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Abstract

We use the notion of non-commutative Fitting invariants to give a reformulation of
the equivariant Iwasawa main conjecture (EIMC) attached to an extension F/K
of totally real fields with Galois group G, where K is a global number field and G
is a p-adic Lie group of dimension one for an odd prime p. We attach to each finite
Galois CM-extension L/K with Galois group G a module SKu(L/K) over the center of
the group ring ZG which coincides with the Sinnott–Kurihara ideal if G is abelian. We
state a conjecture on the integrality of SKu(L/K) which follows from the equivariant
Tamagawa number conjecture (ETNC) in many cases, and is a theorem for abelian G.
Assuming the vanishing of the Iwasawa µ-invariant, we compute Fitting invariants of
certain Iwasawa modules via the EIMC, and we show that this implies the minus part
of the ETNC at p for an infinite class of (non-abelian) Galois CM-extensions of number
fields which are at most tamely ramified above p, provided that (an appropriate p-part
of) the integrality conjecture holds.

Introduction

Let L/K be a finite Galois extension of number fields with Galois group G. Burns [Bur01] used
complexes arising from étale cohomology of the constant sheaf Z to define a canonical element
TΩ(L/K) of the relative K-group K0(ZG, R). This element relates the leading terms at zero
of Artin L-functions attached to L/K to natural arithmetic invariants. It was shown that the
vanishing of TΩ(L/K) is equivalent to the equivariant Tamagawa number conjecture (ETNC)
for the pair (h0(Spec(L))(0), ZG) (cf. [Bur01, Theorem 2.4.1]).

The ETNC is known to be true if L is absolutely abelian as proved by Burns and
Greither [BG03] with the exclusion of the 2-primary part; Flach [Fla02] extended the argument
to cover the 2-primary part as well. If L is in addition totally real, the ETNC was independently
proved in [RW02, RW03]. Some relatively abelian results are due to Bley [Ble06]; he showed
that if L/K is a finite abelian extension, where K is an imaginary quadratic field which has
class number one, then the ETNC holds for all intermediate extensions L/E such that [L : E]
is odd and divisible only by primes which split completely in K/Q. Finally, if L/K is a CM-
extension and p is odd, the ETNC at p naturally decomposes into a plus and a minus part;
it was shown by the author [Nic10a] that the minus part of the ETNC at p holds if L/K is
abelian and at most tamely ramified above p, and the Iwasawa µ-invariant vanishes if p divides
|G| (and some additional technical condition is fulfilled). Note that the vanishing of µ is a
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long-standing conjecture of Iwasawa theory; the most general result is still due to Ferrero and
Washington [FW79] and says that µ= 0 for absolutely abelian extensions.

These results make heavy use of the validity of the equivariant Iwasawa main conjecture
(EIMC) attached to the extension L+

∞/K, where L+
∞ is the cyclotomic Zp-extension of L+ which

is the maximal real subfield of L. Note that the EIMC is known for abelian extensions of totally
real number fields with Galois group G such that G is a p-adic Lie group of dimension one
(cf. [RW02, Wil90a]). Most recently, Ritter and Weiss [RW10] have shown that the EIMC (up to
its uniqueness statement) holds for arbitrary p-adic Lie groups of dimension one provided that
µ vanishes.

In the abelian case, there is a natural formulation of the EIMC in terms of Fitting ideals.
The theory of Fitting ideals also plays an important role within the descent methods used
in [Ble06, BG03, Gre00, Kur03, Nic10a, Wil90b]. For not necessarily abelian G, we will introduce
a reformulation of the EIMC in terms of non-commutative Fitting invariants which have been
introduced by the author [Nic10b]. This is the main purpose of § 2; we give some algebraic
preparations on Iwasawa modules and their Fitting invariants in § 3.

Now let L/K be a Galois CM-extension with Galois group G. Assuming the vanishing of µ and
using the validity of the EIMC due to Ritter and Weiss, we compute Fitting invariants of some
natural Iwasawa modules in § 4; this generalizes results of Greither [Gre04]. In § 5, we introduce
a module SKu(L/K) over the center of the group ring ZG which is a non-commutative analogue
of the Sinnott–Kurihara ideal (cf. [Sin80, p. 193]) and was already implicitly used in [BJ11, Nic].
We formulate an integrality conjecture on SKu(L/K) which is implied by the ETNC in many
cases and follows from the results in [Bar77/78, Cas79, DR80] if G is abelian. Assuming the
validity of this integrality conjecture, we generalize a descent method due to Wiles [Wil90b] in
the equivariant version of Greither [Gre00] to the non-abelian situation; this shows that the EIMC
implies the minus part of the ETNC at p provided that µ vanishes, the integrality conjecture
holds and the ramification above p is at most tame (and, as in the abelian case, some technical
extra assumption holds). For a special class of extensions, where no ‘trivial zeros’ occur, the
EIMC in fact implies the relevant part of the integrality conjecture. This generalizes [Nic10a,
Theorem 4] to the non-abelian situation. Moreover, it follows from the results in [Nic] that
for the case at hand the EIMC implies the non-abelian analogues of Brumer’s conjecture, of
the Brumer–Stark conjecture and of the strong Brumer–Stark property as formulated in [Nic]
provided that µ= 0 and the integrality conjecture holds.

1. Preliminaries

1.1 K-theory

Let Λ be a left noetherian ring with 1 and PMod(Λ) the category of all finitely generated
projective Λ-modules. We write K0(Λ) for the Grothendieck group of PMod(Λ), and K1(Λ)
for the Whitehead group of Λ which is the abelianized infinite general linear group. If S is a
multiplicatively closed subset of the center of Λ which contains no zero divisors, 1 ∈ S, 0 6∈ S, we
denote the Grothendieck group of the category of all finitely generated S-torsion Λ-modules
of finite projective dimension by K0S(Λ). Writing ΛS for the ring of quotients of Λ with
denominators in S, we have the following localization sequence (cf. [CR87, p. 65]):

K1(Λ)→K1(ΛS) ∂−−→K0S(Λ)
ρ−−→K0(Λ)→K0(ΛS). (1)
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On the equivariant Tamagawa number conjecture in tame CM-extensions, II

In the special case where Λ is an o-order over a commutative ring o and S is the set of all non-
zero-divisors of o, we also write K0T (Λ) instead of K0S(Λ). Moreover, we denote the relative
K-group corresponding to a ring homomorphism Λ→ Λ′ by K0(Λ, Λ′) (cf. [Swa68]). Then we
have a localization sequence (cf. [CR87, p. 72])

K1(Λ)→K1(Λ′)
∂Λ,Λ′−−−−→K0(Λ, Λ′)→K0(Λ)→K0(Λ′).

