleton subsets {l} where El = φ. If T ′ = {T i

k | k ∈ I, i ∈ Ik},
where

⋃

{T i
k | i ∈ Ik} = Tk, is a partition of V finer than T, collapse each set T i

k of T ′

to a single vertex T i
k of V

∼
. Each set of edges of G with multiplicity m from the points

of G in T i
k to a vertex v of G, where v ∈ T

j
n some j and n, is replaced by an edge of

multiplicity m from T i
k to the vertex T

j
n of V

∼
. The complete in-amalgamation Gc of

G denotes the bipartite graph obtained when this process is effected using the base
partition T, so when T ′ is T.

Many of the results of Section 3 in [2] now carry over to this more general setting;

for G0, G square bipartite graphs define G0 ≺ G if there is a finite sequence of bipartite
graphs Gk, k = 0, . . . , l with Gk an in-amalgamation of Gk+1 and Gl = G. This defines
a partial order on the collection of bipartite graphs G(V,V ) with finite vertex and
edge sets. This however fails to yield a partial order in general, since it is possible

for G0 ≺ G1 ≺ G0 with G0 6= G1. To see an example of this let G0 = G(N,N) with
E = {en | n ∈ N} such that i(en) = n and t(e2n−1) = t(e2n) = n. The complete
in-amalgamation of G0 is again G0, so if we set G1 to be a partial in-amalgamation
of G0 not equal to G0 we are finished. Let G1 be the in-amalgamation of G0 given by

amalgamating the vertices 1 and 2 only. Then G1 has vertex set N, and edges en with
i(en) = n, n ≥ 1, t(e2n) = t(e2n+1) = n for n ≥ 2 while t(e1) = t(e2) = t(e3) = 1.

This relation does however satisfy the property that any two bipartite graphs with

an upper bound also have a common lower bound, and vice versa. We restate this in
the following proposition.

Proposition 1.2 Let G0 be a square bipartite graph.

(a) The collection {G | G ≺ G0} is lower directed.

(b) The collection {G | G0 ≺ G} is upper directed.
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Proof Part (a) follows from repeated application of Corollary 3.5 of [2], while part
(b) uses Corollary 3.10 of [2].

We may also define an equivalence relation on the collection of square bipartite
graphs by setting G0 ∼ G if there is a finite sequence Gk, k = 0, . . . , l with Gl = G

and Gk is either an in-split or an in-amalgamation of Gk+1, k = 0, . . . , l−1. Repeated
applications of Corollary 3.10 of [2] show that two bipartite graphs G0, G1 are equiv-
alent if and only if there is a G with G0 ≺ G and G1 ≺ G, which by Proposition 1.2 is
equivalent to saying that they have a common lower bound.

Given G = G(V,V ) a square bipartite graph with a finite vertex set it follows
as in Theorem 3.7 of [2] that there is a unique minimal element G

∼

with G
∼

≺ G.

Here, however, we make no restriction on the number of edges |E| of G. Given two
finite square bipartite graphs with no restriction on the number of edges it is then
straightforward to compute if they are equivalent or not, since there is an a priori

bound on the maximum number of complete in-amalgamations possible before a

minimal element is obtained. For square bipartite graphs that are not finite this is
however no longer the case. Not only is there no a priori bound on the number
of in-amalgamations used to attain a common lower bound, but there is also no
guaranteed path to a common lower bound by using complete in-amalgamations for

example.

We can transfer the relation ≺ to square matrices which are possibly infinite,

with entries in Z
∞

+ , using the correspondence between such matrices B and bipar-
tite graphs GB.

Definition 1.3 Let A, B be two square matrices with entries in Z
∞

+ . Set A ≺ B if and
only if GA ≺ GB. We say A is an in-split (in-amalgamation) of B if GA is an in-split

(in-amalgamation) of GB.

This yields a partial order on finite square matrices with entries in Z+ extending

the partial order introduced in [2], which was defined for finite square matrices with
entries in Z+ with no zero rows or columns.

Remark 1.4 The partial order on square matrices may be transferred to such an

order on directed graphs E using the correspondence B → EB, but because of the
transpose that occurs between this route and the route connecting directed graphs
with bipartite graphs via G → EG the in-amalgamation, or in-split of matrices is
actually an out-amalgamation, or out-split process for the associated directed graphs.

2 Cuntz-Krieger Algebras and Graph Algebras

Beginning with a square matrix B we examine more closely the complete in-split
matrix Bω , along with the associated directed graphs E = EB and Eω , the directed

graph EBω for Bω . Note that if E has no sinks then Bω is the edge matrix of E. Using
very minor modifications of the original relations defining Cuntz-Krieger algebras
[3] we introduce the Cuntz-Krieger algebra OB for a completely arbitrary square,
possibly infinite, matrix with entries in Z

∞

+ . We stress that no restrictions are placed
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on the possible appearance of zero rows or columns. This approach also allows for
the introduction of a natural graph C∗-algebra G∗(E) associated with an arbitrary

directed graph E. Using this approach it is clear that G∗(E) is OB.

