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Abstract. The structure of an inverse monoid can be determined by the com-
plete set of SchuÈ tzenberger graphs of a presentation. Necessary and su�cient con-
ditions for a collection of inverse X-graphs to be the complete set of SchuÈ tzenberger
graphs of some inverse monoid presentation are established and decidability results
are obtained. Conditions for a single inverse X-graph to be a SchuÈ tzenberger graph
for some presentation are also obtained, and both problems are restricted to the case
of Cli�ord monoids and E-unitary inverse monoids. Decidability and undecidability
results are obtained for the case of ®nite graphs. It is also proved that the problem of
embedding a ®nite inverse X-graph in the Cayley graph of a group is undecidable.

1991 Mathematics Subject Classi®cation. 20M18, 20M35, 20F10.

1. Introduction. Each inverse monoid presentation InvhX;Ri induces a set of
inverse graphs known as SchuÈ tzenberger graphs. Each graph corresponds to a D-
class in the inverse monoid M de®ned by the presentation. If M is a group, we have
a single SchuÈ tzenberger graph which happens to be the well-known Cayley graph of
the group. The straightforward generalization of Cayley graphs to inverse monoids
wouldn't be adequate because the resulting graphs wouldn't be inverse in general.
Therefore it is preferred to de®ne the complete collection of SchuÈ tzenberger graphs.
In [8], Ruyle observed that the structure of M is totally determined by the complete
collection of SchuÈ tzenberger graphs of the presentation InvhX;Ri. Our ®rst goal in
this paper is to establish necessary and su�cient conditions for a collection of
inverse X-graphs to qualify as the complete set of SchuÈ tzenberger graphs of some
inverse monoid presentation. Some of the conditions we consider provide nice
decidability algorithms for a ®nite collection of ®nite graphs. These results constitute
the core of section 3. In section 4 we consider particular classes of inverse monoids,
namely Cli�ord monoids and E-unitary inverse monoids.

A related problem is to study under which conditions an inverse X-graph
quali®es as a SchuÈ tzenberger graph of some inverse monoid presentation. This prob-
lem was solved for ®nite graphs by Cowan and Reilly [1], which actually produced
an algorithm to decide this question. Ruyle studied the general case and produced
necessary and su�cient conditions [8]. In section 5, we establish alternative condi-
tions using the notation of section 3. Section 6 is devoted to this same problem when
restricted to the case of Cli�ord monoids and E-unitary inverse monoids.
Decidability for the case of a ®nite inverse X-graph and Cli�ord monoids is also
established.
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In section 7 we show that the latter problem is undecidable for the case of E-
unitary inverse monoids. To prove this, we show that it is undecidable whether or
not a ®nite inverse X-graph embeds in the Cayley graph of a group, a problem of
independent interest.

2. Preliminaries. We start by introducing some basic terminology and results
from automata theory. For further information, the reader is referred to [2]. Let X
be a ®nite set, denoted usually in this context by alphabet. The free monoid on X is
denoted by X� and we de®ne an X-language to be a subset of X�. The empty word is
denoted by 1. Given u; v 2 X�, we say that v is a factor (respectively pre®x) of u if
u � avb (respectively u � vb) for some a; b 2 X�.

An X-graph is an ordered pair of the form ÿ � �V;E�, where V is a nonempty
set and E � V� X� V. We call the elements of V�ÿ� � V vertices and the elements
of E�ÿ� � E edges. An X-graph ÿ � �V;E� is said to be
� ®nite if V is ®nite;
� deterministic if �p; x; q�; �p; x; q0� 2 E ) q � q0.

A sequence of the form

q0ÿ!x1 q1ÿ!x2 . . .ÿ!xn qn �1�

is said to be a path in ÿ if �qjÿ1; xj; qj� 2 E for every j 2 f1; . . . ; ng. The word x1 . . . xn
is the label of the path. If n � 0, the path is trivial. If qn � q0, we call it a loop. A
graph ÿ is called
� connected if, for all p; q 2 V, there is a path in ÿ from p to q.
If ÿ and ÿ0 are X-graphs, a graph homomorphism ' : ÿ! ÿ0 is a map

' : V�ÿ� ! V�ÿ0� such that �p'; x; q'� 2 E�ÿ0� whenever �p; x; q� 2 E�ÿ�. If ' is an
injective map, we have an embedding of graphs. If ' is bijective and 'ÿ1 is also a
homomorphism, then ' is an isomorphism.

An X-automaton is a triple of the form A � �i;ÿ;T �, where ÿ is an X-graph,
i 2 V�ÿ� and T � V�ÿ�. Two X-automata A � �i;ÿ;T � and A0 � �i0;ÿ0;T 0� are iso-
morphic if there exists a graph isomorphism ' : ÿ! ÿ0 satisfying i' � i0 and
T' � T 0. Let A � �i;ÿ;T � be an X-automaton. We say that A is ®nite (respectively
deterministic) if ÿ is ®nite (respectively deterministic). A path in A is a path in ÿ. A
path of the form (1) is said to be successful if q0 � i and qn 2 T. The set of all labels
of successful paths in A is the language recognized by A and is denoted by L�A�.

We say that an X-language L is rational if L � L�A� for some ®nite X-auto-
maton A. The terminology rational follows from a famous theorem by Kleene, that
establishes an alternative characterization in terms of the so-called rational opera-
tors (see [2]). We denote the set of all rational X-languages by RatX.

We denote by X the set X [ Xÿ1 , where X is a ®nite alphabet and Xÿ1 is a set of
formal inverses of X. We de®ne an involution on X � by

�xÿ1�ÿ1 � x; �y1 . . . yn�ÿ1 � yÿ1n . . . yÿ11 ;

for x 2 X and y1; . . . ; yn 2 X. The reduction map � : X � ! X � assigns to every word
w 2 X � the (unique) word obtained from w by successively deleting from it all the
factors of the form yyÿ1, with y 2 X.
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An X-graph is said to be inverse if
(i) ÿ is deterministic and connected;
(ii) 8p; q 2 V�ÿ� 8y 2 X ��p; y; q� 2 E�ÿ� ) �q; yÿ1; p� 2 E�ÿ��.

An inverse graph ÿ is called a tree if the empty word 1 is the unique reduced word
labelling a loop in ÿ. We say that an X-automaton A � �i;ÿ;T � is inverse (respec-
tively a tree) if ÿ is inverse (respectively a tree) and j T j = 1. It is common to
replace T by its unique element. We have the following.

Proposition 2.1. [9] Given inverse X-automata A and B, the following conditions
hold:

(i) A � B i� L�A� � L�B�.
(ii) There exists a homomorphism ' : A! B i� L�A� � L�B�.

Next we introduce some basic tools from inverse semigroup theory. The reader
is referred to [3] for general semigroup theory and to [7] for inverse monoids.