It is also shown in [Swa68] that there is an isomorphism K0(Λ, ΛS)'K0S(Λ). For any ring Λ,
we write ζ(Λ) for the subring of all elements which are central in Λ. Let G be a finite group;
in the case where Λ′ is the group ring RG, the reduced norm map nrRG :K1(RG)→ ζ(RG)× is
injective, and there exists a canonical map ∂̂G : ζ(RG)×→K0(ZG, RG) such that the restriction
of ∂̂G to the image of the reduced norm equals ∂ZG,RG ◦ nr−1

RG. This map is called the extended
boundary homomorphism and was introduced by Burns and Flach [BF01].

1.2 Non-commutative Fitting invariants

For the following, we refer the reader to [Nic10b]. We denote the set of all m× n matrices with
entries in a ring R by Mm×n(R) and in the case m= n the group of all invertible elements
of Mn×n(R) by Gln(R). Let A be a separable K-algebra and Λ be an o-order in A, finitely
generated as an o-module, where o is a complete commutative noetherian local ring with field of
quotients K. Moreover, we will assume that the integral closure of o in K is finitely generated
as an o-module. The group ring ZpG of a finite group G will serve as a standard example. Let
N and M be two ζ(Λ)-submodules of an o-torsion-free ζ(Λ)-module. Then N and M are called
nr(Λ)-equivalent if there exist an integer n and a matrix U ∈Gln(Λ) such that N = nr(U) ·M ,
where nr :A→ ζ(A) denotes the reduced norm map which extends to matrix rings over A in the
obvious way. We denote the corresponding equivalence class by [N ]nr(Λ). We say that N is nr(Λ)-
contained in M (and write [N ]nr(Λ) ⊂ [M ]nr(Λ)) if for all N ′ ∈ [N ]nr(Λ) there exists M ′ ∈ [M ]nr(Λ)

such that N ′ ⊂M ′. Note that it suffices to check this property for one N0 ∈ [N ]nr(Λ). We will say
that x is contained in [N ]nr(Λ) (and write x ∈ [N ]nr(Λ)) if there is N0 ∈ [N ]nr(Λ) such that x ∈N0.

Now let M be a finitely presented (left) Λ-module and let

Λa h−−→ Λb�M (2)

be a finite presentation of M . We identify the homomorphism h with the corresponding matrix
in Ma×b(Λ) and define S(h) = Sb(h) to be the set of all b× b submatrices of h if a> b. In the
case a= b, we call (2) a quadratic presentation. The Fitting invariant of h over Λ is defined to be

FittΛ(h) =

{
[0]nr(Λ) if a < b,

[〈nr(H) |H ∈ S(h)〉ζ(Λ)]nr(Λ) if a> b.

We call FittΛ(h) a Fitting invariant of M over Λ. One defines Fittmax
Λ (M) to be the unique Fitting

invariant of M over Λ which is maximal among all Fitting invariants of M with respect to the
partial order ‘⊂’. If M admits a quadratic presentation h, one also puts FittΛ(M) := FittΛ(h),
which is independent of the chosen quadratic presentation.

Now let C and C ′ be two finitely generated o-torsion Λ-modules of finite projective dimension
and denote by [C] and [C ′] the corresponding classes in K0T (Λ), respectively. If ρ([C]− [C ′]) = 0,
we choose x ∈K1(A) such that ∂(x) = [C]− [C ′] and define (cf. [Nic10b, Definition 3.6])

FittΛ(C : C ′) := [〈nrA(x)〉ζ(Λ)]nr(Λ).
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1.3 Equivariant L-values

Let us fix a finite Galois extension L/K of number fields with Galois group G. For any prime p

of K, we fix a prime P of L above p and write GP (respectively IP) for the decomposition group
(respectively inertia subgroup) of L/K at P. Moreover, we denote the residual group at P by
GP =GP/IP and choose a lift φP ∈GP of the Frobenius automorphism at P.

If S is a finite set of places of K containing the set S∞ of all infinite places of K, and χ is a
(complex) character of G, we denote the S-truncated Artin L-function attached to χ and S by
LS(s, χ) and define L∗S(0, χ) to be the leading coefficient of the Taylor expansion of LS(s, χ) at
s= 0. Recall that there is a canonical isomorphism ζ(CG) =

∏
χ∈Irr(G) C, where Irr(G) denotes

the set of irreducible characters of G. We define the equivariant Artin L-function to be the
meromorphic ζ(CG)-valued function

LS(s) := (LS(s, χ))χ∈Irr(G).

We put L∗S(0) = (L∗S(0, χ))χ∈Irr(G) and abbreviate LS∞(s) by L(s). If T is a second finite
set of places of K such that S ∩ T = ∅, we define δT (s) := (δT (s, χ))χ∈Irr(G), where δT (s, χ) =∏

p∈T det(1−N(p)1−sφ−1
P |V

IP
χ ) and Vχ is a G-module with character χ. We put

ΘS,T (s) := δT (s) · LS(s)],

where we denote by ] : CG→ CG the involution induced by g 7→ g−1. These functions are the
so-called (S, T )-modified G-equivariant L-functions and we define Stickelberger elements

θTS := ΘS,T (0) ∈ ζ(CG).