A C∗-algebra C∗(E) associated with a row finite directed graph E was introduced
earlier in [6] and later extended without modification to arbitrary directed graphs E

in [5]. We show that for graphs E with finite sources G∗(E) and C∗(E) coincide. We
show this is not the case for general graphs E however, so G∗(E) can be viewed as

another way to extend graph C∗-algebras to arbitrary directed graphs E. Recall that
the original Cuntz-Krieger algebras for finite matrices with finite entries and no zero
rows or columns are naturally invariant under the in-spliting process [2]. We show
this to also be the case for our graph algebras G∗(E) for a family of graphs E which

have sources emitting an infinite number of edges. For these E however C∗(E) is not
invariant under the in-splitting process. This suggests that G∗(E) is perhaps a more
natural candidate for the C∗-algebra of a graph E which may have sources emitting
an infinite number of edges.

Let E = (E0, E1, r, s) be the directed graph associated with the matrix B, so

B(v,w) = |{e ∈ E1 | s(e) = v, r(e) = w}|. Label each edge e ∈ E1 by a triple (v, k,w)
where s(e) = v, r(e) = w and k a nonzero element of Z

∞

+ with 1 ≤ k ≤ B(v,w). If
G = GB is the bipartite graph associated with B then Gω , the complete in-split of G,
has associated matrix Bω . Denote by Eω the directed graph for Bω , namely Eω = EBω .

By previous comments Eω is E(Gω)t .

We describe the vertex set E0
ω of Eω which is also the index set for the matrix

entries of Bω . A vertex v ∈ E0 that is not a sink splits into the new set of vertices
⋃

{(v, k, ω) | 1 ≤ k ≤ B(v,w), ω ∈ E0 with B(v,w) 6= 0} in E0
ω , while a vertex v ∈ E0

that is a sink remains untouched by the in-splitting process. Thus the index set E0
ω

for the matrix entries of Bω is identified with E1 ∪ F, and the number of zero rows
of B remains unchanged under this, or any, in-splitting process. It is useful to think
of a sink v ∈ F as the triple (v, 0, v), namely an edge of multiplicity zero from v to
v. Defining r(v) = v and s(v) = v for v ∈ F extends the range and source maps to

maps from E0
ω to E0. We have s−1(l) = l, (l ∈ F) is disjoint from all other s−1(v),

v ∈ E0
ω \ {l}. Also r−1(l) = {l} ∪ (r|E1 )−1(l) for l ∈ F.

For e ∈ E0
ω , the e-row of Bω is zero if and only if e is a sink of E. Also, for e, f ∈ E0

ω ,
Bω(e, f ) = 1 if and only if e ∈ E1 and r(e) = s( f ), where s( f ) = f if f is a sink. In
this later case, when f is a sink, this is the only nonzero entry of the e-row of Bω . For

e, f ∈ E0
ω it follows that if the e-row of Bω and the f -row of Bω share a nonzero entry

in the same column, say the l-column, then e, f ∈ E1 and r(e) = s(l) = r( f ), so that
e and f must have the same range. However, r(e) = r( f ) if and only if the e-row of
Bω = f -row of Bω , e, f ∈ E1.

We summarize some of these findings.

Proposition 2.1 Let B be a square matrix with entries in Z
∞

+ and Bω the complete

in-split matrix of B. Then

(a) Bω is a square matrix with entries in {0, 1},
(b) any two rows of Bω are either equal or orthogonal, so that the two sets {h |

Bω(e, h) 6= 0} and {h | Bω( f , h) 6= 0} are either equal or disjoint,
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(c) if Bω(e, l) = 1 with the l-row of Bω zero, then Bω(e, f ) = 0 for all other f .

It is of use to recognize from the graph E when the matrix Bω is row-finite, i.e.,
when each row of Bω has a finite number of nonzero entries. For e ∈ E0

ω it follows
from Proposition 2.1 that the e-row of Bω is certainly finite whenever e is a sink of
E or when e ∈ E1 with r(e) a sink. For e ∈ E1, the e-row of Bω is finite if and only

if |{ f ∈ E1 | s( f ) = r(e)}| < ∞, so exactly when the number of paths in E1 with
source r(e) is finite. Thus Bω is row finite if and only if each v-row of B is finite for
v ∈ E0, v ∈ r(E1); in other words for v not a source. It follows that if Bω is row-
finite, then so is (Bω)ω and the process of forming complete in-splits preserves row

finiteness.

Proposition 2.2 Let E = (E0, E1, r, s) be the directed graph associated with a matrix

B. The complete in-split matrix Bω is row-finite if and only if each v-row of B is finite

for v ∈ E0, v not a source.

Note that the condition for the row-finiteness of Bω is weaker than requiring that
B is row-finite. The matrix Bω is row finite even though there may be any number of
sources v ∈ E0 of the directed graph E = EB which emit infinitely many edges. For

example the complete in-split matrix Bω of B =
[

0 ∞
0 0

]

is row-finite.