Let M be a monoid. A relation R on M is assumed to be a subset R �M�M.
The congruence on M generated by R is denoted by R]. Given a congruence � on M
and a 2M, we denote by a� the congruence class of a.

The monoid M is said to be inverse if

8u 2M 9!uÿ1 2M : uuÿ1u � u and uÿ1uuÿ1 � uÿ1:

A commutative monoid whose elements are idempotents is said to be a semilattice.
Such monoids constitute important examples of inverse monoids. Moreover, the
subset of idempotents of an inverse monoid M constitutes a semilattice. The semi-
lattice of idempotents of M is denoted by E�M�. We call M a Cli�ord monoid if, for
all u 2M and e 2 E�M�, we have that eu � ue.

If M is an inverse monoid, there is a smallest congruence � on M such that M is
a group; � is called the minimal group congruence on M. We say that M is an E-
unitary monoid if

8u 2M 8e 2 E�M� �ue 2 E�M� ) u 2 E�M��:
Equivalently, M is E-unitary if � is idempotent-pure that is, if u�e, with u 2M and
e 2 E�M�, then u 2 E�M�.

We also consider the natural partial order on an inverse monoid M. Given
a; b 2M, we write a � b if a � eb for some e 2 E�M�. Alternatively, a � b if and
only if aaÿ1b � a.

The free inverse monoid on X is de®ned as the quotient X
�
=�, where

� � �f�uuÿ1u; u� j u 2 X
�g [ f�uuÿ1vvÿ1; vvÿ1uuÿ1� j u; v 2 X

�g�]:

The congruence � is known as the Vagner congruence on X
�
and we denote the free

inverse monoid on X by FIM�X�.
For every w 2 X

�
, we de®ne

MT�w� � fu� j u is a prefix of wg:

The inverse tree automaton induced by MT�w� when we take 1 and w� as initial and
terminal vertices is called the Munn tree of w. Note that MT�w� de®nes a ®nite
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subtree of the standard Cayley graph of the free group on X. Munn trees play an
essential role in the study of the free inverse monoid:

Proposition 2.2. [6] For all u; v 2 X
�
, the following conditions are equivalent:

(i) u � v;
(ii) MT�u� �MT�v� and u� � v�;
(iii) the Munn trees of u and v are isomorphic.

A presentation of an inverse monoid is a formal expression of the form
InvhX;Ri, where X is a nonempty set and R is a relation on X

�
. If X and R are both

®nite, the presentation is said to be ®nite. The quotient X
�
=�� [ R�] is the inverse

monoid de®ned by this presentation. It is a well-known fact that every inverse
monoid can be de®ned by a presentation.

Let InvhX;Ri be an inverse monoid presentation and let � � �� [ R�]. We can
associate to every w 2 X

�
an inverse X-graph Sÿ�X;R;w� in a natural way. The set

of vertices is the R-class of w� (see [3]) and the edges consist of all the triples of the
form �a; y; b� with a; b 2 Rw�, y 2 X and b � a�y��. The graph Sÿ�X;R;w� is the
SchuÈtzenberger graph of w relative to the presentation InvhX;Ri. When M is a
group, then S�X;R;w� is exactly the Cayley graph for the corresponding group
presentation.

The X-automaton ��wwÿ1��;Sÿ�X;R;w�;w�� is denoted by S�X;R;w�. We say
that S�X;R;w� is the SchuÈtzenberger automaton of w relative to the presentation
InvhX;Ri. The relevance of the SchuÈ tzenberger automata for the study of inverse
monoid presentations is clear from the following results.

Proposition 2.3. [9]

L�S�X;R;w�� � fu 2 X
� j u� � w�g � fu 2 X

� j �wwÿ1u�� � w�g:

Proposition 2.4. [9] Given u; v 2 X
�
, the following conditions are equivalent:

(i) u� � v�;
(ii) S�X;R; u� � S�X;R; v�;
(iii) L�S�X;R; u�� � L�S�X;R; v��.

3. The complete set of SchuÈ tzenberger graphs. In this section, we give necessary
and su�cient conditions for a set of inverse graphs to be the set of SchuÈ tzenberger
graphs of an inverse monoid presentation. Throughout this section, let �ÿi�i2I be a
family of inverse X-graphs. We de®ne


i � fL�p;ÿi; q� j p; q 2 V�ÿi�g

and 
 � [i2I
i. For every u 2 X �, let


�u� � fL 2 
 j u 2 Lg:

If 
�u� 6� ;, let Lu � \
�u�. Otherwise, let Lu � ;. We consider the following con-
dition:

(S) 
 � fLu j u 2 X �g.
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Note that, by Proposition 2.4, condition (S) could be expressed in terms of automata
morphisms. In what follows, we will consider the two inclusions separately, namely,

(S1) For every language L 2 
, there is a word u 2 X � such that L � Lu.
(S2) For every word u 2 X �, 
�u� 6� ; and Lu 2 
.
The two following examples show that conditions �S1� and �S2� are independent.

The set of graphs in Example 3.1 satis®es condition �S1� but doesn't satisfy condi-
tion �S2�, while Example 3.2 provides the reverse situation.

Example 3.1.

Example 3.2.

Lemma 3.3. If condition �S2� is satis®ed, the relation � de®ned on X � by

u�v, Lu � Lv

is an inverse monoid congruence.

Proof. Suppose that condition �S2� is satis®ed. Clearly, � is an equivalence rela-
tion. Let u; v;w 2 X � be such that u�v, that is, Lu � Lv. By �S2�, Luw 2 
; let
Luw � L�p;ÿi; q�, with p; q 2 V�ÿi�. Hence Luw 6� ; and so uw 2 Luw. Thus there is
r 2 V�ÿi� such that u 2 L�p;ÿi; r� and w 2 L�r;ÿi; q�. It follows that
L�p;ÿi; r� 2 
�u� and so Lu � L�p;ÿi; r�. Since Lu � Lv, then v 2 L�p;ÿi; r� so that
vw 2 L�p;ÿi; q� � Luw and Lvw � Luw. By symmetry, it follows that Luw � Lvw, i.e.,
�uw���vw�. Similarly we get �wu���wv� so that � is a congruence on X �.

Note that, since the graphs ÿi are inverse then, for all u; v 2 X �, we have that

Lu � Luuÿ1u and Luuÿ1vvÿ1 � Lvvÿ1uuÿ1

so that � � � and � is an inverse monoid congruence on X �. &

Lemma 3.4. If condition �S� is satis®ed, the graphs �ÿi�i2I are, up to isomorphism,
the set of SchuÈtzenberger graphs of the presentation InvhX; �i.