If T is empty, we abbreviate θTS by θS . Note that the χ-part of θTS vanishes for a non-trivial
character χ if there is an (infinite) prime p ∈ S such that V GP

χ 6= 0. Now let L/K be a Galois
CM-extension, i.e. L is a CM-field, K is totally real and complex conjugation induces a unique
automorphism j of L which lies in the center of G. If R is a subring of either C or Cp for a
prime p such that 2 is invertible over R, we put RG− :=RG/(1 + j) which is a ring, since the
idempotent (1− j)/2 lies in RG. For any RG-module M , we define M− =RG− ⊗RGM which is
an exact functor, since 2 ∈R×. Now Stark’s conjecture (which is a theorem for odd characters,
see [Tat84, Theorem 1.2, p. 70]) implies that

θTS ∈ ζ(QG−). (3)

Note that we actually have to exclude the special case |S∞(L)|= 1 (cf. the proof of [Nic10a,
Proposition 3], where (3) is shown in the relevant case S = S∞ and T = ∅), but in this situation
the extension L/K is abelian. Here, we write S(L) for the set of places in L which lie above
those in S, and S is any (finite) set of places of K. Let us fix an embedding ι : C� Cp; then the
image of θTS in ζ(QpG−) via the canonical embedding

ζ(QG−)� ζ(QpG−) =
⊕

χ∈Irrp(G)/∼
χ odd

Qp(χ)

is given by
∑

χ(δT (0, χι
−1

) · LS(0, χ̌ι
−1

))ι, where we write χ̌ for the character contragredient to χ.
Here, the sum runs over all Cp-valued irreducible odd characters of G modulo Galois action. Note
that we will frequently drop ι and ι−1 from the notation.
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1.4 Ray class groups

Let T and S be as above. We write clTL for the ray class group of L to the ray MT :=
∏

P∈T (L) P

and oS for the ring of S(L)-integers of L. Let Sf be the set of all finite primes in S(L); then there
is a natural map ZSf → clTL which sends each prime P ∈ Sf to the corresponding class [P] ∈ clTL.
We denote the cokernel of this map by clTS (L) =: clTS . Further, we denote the S(L)-units of L by
ES and define ETS := {x ∈ ES : x≡ 1 mod MT }. All these modules are equipped with a natural
G-action and we have the following exact sequences of G-modules:

ETS∞� ETS
v−−→ ZSf → clTL� clTS , (4)

where v(x) =
∑

P∈Sf vP(x)P for x ∈ ETS , and

ETS � ES → (oS/MT )× ν−−→ clTS � clS , (5)

where the map ν lifts an element x ∈ (oS/MT )× to x ∈ oS and sends it to the ideal class [(x)] ∈ clTS
of the principal ideal (x). Note that the G-module (oS/MT )× is c.t. (short for cohomologically
trivial) if no prime in T ramifies in L/K. If L/K is a CM-extension, we define

ATS := (Z[1
2 ]⊗Z clTS )−.

If S = S∞, we also write ATL and ETL instead of ATS∞ and ETS∞ . Finally, we suppress the superscript
T from the notation if T is empty. If M is a finitely generated Z-module and p is a prime, we
put M(p) := Zp ⊗Z M . In particular, AL(p) is the p-part of the minus class group if p is odd.

2. A reformulation of the equivariant Iwasawa main conjecture

Let p 6= 2 be a prime and let F/K be a Galois extension of totally real fields with Galois group G,
where K is a global number field, F contains the cyclotomic Zp-extension K∞ of K and [F : k∞]
is finite. Hence, G is a p-adic Lie group of dimension one and there is a finite normal subgroup H
of G such that G/H = Gal(K∞/K) =: ΓK . Here, ΓK is isomorphic to the p-adic integers Zp and
we fix a topological generator γK . We denote the completed group algebra Zp[[G]] by Λ(G)
and the total ring of fractions of Λ(G) by Q(G). If we pick a preimage γ of γK in G, we can
choose an integer m such that γp

m
lies in the center of G. Hence, the ring R := Zp[[Γp

m
]] belongs

to the center of Λ(G), and Λ(G) is an R-order in the separable Quot(R)-algebra Q(G). Note that
R is isomorphic to the power series ring Zp[[T ]]. Let S be a finite set of places of K containing all
the infinite places S∞ and the set Sp of all places of K above p. Moreover, let MS be the maximal
abelian pro-p-extension of F unramified outside S, and denote the Iwasawa module Gal(MS/F )
by XS . If S additionally contains all places which ramify in F/K, there is a canonical complex

C ·(F/K) : · · · → 0→ C−1→ C0→ 0→ · · · (6)

of R-torsion Λ(G)-modules of projective dimension at most one such that H−1(C ·(F/K)) =XS

and H0(C ·(F/K)) = Zp. We put (cf. [RW04, § 4])

fS = fS(F/K) := (C−1)− (C0) ∈K0T (Λ(G)).

Since ρ(fS) = 0, there is a well-defined Fitting invariant of fS ; more precisely,

FittΛ(G)(fS) := FittΛ(G)(C
−1 : C0).
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Moreover, if F is an exact functor from the category of R-torsion Λ(G)-modules of projective
dimension at most 1 to itself, we also set

FittΛ(G)(F(fS)) :=

{
FittΛ(G)(F(C−1) : F(C0)) if F is covariant,
FittΛ(G)(F(C0) : F(C−1)) if F is contravariant.

We recall some results concerning the algebra Q(G) due to Ritter and Weiss [RW04]. Let Qc
p be

an algebraic closure of Qp and fix an irreducible (Qc
p-valued) character χ of G with open kernel.

Choose a finite field extension E of Qp such that the character χ has a realization Vχ over E.
Let η be an irreducible constituent of resGHχ and set

St(η) := {g ∈ G : ηg = η}, eη =
η(1)
|H|

∑
h∈H

η(h−1)h, eχ =
∑

η|resGHχ

eη.

For any finite field extension k of Qp with ring of integers o, we set Qk(G) := k ⊗Qp Q(G) and
Λo(G) = o[[G]]. By [RW04, Corollary to Proposition 6], eχ is a primitive central idempotent
of QE(G). By [RW04, Proposition 5] there is a distinguished element γχ ∈ ζ(QE(G)eχ) which
generates a procyclic p-subgroup Γχ of (QE(G)eχ)× and acts trivially on Vχ. Moreover, γχ induces
an isomorphism QE(Γχ) '−−→ ζ(QE(G)eχ) by [RW04, Proposition 6]. For r ∈ N0, we define the
following maps:

jrχ : ζ(QE(G))� ζ(QE(G)eχ)'QE(Γχ)→QE(ΓK),

where the last arrow is induced by mapping γχ to κr(γχ)γwχK , where wχ = [G : St(η)] and κ
denotes the cyclotomic character of G. Note that jχ := j0

χ agrees with the corresponding map jχ
in [RW04]. It is shown that for any matrix Θ ∈Mn×n(Q(G)), we have

jχ(nr(Θ)) = detQE(ΓK)(Θ|HomEH(Vχ, QE(G)n)). (7)

Here, Θ acts on f ∈HomEH(Vχ, QE(G)n) via right multiplication, and γK acts on the left via
(γKf)(v) = γK · f(γ−1