Definition 2.3 For a matrix B ∈ Mm(Z
∞

+ ) with m ∈ Z
∞

+ let Bω denote the com-
plete in-split of B, a square n × n matrix with entries in {0, 1}. Then OB is the
universal C∗-algebra generated by n partial isometries Se with orthogonal range pro-
jections such that S∗e Se =

∑

Bω(e, f )S f S∗f if the e-row of Bω is nonzero and finite, and

S∗e Se = Se if the e-row of Bω is zero. In addition we assume that the initial projections
commute, that

S∗e SeS f S∗f = Bω(e, f )S f S∗f

if the e-row of Bω is nonzero, and that

S∗e SeS
∗

f S f =

{

S∗f S f if f -row of Bω = e-row of Bω

0 otherwise

whenever the e-row and f -row of Bω are both nonzero.

Proposition 2.4 For a matrix B ∈ Mm(Z
∞

+ ), m ∈ Z
∞

+ , with Bω row finite the addi-

tional assumptions defining the algebra OB are superfluous.

Proof If Bω is row finite then S∗e Se =
∑

Bω(e, f )S f S∗f whenever the e-row of Bω is
nonzero, and S∗e Se = SeS

∗

e if the e-row of Bω is zero. The additional assumptions now
follow easily from parts (b) and (c) of Proposition 2.1 after noting that the collection
of final projections is orthogonal.
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If B is a finite square matrix with entries in Z+ with no zero rows or columns then
this reduces to the usual definition of the Cuntz-Krieger algebra OB. This follows

from [2] where it is shown that OB is invariant under an arbitrary in-splitting of B, in
particular for the complete in-split Bω (see also [9]). Even in the finite case however
this definition now includes matrices with zero rows or columns. For example, if
B is the square 0 matrix of size n, then Bω = B and OB is the universal C∗-algebra

generated by n orthogonal projections, namely the algebra of functions on a discrete
space of n points. Since such a matrix B has zero rows it has not previously been
included in approaches to defining Cuntz-Krieger algebras [3], [4].

Before showing that the universal C∗-algebra OB exists we translate the defining

relations for OB in terms only involving the vertex graph E = EB of B. Recall that for
e, f ∈ E0

w, Bw(e, f ) = 1 if and only if e ∈ E1 and r(e) = s( f ). Also, for e, f ∈ E1, the
e-row of Bw = f -row of Bw if and only if r(e) = r( f ).

Definition 2.5 Let E = (E0, E1, r, s) be a directed graph with E0, E1 countable and
denote the set of sinks by F. Define the graph C∗-algebra G∗(E) to be the universal
C∗-algebra generated by partial isometries Se (e ∈ E1 ∪ F) with orthogonal range
projections such that S∗e Se = Se if e ∈ F and, for e ∈ E1 ∪ F, S∗e Se =

∑

f∈s−1(r(e)) S f S∗f
if the set s−1

(

r(e)
)

is finite. Assume in addition that for e, f ∈ E1

S∗e SeS
∗

f S f =

{

S∗f S f if r(e) = r( f )

0 otherwise

and that for e ∈ E1 and f ∈ E1 ∪ F

S∗e SeS f S∗f =

{

S f S∗f if r(e) = s( f )

0 otherwise.

Remark 2.6 If l is a sink and there is an edge k with r(k) = l then the sum condition

implies S∗k Sk is the projection Sl. We have S∗e SeSlS
∗

l = S∗e SeSl = S∗e SeS
∗

k Sk which is
zero unless r(e) = r(k), so unless r(e) = l = r(l). Thus if I denotes the subset of
sinks F consisting of the isolated vertices of E, namely those sinks with no incoming
edges, we see that the set F in Definition 2.5 may be replaced by the smaller set I.

If I is empty, so if E has no isolated points, the graph C∗-algebra G∗(E) is then the
universal C∗-algebra generated by partial isometries Se (e ∈ E1) with orthogonal
range projections such that for e ∈ E1, S∗e Se =

∑

f∈s−1(r(e)) S f S∗f if s−1
(

r(e)
)

is finite,

and the above additional conditions for e, f ∈ E1 only. If Eess = E \ I then clearly

G∗(E) ∼= G∗(Eess )⊕C0(I).

As before, the additional relations in Definition 2.5 are unnecessary if the graph
E has s−1(r(e)) finite for all e ∈ E1, since if l ∈ F, s−1(r(l)) = l which is finite.

In particular these relations are unnecessary if the only vertices emitting infinitely
many edges are sources. They are necessary however for the alternate definition of
Remark 2.6.

Theorem 2.7 If E is a directed graph and B is the vertex matrix of E then G∗(E) ∼= OB.
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Proof This basically follows from how we arrived at the definition of G∗(E).

For example, if B is the one by one matrix with∞ as its entry, the directed graph
E = EB corresponding to B, so the graph with vertex matrix B, is a loop of infinite
multiplicity on a single vertex. We see that the in-split matrix Bw is the infinite square

matrix with each entry equal to one and that OB = G∗(E) is the Cuntz algebra O∞,
where the unit is the initial projection S∗e Se of any of the partial isometries Se, e ∈ E1.