Proof. We begin by seeing that, for all u 2 X �, Lu � L�S�X; �; u��. By Proposi-
tion 2.4, this is equivalent to

Lu � fv 2 X
� j u� � �uuÿ1v��g

and therefore to
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Lu � fv 2 X
� j Lu � Luuÿ1vg:

By condition �S2�, we have Lu � L�p;ÿi; q�, for some p; q 2 V�ÿi�. Suppose that
v 2 Lu; since u 2 Lu and ÿi is inverse, it follows that uu

ÿ1v 2 Lu so that Luuÿ1v � Lu.
Again, by condition �S2�, Luuÿ1v � L�p0;ÿj; q

0� with p0; q0 2 V�ÿj�. Since uuÿ1v 2
L�p0;ÿj; q

0�, then u 2 L�p0;ÿj; r�, for some r 2 V�ÿj�. It follows that Lu � L�p0;ÿj; r�
which, since v 2 Lu, gives that v 2 L�p0;ÿj; r�. We then have that uuÿ1v 2 L�p0;ÿj; r�
and uuÿ1v 2 L�p0;ÿj; q

0�. Since ÿj is inverse, it follows that r � q0 and so u 2 Luuÿ1v
and Lu � Luuÿ1v. Hence Lu � Luuÿ1v.

Conversely, suppose that v 2 X
�

is such that Lu � Luuÿ1v. Since, by �S2�,
uuÿ1v 2 Luuÿ1v then clearly v 2 Luuÿ1v i.e., v 2 Lu. We have thus proved that
Lu � L�S�X; �; u��, for all u 2 X �.

Let S be the set of SchuÈ tzenberger graphs of the presentation InvhX; �i. We will
see that, up to isomorphism, S � �ÿi�i2I. Let u 2 X � and Lu � L�p;ÿi; q�, with
p; q 2 V�ÿi�. From what we saw, Lu � L�S�X; �; u�� which, since ÿi and Sÿ�X; �; u�
are inverse graphs, gives that S�X; �; u� ' �p;ÿi; q� by Proposition 2.1 (i) and so
Sÿ�X; �; u� ' ÿi.

Conversely, given ÿi and p; q 2 V�ÿi� we have, by �S1�, that L�p;ÿi; q� � Lu, for
some u 2 X �. Again, since L�p;ÿi; q� � Lu � L�S�X; �; u�� we have that
�p;ÿi; q� ' S�X; �; u� and ÿi is isomorphic to a graph in S. &

Theorem 3.5. A family �ÿi�i2I of inverse X-graphs is the set of SchuÈtzenberger
graphs of an inverse monoid presentation if and only if it satis®es condition �S�.

Proof. To establish this result, it remains to see that condition �S� is satis®ed
by the set of SchuÈ tzenberger graphs of any inverse monoid presentation. Assume
that �ÿi�i2I is the set of SchuÈ tzenberger graphs of the presentation InvhX;Ri.
Then 
 � fL�S�X;R; u�� j u 2 X �g. We show that Lu � L�S�X;R; u��, for every
u 2 X �.

Let u 2 X �. Since u 2 L�S�X;R; u��, we have L�S�X;R; u�� 2 
�u�. Let L 2 
�u�,
and let v 2 X � be such that L � L�S�X;R; v��. Since u 2 L, Proposition 2.4 yields
u� � v�. Also, given w 2 L�S�X;R; u��, we have w� � u�, hence w� � v� and so
w 2 L. Thus L�S�X;R; u�� � L and so L�S�X;R; u�� � Lu. Therefore (S) holds. &

We now give alternative conditions for �S1� and �S2�. In view of these, it follows
easily that, when we have a ®nite set of ®nite graphs, conditions �S1� and �S2� are
decidable, and provide a simple algorithm to answer the problem.

Proposition 3.6. The following are equivalent:
(i) �S1�;
(ii) for every L 2 
, we have that L 6� [fL0 2 
 j L 6� L0g.

Proof. Suppose that �S1� holds, and let L 2 
. By �S1�, there is u 2 X � such that
L � Lu. Then L � \
�u� and L � L0, for all L0 2 
�u�. It follows that, if L0 2 
 is
such that L 6� L0, then L0 =2
�u�, that is, u =2L0 and so u =2 [ fL0 2 
 j L 6� L0g. Since
u 2 L, then L 6� [fL0 2 
 j L 6� L0g.

Conversely, suppose that condition (ii) is satis®ed. Given L 2 
, there is u 2 X �

such that u 2 L n [fL0 2 
 j L 6� L0g. In particular, 
�u� 6� ;. Let L00 2 
�u�. Since
u 2 L00 and u =2 [ fL0 2 
 j L 6� L0g, then L00 6� [fL0 2 
 j L 6� L0g so that L � L00.
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We then have that L 2 
�u� and L � L00, for all L00 2 
�u� which gives that
L � \
�u� that is, L � Lu and �S1� holds. &

Proposition 3.7. Suppose that, for every word u 2 X �, 
�u� 6� ;. The following
are equivalent:

(i) �S2�;
(ii) for every � � 
 such that \� 6� ;, there is �0 � 
 such that [�0 � \�.

Proof. Suppose that �S2� is satis®ed, and let � � 
 be such that \� 6� ;. For
every u 2 \�, we have that Lu � \� and it follows that, if �0 � fLu j u 2 \�g, then
[�0 � \�.

Conversely, assume that condition (ii) is satis®ed, and let u 2 X �. We have that

�u� 6� ; and, since u 2 \
�u�, then \
�u� 6� ;. By condition (ii), there exists
�0 � 
 such that [�0 � \
�u�. It follows that u 2 [�0 so that u 2 L, for some
L 2 �0. Thus L 2 
�u� and hence \
�u� � L. On the other hand L 2 �0 gives that
L � [�0 � \
�u�. Hence L � \
�u� � Lu and Lu 2 
. &

Corollary 3.8. Suppose that, for every word u 2 X �, 
�u� 6� ; and that 
 is
®nite. The following are equivalent:

(i) �S2�;
(ii) for every L;L0 2 
 such that L \ L0 6� ;, there are L1; . . . ;Lk 2 
 such that
[iLi � L \ L0.