K v) for all v ∈ Vχ. Hence, the map

Det( )(χ) :K1(Q(G))→ QE(ΓK)×,
[P, α] 7→ detQE(ΓK)(α|HomEH(Vχ, E ⊗Qp P )),

where P is a projective Q(G)-module and α a Q(G)-automorphism of P , is just jχ ◦ nr. If ρ
is a character of G of type W , i.e. resGHρ= 1, then we denote by ρ] the automorphism of
the field Qc(ΓK) := Qc

p ⊗Qp Q(ΓK) induced by ρ](γK) = ρ(γK)γK . Moreover, we denote the
additive group generated by all Qc

p-valued characters of G with open kernel by Rp(G); finally,
Hom∗(Rp(G), Qc(ΓK)×) is the group of all homomorphisms f :Rp(G)→Qc(ΓK)× satisfying

f(χ⊗ ρ) = ρ](f(χ)) for all characters ρ of type W and
f(χσ) = f(χ)σ for all Galois automorphisms σ ∈Gal(Qc

p/Qp).

We have an isomorphism

ζ(Q(G))× ' Hom∗(Rp(G), Qc(ΓK)×),
x 7→ [χ 7→ jχ(x)].

By [RW04, Theorem 5] the map Θ 7→ [χ 7→Det(Θ)(χ)] defines a homomorphism

Det :K1(Q(G))→Hom∗(Rp(G), Qc(ΓK)×)
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such that we obtain a commutative triangle:

K1(Q(G))
nr

xxppppppppppp
Det

))SSSSSSSSSSSSSS

ζ(Q(G))× ∼ // Hom∗(Rp(G), Qc(ΓK)×)

(8)

We put u := κ(γK) and fix a finite set S of places of K containing S∞ and all places which
ramify in F/K. Each topological generator γK of ΓK permits the definition of a power series
Gχ,S(T ) ∈Qc

p ⊗Qp Quot(Zp[[T ]]) by starting out from the Deligne–Ribet power series for abelian
characters of open subgroups of G (cf. [DR80]). One then has an equality

Lp,S(1− s, χ) =
Gχ,S(us − 1)
Hχ(us − 1)

,

where Lp,S(s, χ) denotes the p-adic Artin L-function and where, for irreducible χ, one has

Hχ(T ) =

{
χ(γK)(1 + T )− 1 if H ⊂ ker(χ),
1 otherwise.

Now [RW04, Proposition 11] implies that

LK,S : χ 7→
Gχ,S(γK − 1)
Hχ(γK − 1)

is independent of the topological generator γK and lies in Hom∗(Rp(G), Qc(ΓK)×). Diagram (8)
implies that there is a unique element ΦS ∈ ζ(Q(G))× such that

jχ(ΦS) = LK,S(χ).

The EIMC as formulated in [RW04] now states that there is a unique ΘS ∈K1(Q(G)) such that
Det(ΘS) = LK,S and ∂(ΘS) = fS . The EIMC without its uniqueness statement hence asserts
that there is an x ∈K1(Q(G)) such that ∂(x) = fS and Det(x) = LK,S ; now diagram (8)
implies that nr(x) = ΦS , and thus ΦS is a generator of FittΛ(G)(fS). Conversely, if ΦS is a
generator of FittΛ(G)(fS), then there is an element x ∈K1(Q(G)) such that ∂(x) = fS and
〈nr(x)〉ζ(Λ(G)) is nr(Λ(G))-equivalent to 〈ΦS〉ζ(Λ(G)), i.e. there is a u ∈K1(Λ(G)) such that
nr(x) = nr(u) · ΦS . But then ΘS := x · u−1 has ∂(ΘS) = ∂(x) = fS and Det(ΘS) = LK,S , since
nr(ΘS) = ΦS . We have shown that the following conjecture is equivalent to the EIMC without
the uniqueness of ΘS .

Conjecture 2.1. The element ΦS ∈ ζ(Q(G))× is a generator of FittΛ(G)(fS).

The following theorem is due to Ritter and Weiss [RW10].

Theorem 2.2. Conjecture 2.1 is true provided that Iwasawa’s µ-invariant vanishes.

We also discuss Conjecture 2.1 within the framework of the theory of [CFKSV05, § 3]. For
this, let

π : G →Gln(oE)

be a continuous homomorphism, where oE denotes the ring of integers of E and n is some integer
greater than or equal to 1. There is a ring homomorphism

Φπ : Λ(G)→Mn×n(ΛoE (ΓK)) (9)
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induced by the continuous group homomorphism

G → (Mn×n(oE)⊗Zp Λ(ΓK))× = Gln(ΛoE (ΓK)),
σ 7→ π(σ)⊗ σ,

where σ denotes the image of σ in G/H = ΓK . By [CFKSV05, Lemma 3.3], the homomorphism (9)
extends to a ring homomorphism

Φπ :Q(G)→Mn×n(QE(ΓK))

and this in turn induces a homomorphism

Φ′π :K1(Q(G))→K1(Mn×n(QE(ΓK))) =QE(ΓK)×.

Let aug : ΛoE (ΓK)� oE be the augmentation map and put p = ker(aug). Writing ΛoE (ΓK)p for
the localization of ΛoE (ΓK) at p, it is clear that aug naturally extends to a homomorphism
aug : ΛoE (ΓK)p→ E. One defines an evaluation map

φ :QE(ΓK)→ E ∪ {∞},

x 7→

{
aug(x) if x ∈ ΛoE (ΓK)p,

∞ otherwise.

If Θ is an element of K1(Q(G)), we define Θ(π) to be φ(Φ′π(Θ)). We need the following lemma.

Lemma 2.3. If π = πχ is a representation of G with character χ and r ∈ N0, then

K1(Q(G))
Φ′πχκr //

nr

��

K1(Mn×n(QE(ΓK)))

nr'
��

ζ(Q(G))×
jrχ // QE(ΓK)×

commutes. In particular, we have nr ◦ Φ′πχ = Det( )(χ).