Given a directed graph E = (E0, E1, r, s) a universal C∗-algebra C∗(E) was previ-
ously defined in [5], extending without change the definition for the algebra C∗(E)
of [6] for E row finite. The C∗-algebra C∗(E) is the universal C∗-algebra generated
by mutually orthogonal projections ρv, (v ∈ E0) and partial isometries {σe | e ∈ E1}
with orthogonal ranges such that σ∗e σe = ρr(e), (e ∈ E1), σeσ

∗

e ≤ ρs(e) and ρv =
∑

e∈s−1(v) σeσ
∗

e (v ∈ s(E1)) whenever this sum is finite.

We show the existence of OB, or equivalently of G∗(E) by showing that a certain

∗-subalgebra of C∗(E) satisfies the universal property of Definition 2.5. We also show
that if B is the vertex matrix for E and if every source of E emits only finitely many
edges then OB

∼
= C∗(E), so that the two graph C∗-algebras G∗(E) and C∗(E) coincide

for these directed graphs. In general however, G∗(E) is an ideal of C∗(E).

Theorem 2.8 Let E = (E0, E1, r, s) be a directed graph and B = BE the vertex matrix

of E. The C∗-algebra OB, or equivalently G∗(E), may be identified with an ideal of

C∗(E). If every source of E emits only finitely many edges then G∗(E) = C∗(E).

Proof If {ρv, σe | v ∈ E0, e ∈ E1} are generators of the C∗-algebra C∗(E), set
Se = σe (e ∈ E1) and Se = ρe (e ∈ F) and define G to be the ∗-subalgebra of C∗(E)
generated by these partial isometries Se (e ∈ E1 ∪ F).

We first show that these generators of G satisfy the relations of Definition 2.5. The
range projections of Se are mutually orthogonal. If s−1

(

r(e)
)

is finite for e ∈ E1 then

S∗e Se = σ∗e σe = ρr(e) =
∑

f∈s−1(r(e)) S f S∗f where r(e) ∈ s−1
(

r(e)
)

if r(e) is a sink.
Also S∗e Se = Se = ρe = SeS

∗

e if e ∈ F. The additional relations in Definition 2.5

follow similarly.

We next show that G satisfies the universal property. Assume that A is a C∗-algebra
generated by partial isometries te (e ∈ E1∪F) satisfying the relations in Definition 2.5.

We shall show that there is a ∗-homomorphism ϕ : G→ A mapping Se to te.

Let π : A → B(H) be a faithful ∗-representation of A as bounded operators on a

Hilbert space H. Define

ψ(σe) = π(te) for e ∈ E1

ψ(ρl) = π(tl) for l ∈ F

ψ(ρr(e)) = π(t∗e te) for e ∈ E1 and r(e) /∈ F

ψ(ρv) =
∑

e∈s−1(v)

π(tet
∗

e ) for v ∈ E0 a source, v /∈ F.
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The sum converges in the weak topology of B(H) to a projection in the weak clo-
sure π(A)w since the projections occuring in the sum are orthogonal. The operator

ψ(ρr(e)) is well defined since t∗e te = t∗l tl if r(e) = r(l).

We check that the elements {ψ(σe), ψ(ρv) | e ∈ E1, v ∈ E0} satisfy the relations

defining C∗(E), thus defining a ∗-homomorphism ψ : C∗(E)→ π(A)w.

Since π is a representation of A the elements ψ(ρv) (v ∈ E0) are projections and

ψ(σe) (e ∈ E1) are partial isometries in B(H). If e ∈ E1 with r(e) not a sink ψ(σe)
has initial space π(t∗e te) = ψ(ρr(e)) while if r(e) = v is a sink then t∗e te = t∗v tv = tv by
Definition 2.5, so ψ(σe) has initial space ψ(ρr(e)) in this case also.

We check that the projections ψ(ρv), v ∈ E0 are orthogonal. For example, if l ∈ F

and e ∈ E1 with r(e) /∈ F then l and r(e) are distinct so the projections t∗l tl and t∗e te

are orthogonal in A and ψ(ρl), ψ(ρr(e)) are orthogonal. Also if l ∈ F and v ∈ E0 is
a source and not a sink then ψ(ρl)ψ(ρv) =

∑

e∈s−1(v) π(tl)π(tet
∗

e ) is zero since the
range projections of the generators of A are orthogonal. Similarly with v as before
and e ∈ E1 with r(e) /∈ F then r(e) 6= s(k) for any edge k with s(k) = v. Thus by

Definition 2.5 the projections t∗e te and tkt∗k are orthogonal, implying that ψ(ρr(e)) and
ψ(ρv) are orthogonal.