Proof. Note that, when 
 is ®nite, Proposition 3.7 gives that condition (i) is
equivalent to the following condition:

8L�1�; . . . ;L�n� 2 
 �\jL� j� 6� ; ) 9L1; . . . ;Lk 2 
 : [iLi � \jL� j��: �2�
It is clear that condition (2) implies condition (ii). To prove the reverse we use
induction on n. For n � 1; 2 (ii) implies (2) trivially. We suppose now that (ii) implies
(2), for all values smaller than n. Let L�1�; . . . ;L�n� 2 
 be such that \nj�1L� j� 6� ;.
Then \nÿ1j�1 L

� j� 6� ; and so, by the induction hypothesis, \nÿ1j�1 L
� j� � L1 [ . . . [ Lk, for

some L1; . . . ;Lk 2 
. Then

\nj�1L� j� � �L1 [ . . . [ Lk� \ L�n� � �L1 \ L�n�� [ . . . [ �Lk \ L�n��:

Also, for each i � 1; . . . k,

Li \ L�n� � L
�i�
1 [ . . . [ L�i�ki

for some L
�i�
1 ; . . . ;L�i�ki 2 
. Since \nj�1L� j� 6� ;, then Li \ L�n� 6� ;, for some i � 1 . . . k,

and the result follows by induction. &

Given a ®nite set fÿ1; . . . ;ÿng of ®nite inverse X-graphs, it is thus possible to
decide whether or not fÿ1; . . . ;ÿng is the set of SchuÈ tzenberger graphs of an inverse
monoid, as we next describe. Since the graphs ÿi are ®nite, we have 
 � RatX. We
make use of the following well-known facts about rational languages [2].
� If L;L0 2 RatX, then L [ L0 and L \ L0 are e�ectively constructible rational

X-languages.
� If L;L0 2 RatX, it is decidable whether or not L � L0.
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To have 
�u� 6� ; for every u 2 X
�
is equivalent to the inclusion X

� � [
 and so we
can decide whether or not this condition holds, a necessary condition for (S2) to
hold. If this condition holds then Corollary 3.8 yields that (S2) is decidable. It fol-
lows from Proposition 3.6 that (S1) is also decidable.

4. E-unitary and Cli�ord monoids. In this section, we provide necessary and
su�cient conditions for a set of inverse graphs to be the set of SchuÈ tzenberger
graphs of an E-unitary monoid and of a Cli�ord monoid. Given an X-language L,
we denote by Pref�L� the set of pre®xes of the words of L.

Let �ÿi�i2I be a family of inverse X-graphs satisfying condition �S�. Let � be the
congruence on X � de®ned by u�v, Lu � Lv, and let M be the inverse monoid
determined by the presentation InvhX; �i. Recall that, by Lemma 3.4, we have that
�ÿi�i2I is the set of SchuÈ tzenberger graphs of the presentation InvhX; �i.

From [5], we have that M is E-unitary if and only if the natural morphism
associated with � induces a graph embedding of each ÿi into the Cayley graph of the
maximal group homomorphic image of M (relative to the induced set of generators).
Next we give several other equivalent conditions.

Theorem 4.1. If �S� holds, the following conditions are equivalent:
(i) the monoid M is E-unitary;
(ii) for all L;L0 2 
; ��1 2 L ^ L0 � L� ) 1 2 L0�;
(iii) for all i; j 2 I; �L�p;ÿi; p� \ L�q;ÿj; r� 6� ; ) q � r�;
(iv) all graphs ÿi embed in the Cayley graph of some group.

Proof. We begin by showing that (i) , (ii). It is straightforward to verify that,
for all u 2 X �, u� is idempotent if and only if 1 2 L�S�X; �; u��. We have that M is E-
unitary if and only if, for all u; e 2 X �, u� � e� and e� idempotent imply that u� is
idempotent. Let u; v 2 X �. By Proposition 2.3 and condition �S�,

u� � v� , u 2 L�S�X; �; v��
, u 2 Lv

, Lu � Lv:

It follows that M is E-unitary if and only if, for all u; v 2 X �, Lu � Lv and 1 2 Lv

imply that 1 2 Lu. Now condition �S� yields the equivalence (i), (ii).
By [5], we have that (i) ) (iv). Suppose that (iv) holds so that for all i, there is

an embedding 'i : ÿi ! ÿ0, where ÿ0 is the Cayley graph of some group. Let
u 2 L�p;ÿi; p� \ L�q;ÿj; r�. Since u 2 L�p;ÿi; p�, then u labels a loop in ÿi and so u
labels a loop at every vertex in ÿ0. Then q'j � r'j which, since 'j is injective, gives
that q � r and so (iii) holds. Hence (iv)) (iii).

Now, given (iii), let L;L0 2 
 be such that 1 2 L and L0 � L. Since 1 2 L then
L � L�p;ÿi; p� for some i and some p 2 V�ÿi�. Let L0 � L�q;ÿj; r� for some j and
q; r 2 V�ÿj�. As L0 � L, we have that L�p;ÿi; p� \ L�q;ÿj; r� 6� ; which, by hypoth-
esis, gives that q � r. Hence 1 2 L�q;ÿj; r� � L0, and the result follows. &

Theorem 4.2. If �S� holds, the following conditions are equivalent:
(i) M is a Cli�ord monoid;
(ii) for all i 2 I and all L;L0 2 
i, Pref�L� � Pref�L0�;
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(iii) for all i 2 I and all p; q 2 V�ÿi�, L�p;ÿi; p� � L�q;ÿi; q�.

Proof. The inverse monoid M is a Cli�ord monoid if and only if D � R. We
have that, for all u; v 2 X �,

u�Rv� , �uuÿ1���vvÿ1� , Luuÿ1 � Lvvÿ1

and, clearly,

Luuÿ1 � Lvvÿ1 ) Pref�Lu� � Pref�Luuÿ1 � � Pref�Lvvÿ1� � Pref�Lv�:

So if M is a Cli�ord monoid, u�Dv� implies that Pref�Lu� � Pref�Lv�, for all
u; v 2 X �. On the other hand, note that, if i 2 I and L;L0 2 
i, then L � Lu and
L0 � Lv, with u; v 2 X � such that u�Dv�. It thus follows that, if M is a Cli�ord
monoid, then, for all i 2 I and L;L0 2 
i, we have that Pref�L� � Pref�L0� that is, (i)
) (ii).

Let i 2 I. Assume that (ii) holds, and let p; q 2 V�ÿi�. We have that
L�p;ÿi; p� � Le, for some e 2 X �. By assumption, Pref�L�p;ÿi; p�� � Pref�L�q;ÿi; q��
which, as e 2 Pref�L�p;ÿi; p��, gives that e 2 Pref�L�q;ÿi; q��. Hence e 2 L�q;ÿi; r�,
for some r 2 V�ÿi� and thus L�p;ÿi; p� � Le � L�q;ÿi; r�. Since 1 2 L�p;ÿi; p�, it
follows that r � q and so e 2 L�q;ÿi; q�, yielding that Le � L�p;ÿi; p� � L�q;ÿi; q�.
Now (iii) follows by symmetry.