Proof. We recall that the map jχ induces a field extension QE(ΓK)/QE(Γχ), where QE(Γχ) =
ζ(QE(G)eχ). The results in [RW04] imply that in fact QE(ΓK) is a splitting field of QE(G)eχ
and we thus have an isomorphism

QE(ΓK)⊗QE(Γχ) Q
E(G)eχ 'Mn×n(QE(ΓK)). (10)

Since 1⊗ γχ = γ
wχ
K ⊗ 1 in QE(ΓK)⊗QE(Γχ) Q

E(G)eχ and πχ(γχ)⊗ γχ = 1⊗ γwχK in Mn×n
(QE(ΓK)), the homomorphism Φπχ induces a realization of the above isomorphism (10). Hence,

nr ◦ Φ′πχ is just the reduced norm on QE(G)eχ which takes values in QE(Γχ)
jχ
�QE(ΓK).

This shows the lemma in the case r = 0. For arbitrary r, we similarly have jrχ(nr(Θ)) =
detQE(ΓK)(Θ|Vχ(r)) = nr(Φ′πχκr(Θ)), where Θ ∈K1(Q(G)) and Vχ(r) is the rth Tate twist of the
absolutely irreducible (right) module Vχ := HomEH(Vχ, QE(G)) over QE(ΓK)⊗QE(Γχ) Q

E(G). 2

Conjecture 2.1 now implies that there is an element ΘS ∈K1(Q(G)) such that ∂(ΘS) = fS

and, for any r > 1 divisible by p− 1, we have

ΘS(πχκr) = φ(jrχ(ΦS)) = LS(1− r, χ).
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On the equivariant Tamagawa number conjecture in tame CM-extensions, II

3. Algebraic preparations

Let p 6= 2 be a prime and let G be a p-adic Lie group of dimension one, i.e. there is a finite normal
subgroup H of G such that Γ := G/H is isomorphic to Zp. For any ring Λ and any Λ-module M ,
we write pdΛ(M) for the projective dimension of M over Λ. For any finitely generated Λ(G)-
module M , we write µ(M) for the Iwasawa µ-invariant of M . As before, let Γ′ ' Zp be a subgroup
of G which is central in G and put R= Zp[[Γ′]].

Proposition 3.1. Let M be a finitely generated R-torsion Λ(G)-module which has no non-
trivial finite submodule, has µ(M) = 0 and is cohomologically trivial as an H-module. Then

pdΛ(G)(M)6 1.

Proof. For any topological ring Λ, we denote the category of compact Λ-modules by C(Λ) and
the category of discrete Λ-modules by D(Λ). We have a functor

HomΛ(G)( , ) : C(Λ(G))×D(Λ(G))−→D(Zp)

and we can use either projective resolutions in C(Λ(G)) or injective resolutions in D(Λ(G)) to
define functors

ExtiΛ(G)( , ) : C(Λ(G))×D(Λ(G))−→D(Zp), i> 0.

By [NSW00, Proposition 5.2.11], we have to show that Ext2Λ(G)(M, N) = 0 for all simple N . We
consider the spectral sequence (cf. [NSW00, ch. V, § 2, Ex. 4]):

Ei,j2 =H i(ΓK , ExtjZpH(M, N)) =⇒ Ei+j = Exti+jΛ(G)(M, N).

Since M has no non-trivial finite submodules and µ(M) = 0, it is free and finitely generated as
a Zp-module. Moreover, it is c.t. as an H-module by assumption and hence ZpH-projective.
This implies that Ei,j2 = 0 for j > 0. Since N and hence HomZpH(M, N) are p-torsion and
the cohomological p-dimension of ΓK is 1, we also have Ei,j2 = 0 if i > 1. This implies that
Ext2Λ(G)(M, N) = E2 ' E2,0

2 = 0. 2

Proposition 3.2. Let M be a finitely generated R-torsion Λ(G)-module such that pdΛ(G)(M)6
1 and µ(M) = 0. Assume that the Fitting invariant FittQpΛ(G)(Qp ⊗M) of Qp ⊗M over QpΛ(G)
is generated by an element Φ ∈ nr(K1(Λ(p)(G))), where the subscript (p) means localization at
the prime (p). Then also

FittΛ(G)(M) = [〈Φ〉ζ(Λ(G))]nr(Λ(G)).

Proof. By [Nic10b, Lemma 6.2], the module M admits a quadratic presentation over Λ(G) such
that FittΛ(G)(M) exists and is generated by nr(ψ), where ψ : Λ(G)m→ Λ(G)m has cokernel M .
Since M is torsion, ψ becomes an isomorphism if we tensor with Q(G), i.e. ψ ∈Mm×m(Λ(G)) ∩
Glm(Q(G)). Note that nr(QpΛ(G))-equivalence is just equality, since the reduced norm maps
K1(QpΛ(G)) into ζ(QpΛ(G))×. Hence, by assumption

〈Φ〉ζ(QpΛ(G)) = 〈nr(ψ)〉ζ(QpΛ(G)),

and there is a unique x ∈ ζ(QpΛ(G))× with nr(ψ) = x · Φ. Let us denote the integral closure of
ζ(Λ(G)) in ζ(Q(G)) by Z. Then the reduced norm maps K1(Λ(G)) into Z× and K1(Λ(p)(G))
into Z×(p). We have shown that there is a natural number N such that pN · x ∈ Z. Since
the µ-invariant of M vanishes, the map ψ becomes an isomorphism after localization at (p)
and hence nr(ψ) ∈ nr(K1(Λ(p)(G))). Since, by assumption, this is also true for Φ, we find
x ∈ nr(K1(Λ(p)(G)))⊂ Z×(p). Thus, we can choose a Weierstraß polynomial f such that f · x ∈ Z
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and hence x ∈ Z by Lemma 3.3 below. Since the same observations hold for x−1, we actually
have x ∈ Z×. Now [RW05, Theorem B] implies that

Hom∗(Rp(G), Λc(ΓK)×) ∩Det(K1(Λ(p)(G)))⊂Det(K1(Λ(G))),

where Λc(ΓK) = Zc
p ⊗Zp Λ(ΓK) and Zc

p denotes the integral closure of Zp in Qc
p. Note that the

HOM∗-group used in [RW05] is contained in Hom∗(Rp(G), Λc(ΓK)×), but this does not affect
the above intersection, since any element in the image of Det fulfills all the conditions which
occur in the definition of HOM∗ (cf. [RW05, § 1]). Since Hom∗(Rp(G), Λc(ΓK)×) corresponds to
Z× under the identification of diagram (8) (cf. [RW04, Remark H]), we have shown that

x ∈ Z× ∩ nr(K1(Λ(p)(G)))⊂ nr(K1(Λ(G))).