We next show that ψ(σe)ψ(σe)
∗ ≤ ψ(ρs(e)) for e ∈ E1. If s(e) is a source then

ψ(σe)ψ(σe)
∗ occurs in the sum defining ψ(ρs(e)). If s(e) is not a source then s(e) =

r(l) for some edge l and ψ(ρs(e)) = ψ(ρr(l)) = π(t∗l tl) so by Definition 2.5,
ψ(σe)ψ(σe)

∗ ≤ ψ(ρs(e)) in this case also.

We lastly show that if 0 < |s−1(v)| <∞, so if v is not a sink and emits only finitely
many edges, then ψ(ρv) =

∑

l∈s−1(v) ψ(σl)ψ(σl)
∗. If v is not a source then v = r(e)

for an edge e and ψ(ρv) = ψ(ρr(e)) = π(t∗e te) which is the sum by Definition 2.5. If v

is a source then the equality holds by definition.

This completes the argument showing the existence of the homomorphismψ. The
restriction ofψ to G has range in π(A) andϕ = π−1◦ψ|G is a ∗-homomorphism of G

to A mapping generators to generators. Thus G∗(E) = G exists and is a ∗-subalgebra

of C∗(E).

Since ρv = σ∗e σe ∈ G if v = r(e) /∈ F or if v is a source with 0 < |s−1(v)| < ∞
it is clear that G∗(E) = C∗(E) if every source emits a finite number of edges. To see
that G∗(E) is an ideal of C∗(E) it is only necessary to check that both ρvσl and σlρv ∈
G∗(E) for v a source and l an edge. We have σlσ

∗

l ≤ ρs(l) and so ρvσl = ρvσlσ
∗

l σl

which is σlσ
∗

l σl = σl if s(l) = v, and zero otherwise. Also σlρv = σlσ
∗

l σlρv =

σlρr(l)ρv which is σl if r(l) = v and zero otherwise.

Even in the finite case this theorem asserts something new, namely that one has
not obtained new C∗-algebras by considering C∗-algebras C∗(E) of graphs E, since
if B = BE is the vertex matrix of E then C∗(E) ∼= OB. Returning for a moment to

the graph E with n edges, n ∈ Z+ and n 6= 0, say e1, . . . , en, and two vertices v0, v1

with r(ei) = v1, s(ei) = v0 we see that B = BE is the matrix
[

0 n
0 0

]

. The complete

in-split matrix Bω is the n + 1 by n + 1 square matrix





0 ··· 0 1

...
...

...
1

0 ··· 0 0



. The algebra C∗(E)

is the universal C∗-algebra generated by two orthogonal projections ρ0, ρ1 and n
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partial isometries σ1, . . . , σn with initial space ρ1 and ρ0 =
∑n σiσ

∗

i . The universal
C∗-algebra OB is generated by n + 1 partial isometries S1, . . . , Sn+1 with orthogonal

ranges, Sn+1 = S∗n+1Sn+1 is a projection p and S∗i Si =
∑

Bω(i, j)S j S
∗

j = Sn+1S∗n+1 = p

for all i. It is clear these algebras are isomorphic.

Note that the complete in-split matrix Bω of the vertex matrix B is just the edge
matrix AE of the directed graph E if E has no sinks. Thus, if E has no sinks or sources
it follows immediately from Theorem 2.8 that C∗(E) ∼= OB, while from [5] we have

C∗(E) ∼= OAE
for such E, where OAE

is the Cuntz-Krieger algebra defined in [4]. Thus
OB, which is defined in terms of the matrix Bω = AE, is just the same as the algebra
OAE

of [4] in this case. Theorem 2.8 is valid however even when sinks and sources are
present.

We make a few remarks concerning the Cuntz-Krieger algebra defined in [4]. This
algebra is associated with a possibly infinite {0, 1}-valued matrix B with no zero rows,
so the directed graph E = EB has no sinks. For now we denote it by O(B). Using that
B is a {0, 1} matrix one can show that there is a ∗-homomorphism ϕ : OB → O(B)

mapping Se to ss(e)(sr(e)s
∗

r(e)) where Se (e ∈ E1) are generators of OB satisfying the

relations of Definition 2.3 and where sw (w ∈ E0) are partial isometries generating

O(B) satisfying the relations in [4]. The image ϕ(OB) is a left ideal in O(B). In
addition, if Bw is a row finite matrix, so if the vertices of E which are not sources emit
a finite number of edges, then ψ(OB) is an ideal in O(B). If the matrix B is row finite
then ϕ is a surjection since sw = sw(s∗wsw) = sw

(
∑

B(w, z)szs∗z
)

=

∑

ss(l)sr(l)s
∗

r(l) =
∑

ϕ(Sl), where the last two sums are over l ∈ E1 with s(l) = w. It also follows easily
from Theorem 10 of [5] and Theorem 3.4 below that if E has no sources in addition
to Bw being row finite, then OBw

∼
= O(Bw).

3 Invariance under Matrix In-Splits

The Cuntz-Krieger algebras OA for A a finite matrix with entries in Z+ are invariant
under in-splits and in-amalgamations of the matrix A [2]. In the following we exam-
ine how the general Cuntz-Krieger algebras OB behave under in-splits, where B is an
arbitrary square matrix with entries in Z

∞

+ .