Now, suppose we have (iii). Let u; e 2 X � be such that e� is idempotent. Let
i 2 I. If e labels a path in ÿi then e 2 L�p;ÿi; q�, for some p; q 2 V�ÿi�. Since 1 2 Le,
we must have q � p. By (iii), this implies that e 2 L�p;ÿi; p�, for all p 2 V�ÿi�. We
then have that ue 2 L�p;ÿi; q� if and only if eu 2 L�p;ÿi; q�, for all p; q 2 V�ÿi�. It
follows that 
�ue� � 
�eu� so that Lue � Leu and �ue�� � �eu��. Hence M is a
Cli�ord monoid and the proof is complete. &

5. Characterizing SchuÈ tzenberger graphs. In [8], Ruyle characterized those
inverse X-graphs which arise as SchuÈ tzenberger graphs for some inverse monoid
presentation, using endomorphisms of graphs and orbits. In this section, we provide
alternative characterizations using the notation introduced in section 3.

If ÿ is an inverse X-graph, let 
 denote the set


 � fL�p;ÿ; q� j p; q 2 V�ÿ�g:
As before, for every u 2 X �, let


�u� � fL 2 
 j u 2 
g:
If 
�u� 6� ;, let Lu � \
�u�; otherwise, let Lu � ;. We consider the following
condition:
�S0� There is u 2 X � such that Lu 2 
.

Theorem 5.1. Let ÿ be an inverse X-graph. The following conditions are equivalent:
(i) ÿ is a SchuÈtzenberger graph of some inverse monoid presentation;
(ii) �S0�;
(iii) there is L 2 
 such that L 6� [fL0 2 
 j L 6� L0g.
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Proof. We show ®rst that (i), (ii). The implication (i)) (ii) follows easily from
Theorem 3.5. Conversely, suppose we have (ii) and let p; q 2 V�ÿ� be such that
Lu � L�p;ÿ; q�. Let �u be the syntactic congruence of Lu on X � that is, w �u w

0 if
and only if, for all a; b 2 X �, awb 2 Lu , aw0b 2 Lu. We are going to prove that
�p;ÿ; q� ' S�X;�u; u�, by showing that

Lu � fv 2 X � j �uuÿ1v� �u� u �ug:
Let v 2 Lu � L�p;ÿ; q� and a; b 2 X �. If auuÿ1vb 2 Lu then, for some r; s; t 2 V�ÿ�,

pÿ!a rÿ!u tÿ!u
ÿ1
rÿ!v sÿ!b q

is a path in ÿ from p to q. Since u 2 L�r;ÿ; t� and v 2 Lu, we also have that
v 2 L�r;ÿ; t� which, since ÿ is inverse, gives that s � t. It follows that aub 2 Lu.
Conversely, suppose that aub 2 Lu. Then there is a path pÿ!a rÿ!u sÿ!b q in ÿ. Then
u 2 L�r;ÿ; s� so that L�p;ÿ; q� � Lu � L�r;ÿ; s�. Now, v 2 L�p;ÿ; q� gives that
v 2 L�r;ÿ; s� so that auuÿ1vb 2 L�p;ÿ; q� � Lu. It follows that �uuÿ1v� �u� u �u.
Finally, if �uuÿ1v� �u� u �u then, as u 2 Lu, we have that �uuÿ1v� 2 Lu so that
v 2 Lu. It follows that �p;ÿ; q� ' S�X;�u; u� and so (i), (ii) is proved.

Suppose now that (ii) holds. If L0 2 
 is such that Lu 6� L0, then L0 =2
�u� so that
u =2L0. It follows that u =2 [ fL0 2 
 j L 6� L0g and hence Lu 6� [fL0 2 
 j Lu 6� L0g
giving (iii).

Assuming (iii), let u 2 L n [fL0 2 
 j L 6� L0g. We have that L 2 
�u� so that

�u� 6� ;. If L00 2 
�u�, then u 2 L00 and so L00 6� [fL0 2 
 j L 6� L0g. It follows that
L00 =2 fL0 2 
 j L 6� L0g so that L � L00 and L � \
�u� � Lu 2 
, yielding (ii). &

If ÿ is ®nite, the equivalence (i), (iii) provides an algorithm to decide whether
or not ÿ arises as a SchuÈ tzenberger graph, a result proved by Cowan and Reilly [1].

Corollary 5.2. [1] Given a ®nite inverse X-graph ÿ, it is decidable whether or not
ÿ is a SchuÈtzenberger graph of some inverse monoid presentation.

Next we show that our choice of �u in the proof of (ii) ) (i) produces the
smallest possible inverse monoid.

Proposition 5.3. Let ÿ be an inverse X-graph such that there is u 2 X � with
Lu 2 
, and let �u be the syntactic congruence of Lu on X �. Then �u is the greatest
inverse monoid congruence � on X � such that ÿ is a SchuÈtzenberger graph of the
inverse monoid presentation InvhX; �i.

Proof. Let � be a congruence on X � such that ÿ is a SchuÈ tzenberger graph of the
inverse monoid presentation InvhX; �i. Since Lu 2 
, then Lu � L�p;ÿ; q� �
L�S�X; �;w��, for some w 2 X � and p; q 2 V�ÿ�. On the other hand L�S�X; �;w�� �
fv 2 X � j v� � w�g, so that

v�v0 , �avb�� � �av0b�� 8a; b 2 X �

) ��avb�� � w� , �av0b�� � w�� 8a; b 2 X �

, ��avb� 2 Lu , �av0b� 2 Lu� 8a; b 2 X �

, v �u v
0

so that � ��u. &
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Let ÿ be as in Proposition 5.3. By this result, in particular, it follows that, if
u; v 2 X � are such that Lu;Lv 2 
, then �u��v. If ÿ is a ®nite tree, then the set of
congruences � such that ÿ is a SchuÈ tzenberger graph of the inverse monoid pres-
entation InvhX; �i, is the interval ��;�u�. If ÿ is not a tree, then there is no smallest
congruence � as above, as will follow from the next result.

Proposition 5.4. Let ÿ be an inverse X-graph such that �S0� holds. If � is the set
of inverse monoid congruences � on X � such that ÿ is a SchuÈtzenberger graph of
InvhX; �i, then

� � \�:

Proof. The inclusion from right to left is trivial. To prove that \� � �, we may
assume that ÿ is not a tree. Let a; b 2 X � be such that �a; b� 62 �. Let ÿ � Sÿ�X; �; u�
for some inverse monoid congruence � on X � and u 2 X �. For every k > 0, we de®ne

Jk � fv 2 X � j jMT�v�j � kg

and �k � � [ �� \ �Jk � Jk��. It is a routine exercise to check that �k is an inverse
monoid congruence on X �. If we choose n > maxfjMT�a�j; jMT�b�jg, then clearly
�a; b� 62 �n. Hence to show that \� � � it is enough to prove that ÿ is a SchuÈ tzen-
berger graph for InvhX; �ni.