Hence, the ζ(Λ(G))-modules generated by Φ and nr(ψ) are nr(Λ(G))-equivalent. 2

We have used the following easy lemma.

Lemma 3.3. Let Λ be a ring, x ∈ Λ and y ∈ ζ(Λ). Assume that y is a non-zero-divisor and x is
a non-zero-divisor modulo y. Let S be a multiplicatively closed subset of ζ(Λ) which contains no
zero divisors, 1 ∈ S, 0 6∈ S and let Ψ ∈ ΛS be such that x ·Ψ ∈ Λ and y ·Ψ ∈ Λ. Then also Ψ ∈ Λ.

Proof. The equation x ·Ψ · y = x · y ·Ψ implies that y ·Ψ≡ 0 mod y, since x is a non-zero-divisor
modulo y. Hence, there is λ ∈ Λ such that y ·Ψ = y · λ. But y is a non-zero-divisor and thus
λ= Ψ. 2

If M is an Iwasawa torsion module, we write α(M) for the Iwasawa adjoint of M . If H is a
finite group and M is a Zp[H]-module, we denote the Pontryagin dual Hom(M,Qp/Zp) of M by
M∨ which is equipped with the natural H-action (hf)(m) = f(h−1m) for f ∈M∨, h ∈H and
m ∈M .

Lemma 3.4. Let U be a subgroup of G of finite index.

(i) For any Λ(U)-module N , we have an isomorphism indGU (N(1))' (indGUN)(1).

(ii) If M = indGUZp, then α(M)'M .

Proof. Let us put N ′ :=N(1). Then indGUN
′ =
⊕

σ N
′
σ, where σ runs through a set of (left) coset

representatives, and where N ′σ =N ′ as sets and gn′ = uσn
′ ∈N ′σ̃ if gσ = σ̃uσ for g ∈ G, uσ ∈ U ,

n′ ∈N ′σ; similarly, indGUN =
⊕

σ Nσ. An easy computation shows that⊕
σ

N ′σ −→
(⊕

Nσ

)
(1),

∑
σ

n′σ 7→
∑
σ

κ(σ)n′σ

is an isomorphism of Λ(G)-modules. This shows (i). For (ii), we compute

α(M) = lim←−
n

Hom(M/pn,Qp/Zp)

= lim←−
n

(indGUZp/pn)∨

' lim←−
n

indGUZp/pn

= M. 2

We point out that Lemma 3.4 and Proposition 3.2 are non-abelian generalizations of [Gre04,
Lemmas 1 and 2], respectively.
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4. Fitting invariants of Iwasawa modules

In this section, we fix the following setting: let L/K be a Galois CM-extension of number fields
with Galois group G, i.e. K is totally real and L is a totally imaginary quadratic extension
of a totally real number field. This field is the maximal real subfield of L and will be denoted
by L+. Complex conjugation on C induces an automorphism j on L which is independent of the
embedding into C and lies in the center of G. Let p 6= 2 be a prime and assume that j lies in
the decomposition group GP for each prime P of L above p which is wildly ramified in L/K (we
will call this condition almost tame above p). In particular, we consider all Galois CM-extensions
which are at most tamely ramified above p.

We choose a prime p0 - p of K which is unramified in L/K and define a set of places of K by

T = T0 := {p0} ∪ Sram\(Sram ∩ Sp).

We may choose p0 such that ETS is torsion free. Then ATL(p), the p-part of the minus ray class
group clT,−L , is c.t. as a G-module by [Nic10a, Theorem 1].

Let L∞ and K∞ be the cyclotomic Zp-extensions of L and K, respectively. We denote the
Galois group of K∞/K by ΓK . Hence, ΓK is isomorphic to Zp, and we fix a topological generator
γK . Furthermore, we denote the nth layer in the cyclotomic extension K∞/K by Kn such that
Kn/K is cyclic of order pn. Accordingly, we set ΓL = Gal(L∞/L) with a topological generator
γL whose restriction to K∞ is γp

a

K for an appropriate integer a. We enumerate the intermediate
fields starting with L= La such that Ln/L is cyclic of order pn−a. This is because in this case
Ln is the smallest intermediate field of L∞/L which lies above Kn. It may also be convenient to
define Ln = L if n6 a. We put

X−T := lim←−A
T
Ln(p).

We denote the Galois group of L∞/K by G; hence, G =H o Γ, where H is a subgroup of
G and Γ is topologically generated by a preimage γ of γK under the canonical epimorphism
G� G/H = ΓK . Then X−T is a finitely generated R-torsion Λ(G)− := Λ(G)/(1 + j)-module, where
as before R= Zp[[Γ′]] with Γ′ ' Zp central in G. Let L′ be the maximal subfield of L∞ fixed by Γ.
Since L′ is contained in Ln if n is sufficiently large, the layers of the cyclotomic extensions of
L and L′ agree for n� 0 and ATLn(p) is Gal(Ln/Kn)-c.t., since each of the extensions Ln/Kn

inherits the required properties from the extension L/K. Hence, X−T is c.t. as an H-module and
has no non-trivial finite submodule (as can be seen by the same argument as in the first step of
the proof of [Gre04, Proposition 7]) such that Proposition 3.1 implies the following result.

Proposition 4.1. If L/K is almost tame above p and the Iwasawa µ-invariant µ(X−T ) vanishes,
then the projective dimension of X−T over Λ(G)− is at most 1.

Now let S be a finite set of places of K containing S∞ (but not necessarily Sp) and let MS

be the maximal abelian pro-p-extension of L∞ unramified outside S. Moreover, let M∞ be the
maximal abelian unramified extension of L∞ and define Λ(G)-modules

XS := Gal(MS/L∞), Xstd := Gal(M∞/L∞).

Hence, Xstd is the ‘standard’ Iwasawa module which is the projective limit of the p-parts of the
class groups in the cyclotomic tower of L. If S = S∞ ∪ Sp, we also write X{p} instead of XS∞∪Sp .
Moreover, if S = T ∪ S∞, there is an isomorphism X−T∪S∞ 'X

−
T . Following Greither [Gre04],

we will also define a ‘dual’ Iwasawa module Xdu: there is a minimal integer n0 such that
all the p-adic places ramify in L∞/Ln0 . We denote the p-class field of Ln0 by Mn0 and
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put Xdu := Gal(M∞/Mn0L∞). So, Xdu is a submodule of Xstd of finite index and the subscript
‘du’ is chosen because of the following description of X−du in the case ζp ∈ L, where ζp denotes
a primitive pth root of unity (cf. [Gre04, beginning of § 2]; note that G is assumed to be
abelian in [Gre04] but, in all cases, where we will cite [Gre04], this assumption is not necessary;
moreover, [Gre04] usually assumes that L ∩K∞ =K but, as mentioned in the introduction and
explained in more detail in § 7 of [Gre04], this assumption is just in order to keep the arguments
simple):

X−du ' α(X+
{p})(1).