For the remainder of this section we fix the following notation. Let E = (E0, E1,
r, s, ) be the directed graph with vertex matrix B, and let E

∼
= (E

∼

0, E
∼

1, r
∼
, s
∼

) be the
directed graph with vertex matrix C where C is an in-split of the matrix B.

We first restate the process of forming an in-split C of the matrix B in terms of the
associated directed graphs E

∼
and E. Recall from Remark 1.4 that this will describe

what is more accurately called an out-split procedure for directed graphs.

To arrive at the graph E
∼

we replace each vertex v ∈ E0 with m(v) vertices v1, . . . ,
vm(v) where the set of edges { f | s( f ) = v} = s−1(v) are partitioned into m(v) sets.
Here we mean that v is replaced by {vn | n ∈ N} if m(v) =∞. Also, if an edge e ∈ E1

lies in some partition set, say the p-th, of s−1(v) where s(e) = v and r(e) = w then

e is replaced with m(w) edges e1, . . . , em(w), each with the same source vp, but with
ranges w1, . . . ,wm(w) respectively. Notice that if v is a sink then s−1(v) = v using the
extended range and source maps r, s : E1 ∪ F → E0, and so v is left untouched and
becomes a sink in E

∼
also.
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We will find it useful to restate this process in terms of equivalence relations on
E1 ∪ F rather than partitions of the disjoint sets s−1(v), v ∈ E0 . Begin by choosing

any equivalence relation ≈ on E1 ∪ F so that the source map yields a well defined
map of E1 ∪ F/ ≈ to E0; in other words e ≈ f implies s(e) = s( f ). Then each vertex
v ∈ E0 is replaced by the set {[e] | e ∈ s−1(v)} and each edge e ∈ E1 is replaced with
the edges {(e, [ f ]) | f ∈ E1 ∪ F, r(e) = s( f )}. Here note that if l ∈ F and r(e) = s(l)

then r(e) = l and [l] consists of the single point l, so e is replaced by a single edge
(e, l). The source s

∼
of the edge (e, [ f ]) is the vertex [e] and the range r

∼
of (e, [ f ]) is

the vertex [ f ].

Lemma 3.1 Let E be a directed graph with vertex matrix B and E
∼

the directed graph

with vertex matrix C with C an in-split of B. Then E
∼
= (E

∼

0, E
∼

1, r
∼
, s
∼

) with E
∼

0
=

E1 ∪ F/ ≈, E
∼

1
= {(e, [ f ]) | e ∈ E1, f ∈ E1 ∪ F, r(e) = s( f )}, r

∼
(e, [ f ]) = [ f ], and

s
∼

(e, [ f ]) = [e] where≈ is an equivalence relation satisfying e ≈ f implies s(e) = s( f ).

Note that the sinks of E
∼

are {[l] | l ∈ F} where [l] consists of the single element

l. Thus F consists of the sinks of E
∼

. If l ∈ F then a pair (l, [ f ]) satisfying f ∈ E1 ∪ F

and r(l) = s( f ) can only be (l, [l]), so F may be identified with {(l, [l]) | l ∈ F} and
the set E

∼

1 ∪ F = {(e, [ f ]) | e, f ∈ E1 ∪ F, r(e) = s( f )}. This set is the pullback of the
range map r : E1 ∪ F → E0 and the well defined source map s : E1 ∪ F/≈ → E0.

We wish to single out those in-splits that satisfy the requirement that the partition

of the edges in s−1(v) where v ∈ E0 is not a source consists of sets containing only
a finite number of edges. Note though that the number of sets of the partition may
still be infinite. Also, the complete in-split is an example of this type of in-split. If Bω
is row finite then s−1(v) is finite for v ∈ E0, v not a source, so in this case any in-split

of B is also of this type. In terms of the equivalence relation ≈ on E1 ∪ F this type
of in-split is characterized by stipulating that only finitely many edges occur in each
equivalence class [ f ] with s( f ) = r(e) for some e ∈ E1, so for s( f ) not a source. We

define an equivalent condition for the matrix C .

Definition 3.2 The in-split matrix C of B is a proper in-split if the [ f ] row of C has
only finite entries whenever the [ f ] column is nonzero.

The above comments show that if Bω is row finite then C is always a proper in-

split of B. Also if C is row finite then Bω is also row finite, but the converse is false
in general, as one sees by letting C = B for example. The following theorem shows
there is a ∗-homomorphismϕ : G∗(E

∼
)→ G∗(E) whenever C is a proper in-split of B.

Theorem 3.3 Let E be a directed graph with vertex matrix B and E
∼

a directed graph

with vertex matrix C where C is a proper in-split of B. Then there is a ∗-homomorphism

ϕ : OC → OB. In particular there is a ∗-homomorphism OC → OB if C = Bw, the

complete in-split of B.