Since ÿ is not a tree, there exists r 2 V�ÿ� and w 2 L�r;ÿ; r� such that w� 6� 1.
Let p; q 2 V�ÿ� be such that S�X; �; u� � �p;ÿ; q�. Then there is a path qÿ!v r in ÿ.
For every i � 0, we have uvwivÿ1 2 L�p;ÿ; q� � L�S�X; �; u�� so that Proposition 2.3
yields

u� � �uuÿ1uvwivÿ1�� � �uvwivÿ1��

and so S�X; �; u� � S�X; �; uvwivÿ1�. Since w� 6� 1, there is m � 0 such that
uvwmvÿ1 2 Jn. Let z � uvwmvÿ1. We will see that S�X; �; z� � S�X; �n; z�, which yields
that ÿ is a SchuÈ tzenberger graph for InvhX; �ni. To do so, we show that
L�S�X; �; z�� � L�S�X; �n; z��. The converse inclusion is immediate. Assume now that
c 2 L�S�X; �; z��. Then z��zzÿ1c� and, since z 2 Jn, we have zz

ÿ1c 2 Jn. Thus z�n�zzÿ1c�
and so c 2 L�S�X; �n; z��. Hence L�S�X; �; z�� � L�S�X; �n; z��, as required. &

6. SchuÈ tzenberger graphs of E-unitary and Cli�ord monoids. We consider in this
section the problem of characterizing a SchuÈ tzenberger graph of particular types of
monoids: Cli�ord monoids and E-unitary monoids. In the case of Cli�ord monoids,
the provided conditions also show that, given an inverse graph, it is decidable whe-
ther or not that graph is a SchuÈ tzenberger graph of a Cli�ord monoid. This is not
the case with E-unitary monoids and, since this is far more complicated and it
involves completely di�erent arguments, it is treated separately in the next section.

Let ÿ be an inverse X-graph satisfying �S0�. From Theorem 5.1, we have that ÿ
is a SchuÈ tzenberger graph of the inverse monoid presentation InvhX;�ui.

Lemma 6.1 For every v;w 2 X �, we have

v �u w iff �v 2 L�r;ÿ; s� , w 2 L�r;ÿ; s�� 8r; s 2 V�ÿ�:
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Proof. Let Lu � L�p;ÿ; q�, with p; q 2 V�ÿ�. Suppose that v �u w. If
v 2 L�r;ÿ; s� then, since ÿ is connected, there are a; b 2 X � such that a 2 L�p;ÿ; r�
and b 2 L�s;ÿ; q�. Thus avb 2 L�p;ÿ; q� that is, avb 2 Lu. It follows that awb 2 Lu

which, since ÿ is inverse, gives that w 2 L�r;ÿ; s�. By symmetry, the second condi-
tion follows.

Suppose now that the second condition holds. If avb 2 Lu then avb 2 L�p;ÿ; q�
and thus pÿ!a rÿ!v sÿ!b q is a path in ÿ, for some r; s 2 V�ÿ�. By assumption,

v 2 L�r;ÿ; s� yields that w 2 L�r;ÿ; s� giving that pÿ!awb q is a path in ÿ and so
awb 2 L�p;ÿ; q� � Lu. Again, by symmetry, the implication follows. &

Theorem 6.2. If �S0� holds, the following conditions are equivalent:
(i) ÿ is a SchuÈtzenberger graph of some Cli�ord monoid;
(ii) for all L;L0 2 
, Pref�L� � Pref�L0�;
(iii) for all p; q 2 V�ÿ�, L�p;ÿ; p� � L�q;ÿ; q�.

Proof. Let M � X
�
= �u. Clearly Theorem 4.2 gives that (i) implies (ii) and (iii).

Now, using Lemma 6.1, it is easily seen that essentially the same proof as that of
Theorem 4.2 yields that (ii)) (iii) and (iii)) (i). &

Corollary 6.3. Given a ®nite inverse X-graph ÿ, it is decidable whether or not ÿ
is a SchuÈtzenberger graph of a Cli�ord monoid.

Proof. The languages L�p;ÿ; p�, with p 2 V�ÿ�, constitute a ®nite family of
rational languages and we can decide whether any two of them are equal. &

Theorem 6.4. If �S0� holds, the following conditions are equivalent:
(i) ÿ is a SchuÈtzenberger graph of some E-unitary monoid;
(ii) ÿ embeds in the Cayley graph of some group.

Proof. (i)) (ii) follows from Theorem 4.1. Now, suppose that ÿ embeds in the
Cayley graph ÿ0 of a group. Let Lu � L�p;ÿ; q�, with p; q 2 V�ÿ�. De®ne � to be the
congruence on X

�
generated by � and the relations u � uaaÿ1 and b � bbÿ1, where

a 2 L�q;ÿ; r�, for some r 2 V�ÿ�, and b 2 X
�
labels a loop in ÿ0. Next we show that

� ��u. In view of Lemma 6.1, we only have to prove that

�v 2 L�t;ÿ; s� , w 2 L�t;ÿ; s�� 8t; s 2 V�ÿ�

whenever v � w is a generator of �. This is trivial when �v;w� 2 � and, since ÿ
embeds in ÿ0, also for relations of the form b � bbÿ1, where b 2 X

�
labels a loop in

ÿ0. Assume now that v � u and w � uaaÿ1, where a 2 L�q;ÿ; r�, for some r 2 V�ÿ�.
Let t; s 2 V�ÿ�. The inclusion from left to right is trivial. Suppose now that
u 2 L�t;ÿ; s�. Then L�p;ÿ; q� � Lu � L�t;ÿ; s� and so uaaÿ1 2 L�p;ÿ; q� yields
uaaÿ1 2 L�t;ÿ; s�, as required. Thus � ��u.

We ®rst show that �p;ÿ; q� ' S�X; �; u�, by seeing that L�p;ÿ; q� �L�S�X; �; u��.
We have that L�p;ÿ; q� � Lu � fv 2 X

� j u �u �uuÿ1v�g and L�S�X; �; u�� �
fv 2 X

� j u��uuÿ1v�g. Since � ��u we have that L�S�X; �; u�� � L�p;ÿ; q�. Now, let
v 2 L�p;ÿ; q�. Then a � uÿ1v 2 L�q;ÿ; q� so that a labels a loop in ÿ0. Hence
u� � �uaaÿ1�� and a� � �aaÿ1�� which gives that u� � �ua�� � �uuÿ1v�� and
v 2 L�S�X; �; u��. Hence L�p;ÿ; q� � L�S�X; �; u��.
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To prove that � is E-unitary, we show that, for all v 2 X
�
, Sÿ�X; �; v� embeds in

the Cayley graph Sÿ�X; �; v�, where � denotes the least group congruence on X
�

containing �. If r� 2 V�Sÿ�X; �; v��, then there is a 2 X
�

such that a 2 L�v�;
Sÿ�X; �; v�; r��. If b 2 X

�
is such that b 2 L�v�;Sÿ�X; �; v�; r��, then r� � �va�� � �vb��

and thus r� � �va�� � �vb��, for � � �. Since � is a group congruence, it follows that
a� � b�. Let �r��' � a�. We have thus de®ned a map ' : V�Sÿ�X; �; v�� !
V�Sÿ�X; �; v��, which is clearly a graph homomorphism.