If S contains all places which ramify in L∞/K, we define an Iwasawa module ZS = ZL,S by

ZS = α(X+
S )(1) if ζp ∈ L,

ZS = (ZL(ζp),S)∆ otherwise,

where ∆ = Gal(L(ζp)/L). Note that this definition slightly differs from the definition of the
corresponding module in [Gre04]. But, since p - |∆|, multiplication by N∆ :=

∑
δ∈∆ δ induces an

isomorphism (ZL(ζp),S)∆ ' (ZL(ζp),S)∆. For any prime p of K, we choose a prime ℘ in L∞ above p

and put P = ℘ ∩ L. Setting Zp := indGG℘Zp, class field theory gives an exact sequence (cf. [Gre04,
sequence (1)]; for the proof, replace [Gre04], Lemma 1(i) by Lemma 3.4(i))⊕

p∈S\Sp

Zp(1)+�X+
S �X+

{p}. (11)

We claim that this sequence induces an exact sequence

X−du� ZS �
⊕

p∈S\Sp

Z−p . (12)

This is clear if ζp ∈ L, since taking Iwasawa adjoints is exact on sequences of torsion Iwasawa
modules without finite submodules and α(Zp(1))(1) = α(Zp) = Zp by Lemma 3.4(ii). If ζp 6∈ L, we
put L′ = L(ζp), L′∞ = L∞(ζp) etc. Since p - |∆|, the p-class groups of the layers in the cyclotomic
tower are c.t. as ∆-modules and we have thus isomorphisms AL′n(p)∆ 'ALn(p) which combine
to induce an isomorphism (X ′−std)∆ 'X−std. We have a commutative diagram.

(X ′−du)∆
� � //

��

(X ′−std)∆
// //

'
��

AL′n0
(p)∆

'
��

X−du
� � // X−std

// // ALn0
(p)

Hence, the left-most vertical arrow is also an isomorphism and we obtain (12) in general, as we
may adjoin ζp first and then apply ∆-coinvariants to sequence (12) for L′.

Let x 7→ ẋ be the automorphism on Λ(G) induced by g 7→ κ(g)g−1 for g ∈ G. Let G+ := G/〈j〉=
Gal(L+

∞/K) and let ΦS ∈ ζ(Q(G+))× be the unique element satisfying jχ(ΦS) = LK,S(χ) for each
even character of G with open kernel. We define idempotents

e− =
1− j

2
, e+ =

1 + j

2
.

The following is a non-abelian generalization of [Gre04, Theorem 2].

Theorem 4.2. Assume that the Iwasawa µ-invariant attached to the extension L+
∞/K vanishes.

Let S be a finite set of places of K which contains S∞ and all places which ramify in L∞/K.
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(i) If ζp ∈ L, then

Fittmax
Λ(G)(ZS) = Fittmax

Λ(G)(Zp(1))][〈Φ̇Se
− + e+〉]nr(Λ(G)).

(ii) If ζp 6∈ L, then pdΛ(G)(ZS)6 1 and

FittΛ(G)(ZS) = [〈Φ̇Se
− + e+〉]nr(Λ(G)).

Proof. Assume that ζp ∈ L. The canonical complex (6) for the extension L+
∞/K gives an exact

sequence

X+
S � C−1→ C0� Zp.

Applying the functor α( )(1) to this sequence yields

Zp(1)� α(C0)(1)→ α(C−1)(1)� ZS . (13)

Now [Nic10b, Proposition 6.3(ii)] implies the first equality in

Fittmax
Λ(G)(ZS) = Fittmax

Λ(G)(Zp(1))] · FittΛ(G)(α(fS)(1))

= Fittmax
Λ(G)(Zp(1))] · [〈Φ̇Se

− + e+〉]nr(Λ(G)).

We have to explain the second equality. Since µ= 0, the EIMC holds for L+
∞/K and hence

FittΛ(G+)(fS) is generated by ΦS . It suffices to prove the following: assume that C is a finitely
generated R-torsion Λ(G+)-module of projective dimension at most one which has no non-
trivial finite submodule and that Φ is a generator of FittΛ(G+)(C); then FittΛ(G)(α(C)(1)) is
generated by Φ̇e− + e+. To see this, let ψ : Λ(G+)m→ Λ(G+)m be a quadratic presentation
of C such that nr(ψ) = Φ. By [Nic10b, Proposition 6.3(i)] and its proof, it follows that ψT,]

is a finite presentation of α(C) and nr(ψT,]) = Φ] is a generator of FittΛ(G+)(α(C)), where
ψT denotes the transpose of ψ. Now Λ(G+)' Λ(G)e+ and the involution g 7→ κ(g−1)g induces
an isomorphism between the first Tate twist of Λ(G+) and Λ(G)e−. We obtain a quadratic
presentation ψ̇T : (Λ(G)e−)m→ (Λ(G)e−)m of α(C)(1) regarded as a Λ(G)e−-module. Since
nr(ψ̇T ) = Φ̇ and α(C)(1) is trivial on plus parts, we are done.

If ζp 6∈ L, we again put L′ = L(ζp). We apply ∆ = Gal(L′/L)-coinvariants to sequence (13)
(for L′) and obtain an exact sequence

α(C0)(1)∆� α(C−1)(1)∆� ZS .

Hence, ZS has projective dimension at most one and

FittΛ(G)(ZS) = FittΛ(G)(α(fS((L′∞)+/K))(1)∆)
= FittΛ(G)(α(fS(L+

∞/K))(1))

= [〈Φ̇Se
− + e+〉]nr(Λ(G)),

where the second equality follows from [RW04, Proposition 12], whereas the last equality is the
EIMC. 2

As in [Gre04, Proposition 6], we have an exact sequence

Zp(1)�
⊕
p∈T

Zp(1)−→X−T �X−std (14)
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if ζp ∈ L, and without the left-most term if ζp 6∈ L. For p 6∈ Sp, we put

Ξp := εp
κ(φ℘)− φ℘

1− φ℘
+ 1− εp ∈Q(G℘), where εp = |IP|−1NIP ∈QpH,

ξp := nr(1⊗ Ξp).