Proof Let {Se | e ∈ E1 ∪ F} be generators for G∗(E) satisfying the relations of
Definition 2.5, and {T(e,[ f ]) | (e, [ f ]) ∈ E

∼

1 ∪ F} generators for G∗(E
∼

) satisfying the
relations of Definition 2.5. Define ϕ(T(e,[ f ])) = Se(

∑

h∈[ f ] ShS∗h ). It is sufficient to
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check that {ϕ(T(e,[ f ])) | (e, [ f ]) ∈ E
∼

1 ∪ F} satisfies the relations of Definition 2.5 to
conclude that this defines a ∗-homomorphism ϕ. The sum occurring in the defini-

tion of ϕ is finite since the in-split is proper. We compute ϕ(T(e,[ f ]))
∗ϕ(T(e ′,[ f ′])) =

(
∑

h∈[ f ] ShS∗h )S∗e Se ′(
∑

h ′∈[ f ′] Sh ′S
∗

h ′) which is zero unless e = e ′. If e = e ′ then
S∗e SeSh ′ = S∗e SeSh ′S

∗

h ′Sh ′ = Sh ′ by Definition 2.5, so the entire expression =
(
∑

h∈[ f ] ShS∗h )(
∑

h ′∈[ f ′] Sh ′S
∗

h ′) which is the projection
∑

ShS∗h if [ f ] = [ f ′], and

is zero if [ f ] 6= [ f ′] since equivalence classes are then disjoint. Thus ϕ(T(e,[ f ]))
are partial isometries with orthogonal final ranges. For (l, [l]) ∈ F with l ∈ F,
ϕ(T(l,[l])) = SlSlS

∗

l = Sl which is a projection, so the next property of Defini-
tion 2.5 is true. The calculation above shows that the initial projection of ϕ(T(e,[ f ]))

is
∑

h∈[ f ] ShS∗h , so

ϕ(T(e,[ f ]))
∗ϕ(T(e,[ f ]))ϕ(T(e ′,[ f ′]))

∗ϕ(T(e ′,[ f ′]))

=

{

ϕ(T(e ′,[ f ′]))
∗ϕ(T(e ′,[ f ′])) if r

∼
(e, [ f ]) = r

∼
(e ′, [ f ′])

0 otherwise.

Since
(

∑

h∈[ f ]

ShS∗h

)

Se ′ =

{

Se ′ if e ′ ∈ [ f ]

0 otherwise

and e ′ ∈ [ f ] if and only if [e ′] = [ f ] it follows that

ϕ(T(e,[ f ]))
∗ϕ(T(e,[ f ]))ϕ(T(e ′,[ f ′]))ϕ(T(e ′,[ f ′]))

∗

=

{

ϕ(T(e ′,[ f ′]))ϕ(T(e ′,[ f ′]))
∗ if r

∼
(e, [ f ]) = s

∼
(e ′, [ f ′])

0 otherwise.

It remains to show ϕ(T(e,[ f ]))
∗ϕ(T(e,[ f ])) =

∑

ϕ(T(a,[b]))ϕ(T(a,[b]))
∗ if the sum is

finite and where the sum is over those (a, [b]) with s
∼

(a, [b]) = r
∼

(e, [ f ]), so those
(a, [b]) with [a] = [ f ]. Since this is a proper in-split, the number of a ∈ [ f ]
is finite, so this set of (a, [b]) is finite if and only if the set {[b] | r(a) = s(b)}
is finite for each a ∈ [ f ]. Again, however, each class [b] is finite, so this set is
finite if and only if

{

b | b ∈ s−1
(

r(a)
)}

is finite for each a ∈ [ f ]. Thus, if

the index set for the sum on the right side is finite, so is s−1
(

r(a)
)

, and by the
corresponding property for G∗(E), S∗a Sa =

∑

h∈s−1(r(a)) ShS∗h . Expanding the right
side we obtain

∑

(a,[b]) Sa(
∑

h∈[b] ShS∗h )S∗a =
∑

a∈[ f ] Sa(
∑

h∈[b],b∈s−1(r(a)) ShS∗h )S∗a =
∑

a∈[ f ] Sa(
∑

h∈s−1(r(a)) ShS∗h )S∗a =
∑

a∈[ f ] Sa(S∗a Sa)S∗a =
∑

a∈[ f ] SaS∗a which is the
initial projection of ϕ(T(e,[ f ])).

The ∗-homomorphism ϕ : OC → OB for C a proper in-split of B is an isomor-

phism if the complete in-split matrix Bω is row finite. This extends to the infinite
matrix case the known isomorphism results for the finite matrix Cuntz-Krieger alge-
bras [2].