Now, if �r��' � �s��', then v�ÿ!a r� and v�ÿ!b s� are paths in Sÿ�X; �; v� and
abÿ1 labels a loop in Sÿ�X; �; v�. It follows that �abÿ1�� � �abÿ1baÿ1�� and so
r� � s�. Hence ' is injective and S�X; �; v� embeds in the Cayley graph Sÿ�X; �; v�.
From Theorem 4.1, it follows that � is E-unitary, and (ii)) (i). &

7. Groups and E-unitary inverse monoids. Let � be the congruence onX
�
induced

by �. Then FG�X� � X
�
=� is the free group on X.

A wordw 2 X
�
is said to be cyclically reduced ifw2 2 X

�
�. Givenw 2 X

�
, there exist

unique u; v 2 X
�
� such that w� � uvuÿ1 and v is cyclically reduced. We denote v by w.

A group presentation is a formal expression of the form P � GphX;Ri, where X
is a set and R � X

�
. The group de®ned by this presentation is the quotient

FG�X�=hR�iX, where hR�iX denotes the normal closure of R� in FG�X�.
Given a ®nite group presentation P � GphX;Ri, we denote by C�X;R� the

Cayley graph of P. We de®ne also

c�R� � fx 2 X : x or xÿ1 occurs in some r 2 Rg:

Theorem 7.1. It is undecidable whether or not an arbitrary ®nite inverse graph
embeds in the Cayley graph of some group.

Proof. Suppose that this problem is decidable. We will show that, given this, we
can decide whether or not an arbitrary ®nite group presentation de®nes a trivial
group, contradicting a well-known undecidability result [4].

Let P � GphX;Ri be a ®nite group presentation and let G � FG�X�=hR�iX
denote the group de®ned by P. Let R � fr1; . . . ; rmg. Without loss of generality, we
can make the following assumptions:

(A1) m � 1;
(A2) ri 6� 1 for every i 2 f1; . . . ;mg;
(A3) ri is cyclically reduced for every i 2 f1; . . . ;mg;
(A4) c�R� � X.

We can assume that (A4) holds, otherwise G would have a nontrivial free group as a
free factor [4], and would therefore be nontrivial.

Let z denote a letter not belonging to X, and write X0 � X [ fzg and
X0 � X0 [ X0ÿ1. Let ÿ � ÿ�R� denote the inverse X0-graph described by

Let L denote the set of all labels of loops from v to v in ÿ. We show that
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L� � hR�iX0 : �3�

Let u 2 L. By a well-known result [4], u� belongs to the subgroup S of FG�X0�
generated by

fr1�; �zr2zÿ1��; . . . ; �zmÿ1rmzÿm�1��g;

hence u� 2 hR�iX0 and (3) holds.
We de®ne ' : ÿ! C�X0;R� as follows. Let p 2 V�ÿ�. We choose a path vÿ!a p in

ÿ. Since C�X0;R� is complete, there exists a path of the form 1ÿ!a p0 in C�X0;R�. We
take p' � p0. To show that ' is well-de®ned, suppose that vÿ!b p is another path in ÿ
and 1ÿ!b p00 a path in C�X0;R�. Then abÿ1 labels a loop in ÿ, hence abÿ1 2 L. By (3),
it follows that �abÿ1�� 2 hR�iX0 and so abÿ1 labels a loop at every vertex in C�X0;R�.
In particular, we obtain p0 � p00. Let �p; y; q� 2 E�ÿ�. Since C�X0;R� is complete, we
have an edge of the form �p'; y; q0� in C�X0;R�. It follows from the de®nition that
q0 � q', hence ' is indeed a graph homomorphism. We show that

ÿ embeds in the Cayley graph of some group , ' is injective. �4�

The inclusion from left to right is of course trivial. Let us assume that there exists an
embedding  : ÿ! C�Y;S� for some group presentation GphY;Si. Since every
Cayley graph has a transitive automorphism group, we may assume that v � 1.
Since we are assuming that all letters of X0 label edges in ÿ, we have

X0 � Y [ Yÿ1: �5�

Let i 2 f1; . . . ;mg. Since ÿ embeds in C�Y;S�, it follows that ri labels a loop in
C�Y;S� and, by de®nition of Cayley graph, this yields ri� 2 hS�iY. Thus

R� � hS�iY: �6�
To show that ' is injective, we assume that p' � q' for some p; q 2 V�ÿ�. Let vÿ!a p
and vÿ!b q be paths in ÿ. Then we have a path of the form

p ÿÿÿ!aÿ1b
q �7�

in C�Y;S�. Since p' � q', aÿ1b labels a loop in C�X0;R�. Thus aÿ1b 2 hR�iX0 . By (5)
and (6), we obtain hR�iX0 � hS�iY. Hence �aÿ1b�� 2 hS�iY and so aÿ1b labels a loop
at every vertex in C�Y;S�. Since (7) is a path in C�Y;S� and C�Y;S� is deterministic,
we obtain p � q . By hypothesis,  is injective, hence p � q and so ' is also an
embedding. Therefore (4) holds.

Let � � ��R� denote the set of all nonempty proper factors of words of R. Next
we show that

' is injective , ���� \ hR�iX0 � ;: �8�

Assume that ' is injective and let u 2 �. Then u is a nonempty proper factor of some
ri and so u labels a path in ÿ which is not a loop. Suppose that u� 2 hR�iX0 . Then u
labels a loop at every vertex in C�X0;R�. Since ' is injective, every path labelled by u
in ÿ must be a loop, a contradiction. Thus u� =2 hR�iX0 and ���� \ hR�iX0 � ;.
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Conversely, assume that ' is not injective. Then there exist p; q 2 V�ÿ� such that
p' � q' and p 6� q. We can split V�ÿ� into m disjoint classes according to the m main
loops of ÿ. Suppose that p and q lie in di�erent classes. Without loss of generality,
we may assume that there exists a path in ÿ of the form

pÿÿÿ!azkb
q

with k > 0 and a; b 2 X
�
. Let vÿ!c p be a path in ÿ. Then 1ÿ!c p' and

1ÿÿÿ!cazkb
q'

are paths in C�X0;R� and so azkb labels a loop at every vertex in C�X0;R�. Hence
�azkb�� 2 hR�iX0 . This is impossible, since R � X

�
implies that, whenever

u� 2 hR�iX0 , the number of occurrences of z in u must match the number of occur-
rences of zÿ1. Thus p and q must lie in the same main loop of ÿ, say, the one labelled
by ri. Since p 6� q, we may write ri � sut, where u 2 L�p;ÿ; q� ÿ f1; rig. Clearly,
u 2 �. Since

vÿÿ!z
iÿ1s

p

is a path in ÿ, then

1ÿÿ!z
iÿ1s

p' and 1ÿÿÿ!ziÿ1su
q'

are paths in C�X0;R� and so u labels a loop at every vertex in C�X0;R�. Hence
u� 2 ���� \ hR�iX0 . Thus ���� \ hR�iX0 6� ; and (8) holds.

Next we de®ne F as the smallest family of group presentations satisfying the
following conditions.
� P � GphX;Ri 2 F .
� If GphX;Si 2 F , s � s1s2s3 2 S and s2 =2 f1; sg, then GphX; �Sÿ fsg�[
f�s1s3�; s2gi 2 F .

Note that, for every GphX;Si 2 F , S is ®nite. Moreover, since we are assuming that
R is reduced, S is certainly reduced. The inequality j �s1s3� j � j s2 j � j s j yieldsX

s2S
j s j �

Xm
i�1
j ri j

for every GphX;Si 2 F . Thus F is ®nite and it is immediate that it is e�ectively
constructible.

Next we show that conditions (A1)±(A3) are valid for every GphX;Si 2 F .
Conditions (A1) and (A3) are trivially inherited in F , and the requirement s2 =2 f1; sg
guarantees that (A2) is inherited as well.

We show that the group G de®ned by P is trivial if and only if, for every
GphX;Si 2 F , (A4) and the following condition holds.

ÿ�S� does not embed in the Cayley graph of some group or, for every
x 2 X; x 2 S or xÿ1 2 S:

�A5�

We start by proving that

hS�iX � h��Sÿ fsg� [ f�s1s3�; s2g��iX �9�
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whenever GphX;Si 2 F , s � s1s2s3 2 S and s2 =2 f1; sg. Writing �s1s3�� � a��s1s3��aÿ1
and s2 � b�s2�bÿ1 for the appropriate a; b 2 X

�
, we have

s� � �s1s2s3�� � �s1s2sÿ11 ���s1s3�� � �s1s2sÿ11 ����s1s3����
� �s1b�s2�bÿ1sÿ11 ���a��s1s3��aÿ1��;

and it becomes clear that s� 2 h��Sÿ fsg� [ f�s1s3�; s2g��iX. Thus (9) holds.
Assume now that G is trivial. By (9), it follows easily that every GphX;Si 2 F

de®nes a trivial group. We have already remarked that conditions (A1)±(A3) are
valid for every GphX;Si 2 F . With respect to (A4), it is enough to observe that
c�S� � X follows from GphX;Si de®ning the trivial group, otherwise the group
de®ned by GphX;Si would have a nontrivial free group as a free factor and would
therefore be nontrivial, a contradiction.

Let GphX;Si 2 F . Suppose that there exists x 2 X such that x; xÿ1 =2S. Since
conditions (A1) ± (A4) hold, we can apply (4) and (8) to ÿ�S�. Hence we want to
prove that ����S���� \ hS�iX0 6� ;. Since x 2 X � c�S�, we have ax"b 2 S for some
" 2 fÿ1; 1g and a; b 2 X

�
�. Since x; xÿ1 =2S, we have ab 6� 1, and so x" 2 ��S�.

Since GphX;Si 2 F de®nes a trivial group, we have X
�
� � hS�iX0 . Thus

x"� 2 ����S���� \ hS�iX0 and so (A5) is satis®ed.
Conversely, assume that (A4) and (A5) are satis®ed for every GphX;Si 2 F . We

de®ne a sequence GphX;S0i;GphX;S1i; . . . in F with hSj�iX � hR�iX for every j � 0
as follows. Let S0 � R. Assume that Sj is de®ned. If x 2 Sj or xÿ1 2 Sj for every
x 2 X, it is clear that hR�iX � hSj�iX � X

�
� and so G is trivial as required. Suppose

that there exists x 2 X such that x; xÿ1 =2Sj. By (A5), ÿ�Sj� does not embed in the
Cayley graph of some group. Since conditions (A1) ± (A4) are valid for GphX;Sji 2 F ,
we can apply (4) and (8) to ÿ�Sj� and conclude that ����Sj���� \ hSj�iX0 6� ;. Thus
there exist a; u; b 2 X

�
� such that

aub 2 Sj; �ab�� 6� 1; u 6� 1; u� 2 hSj�iX0 :
We de®ne

Sj�1 � �Sj ÿ faubg� [ f�ab�; ug:

By de®nition of F , we have GphX;Sj�1i 2 F . By (9), we obtain hSj�iX � hSj�1�iX.
Since Sj [ fug � X

�
and u� 2 hSj�iX0 , it follows easily that u� 2 hSj�iX and so

u� 2 hSj�iX. We also obtain

�ab�� � ��auaÿ1�ÿ1�aub��� 2 hSj�iX;
hence �ab�� 2 hSj�iX and hSj�1�iX � hSj�iX � hR�iX.

We have thus built a sequence GphX;S0i;GphX;S1i; . . . in F with
hSj�iX � hR�iX for every j � 0. It follows from the de®nition of the sequence that,
for every j � 0, we have either X

s2Sj�1

j s j <
X
s02Sj

j s0 j

or X
s2Sj�1

j s j �
X
s02Sj

j s0 j and j Sj�1 j > j Sj j :
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Since 1 =2Sj for every j, it follows easily that the sequence must be ®nite. Thus there
exists k � 0 such that x 2 Sk or xÿ1 2 Sk for every x 2 X. Since
hR�iX � hSk�iX � X

�
�, it follows that G is trivial.

We have just proved that G is trivial if and only if, for every GphX;Si 2 F ,
conditions (A4) and (A5) hold. We have already remarked that F is a ®nite e�ec-
tively constructible set, and (A4) is certainly decidable. If we could decide whether or
not an arbitrary ®nite inverse graph embeds in the Cayley graph of some group, it
would follow that we could decide whether or not an arbitrary ®nite group
presentation de®nes a trivial group, a contradiction. Therefore our problem is
undecidable. &

Corollary 7.2. It is undecidable whether or not an arbitrary ®nite inverse graph
is a SchuÈtzenberger graph of some E-unitary inverse monoid.

Proof. Assume that this problem is decidable. If we consider graphs of the form
ÿ � ÿ�R� as in the proof of Theorem 7.1, we have that ÿ is a SchuÈ tzenberger graph
for some inverse monoid presentation, since Lzm 2 
. By Theorem 6.4, we would be
able to decide whether or not ÿ embeds in the Cayley graph of a group, contra-
dicting Theorem 7.1. Thus the considered problem is undecidable. &
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