Theorem 3.4 Let C be an in-split matrix for B where the matrix Bω is row finite. The

map ϕ : OC → OB of Theorem 3.3 is an isomorphism.
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Proof Let E and E
∼

denote the directed graphs with vertex matrices B and C respec-
tively. We define ψ : G∗(E)→ G∗(E

∼
) by specifying ψ on generators {Se | e ∈ E1 ∪ F}

of G∗(E) and showing that {ψ(Se) | e ∈ E1∪F} satisfy the relations of Definition 2.5.
Define ψ(Se) =

∑

T(e,[ f ]) where the sum is over [ f ] with (e, [ f ]) ∈ E
∼

1 ∪ F. This
sum is finite if Bω is row finite. For l ∈ F we haveψ(Sl) = T(l,[l]) and soψ(Sl)

∗ψ(Sl) =
ψ(Sl). In G∗(E

∼
), T(e,[ f ])T

∗

(e,[h]) = 0 unless r
∼

(e, [ f ]) = r
∼

(e, [h]), so unless [ f ] = [h],

and it follows that ψ(Se)ψ(Se)∗ is a finite sum of orthogonal projections. Thus it is
a projection and ψ(Se) is a partial isometry. Also in G∗(E

∼
), T∗(e,[ f ])T(a,[b]) = 0 unless

(e, [ f ]) = (a, [b]), and a quick computation shows that the range projections of
ψ(Se) are orthogonal.

Since Bω is row finite, s−1
(

r(e)
)

is finite for e ∈ E1 ∪ F. Thus the additional rela-
tions of Definition 2.5 are superfluous and we only need to check that ψ(Se)∗ψ(Se) =
∑

a∈s−1(r(e)) ψ(Sa)ψ(Sa)∗ for e ∈ E1 ∪ F. First note that T∗(e,[ f ])T(e,[ f ]) =
∑

T(a,[b])T
∗

(a,[b]) where the sum is over those (a, [b]) ∈ E
∼

1 ∪ F with [a] = s
∼

(a, [b]) =

r(e, [ f ]) = [ f ]; in other words those (a, [b]) with a ∈ [ f ]. As [ f ] varies under the
restriction that (e, [ f ]) ∈ E

∼

1 ∪ F we thus obtain all possible a ∈ s−1
(

r(e)
)

. We have

ψ(Se)∗ψ(Se) =
∑

[ f ]

T∗(e,[ f ])T(e,[ f ])

=

∑

[ f ]

(

∑

a∈[ f ]
(a,[b])

T(a,[b])T
∗

(a,[b])

)

=

∑

a∈s−1(r(e))

(

∑

(a,[b])

T(a,[b])T
∗

(a,[b])

)

=

∑

a∈s−1(r(e))

ψ(Sa)ψ(Sa)∗.

Since Bω is row finite the in-split C is proper and the map ϕ : OC → OB of
Theorem 3.3 exists. The composition ϕ ◦ ψ maps Se to

∑

[ f ] ϕ(T(e,[ f ])) =
∑

Se

∑

h∈[ f ] ShS∗h = Se

∑

h∈s−1(r(e)) ShS∗h = SeS
∗

e Se = Se while ψ ◦ ϕ maps

T(e,[ f ]) to ψ(Se

∑

a∈[ f ] SaS∗a ) = (
∑

[g] T(e,[g]))
(
∑

a∈[ f ](
∑

[b] T(a,[b])T
∗

(a,[b]))
)

=

T(e,[ f ])(
∑

a∈[ f ]
(a,[b])

T(a,[b])T
∗

(a,[b])) since T(e,[g])T(a,[b]) = 0 unless [g] = r
∼

(e, [g]) =

s
∼

(a, [b]) = [a] = [ f ]. This latter expression is T(e,[ f ])(T∗(e,[ f ])T(e,[ f ])) = T(e,[ f ]).

Thus ϕ = ψ−1 is an isomorphism.

This last result, or Theorem 2.8, gives easy access to examples of directed graphs E

with G∗(E) not isomorphic to C∗(E). For example let E have two vertices v, w with
edges {en | n ∈ N} and s(en) = v, r(en) = w, (n ∈ N). The vertex matrix of E is

B =
[

0 ∞
0 0

]

which has complete in-split Bω =





0 ··· 0 1

...
...

...
0 ··· 0 1
0 ··· 0 0



, a row finite matrix. If E
∼

is the directed graph with vertex matrix Bω then G∗(E) ∼= G∗(E
∼

) by Theorem 3.4.
Theorem 2.8 implies that G∗(E

∼
) ∼= C∗(E

∼
). We show that C∗(E) is not isomorphic to
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C∗(E
∼

), so Theorem 3.4 does not apply to C∗(E) in general. This is equivalent to C∗(E)
and G∗(E) being nonisomorphic. For this specific example, C∗(E) is G∗(E) with an

adjoined unit. The C∗-algebra C∗(E) is generated by two orthogonal projections
ρ1, ρ2 and partial isometries σn, (n ∈ N) with orthogonal ranges σnσ

∗

n ≤ ρ1 and
initial spaces all equal to ρ2. Thus ρ1 + ρ2 is the unit for C∗(E). The algebra G∗(E)
is the nonunital algebra generated by partial isometries {Sn | n ∈ N} along with a

projection Sω so that the projections {SnS∗n | n ∈ N} ∪ {Sω} are orthogonal and the
initial projections S∗nSn are all equal to Sw.
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