Here, φ℘ ∈ G and IP are the Frobenius and the inertia subgroup at a chosen prime ℘ in L∞
above p, respectively; note that the inertia subgroup depends only on the prime P in L above p,
since p lies not above p and is thus unramified in the cyclotomic extension. The element 1⊗ Ξp

belongs to Q(G) = indGG℘Q(G℘). Note that φ℘ and IP depend on the choice of ℘, but ξp does not.
If S is a finite set of places of K containing Sp ∪ S∞, we put

ΨS :=
∏

p∈S\Sp

ξp · Φ̇Se
− ∈ ζ(Q(G)−).

Proposition 4.3. The Fitting invariant FittQpΛ(G)−(QpX−T ) is generated by ΨT∪Sp . In
particular, ΨT∪Sp ∈ ζ(QpΛ(G)−).

Proof. We first observe that QpΛ(G) is a maximal Qp ⊗R-order in Q(G). In this case, every
finitely generated QpΛ(G)-module has a quadratic presentation, and taking Fitting invariants is
multiplicative on short exact sequences of Qp ⊗R-torsion QpΛ(G)-modules. It suffices to assume
the EIMC in the ‘maximal order case’, which is a theorem ([RW04, Theorem 16]; cf. also [RW04,
Remark H]), and we may use Theorem 4.2 over QpΛ(G) without assuming that µ= 0. We put
i=−1 if ζp ∈ L and i= 0 otherwise. Since QpXdu = QpXstd, the exact sequences (12) and (14)
imply that

Fitt(QpX−T ) = Fitt(QpZ
−
T∪Sp) · Fitt(Qp(1))i ·

∏
p∈T

Fitt(QpZ
−
p )−1 · Fitt(QpZp(1)−)

= 〈Φ̇T∪Spe
−〉 ·

∏
p∈T

Fitt(QpZ
−
p )−1 · Fitt(QpZp(1)−),

where all Fitting invariants are taken over QpΛ(G)− and the second equality holds by
Theorem 4.2. The Fitting invariant of QpZ

−
p is generated by nr(1⊗ xp)e− with xp = 1− εp +

(1− φ℘)εp, since QpZp = indGG℘Qp and Qp is isomorphic to QpΛ(G℘)/xp as a QpΛ(G℘)-module.
Likewise, the Fitting invariant of QpZp(1)− is generated by nr(1⊗ ẋp)e−. We obtain

Fitt(QpZ
−
p )−1 · Fitt(QpZp(1)−) = 〈nr(1⊗ (ẋpx

−1
p ))e−〉= 〈ξpe−〉. 2

We now prove the non-abelian analogue of [Gre04, Theorem 6].

Theorem 4.4. Let L/K be almost tame above p. Assume that the Iwasawa µ-invariant attached
to the extension L+

∞/K vanishes. Then ΨT∪Sp generates the Fitting invariant FittΛ(G)−(X−T ).

Proof. Since µ= 0, the Λ(G)−-module X−T has projective dimension at most 1 by Proposition 4.1.
Since it is also R-torsion and finitely generated and we know that ΨT∪Sp generates the Fitting
invariant FittQpΛ(G)−(QpX−T ) by Proposition 4.3, we wish to apply Proposition 3.2 such that it
remains to show that ΨT∪Sp ∈ nr(K1(Λ(p)(G)−)).

By µ= 0 again, the validity of the EIMC implies that there is an element Θ+ ∈K1(Λ(p)(G+))
such that nr(Θ+) = ΦT∪Sp . In fact, this is equivalent to the EIMC by [RW05, Theorem A],
but it is clearly necessary, since fT∪Sp vanishes if we localize at (p). The discussion in the
proof of Theorem 4.2 shows that there is a matrix Θ ∈Gln(Λ(p)(G)−) such that nr(Θ) = Φ̇T∪Sp .
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Now it suffices to show that ξpe− ∈ nr(K1(Λ(p)(G)−)) for p ∈ T . For this, fix a prime p ∈ T and
let q be the rational prime below p. We denote the q-Sylow subgroup of IP by RP and define an
idempotent rp = |RP|−1NRP

which lies in ZpH, since q 6= p. Let a be a generator of IP/RP and
choose a fixed lift of the Frobenius automorphism φ℘ in G℘, which we also denote by φ℘. Then
1− φ℘ is a non-zero-divisor and we may define

Ξ′p := (1− φ℘)−1(b− φ℘)rp + 1− rp ∈ Λ(p)(G℘),

where b :=
∑qp−1

i=0 ai and qp = κ(φ℘). We claim that nr(Ξ′p) = nr(Ξp). By [Chi85, Lemma, p. 369]
we have φ℘a= aqpφ℘. Thus, using the relations rpεp = εp and (b− φ℘)εp = (qp − φ℘)εp, we
compute that

Ξ−1
p Ξ′p = εp + ((1− φ℘)−1(b− φ℘)rp + 1− rp)(1− εp).

We define a unit in Q(G) by

βp := εp + ((a− 1)rp + (1− rp))(1− εp).

Then one easily computes that Ξ−1
p Ξ′pβp = (φ−1

℘ − 1)−1βp(φ−1
℘ − 1); hence, Ξ−1

p Ξ′p is a
commutator and has reduced norm equal to 1.

To conclude the proof, it suffices to show that Ξ′p is in Λ(p)(G℘)×. Since 1− φ℘ is a unit in
Λ(p)(G℘), we have to show that b− φ℘ is invertible in Λ(p)(G℘/RP)' Λ(p)(G℘)rp. We thus may
assume that RP is trivial. Now let ep be the order of IP and let t be the order of qp mod ep; we
put d := e−1

p

∑ep−1
i=0 ai. We claim that(t−1∏

j=0

φj℘bφ
−j
℘

)
− 1 = (qtp − 1)d. (15)

For the proof, observe that φ℘(a− 1)φ−1
℘ = b(a− 1) implies that φi℘(a− 1)φ−i℘ = (

∏i−1
j=0 φ

j
℘bφ

−j
℘ )

(a− 1) by induction on i. Setting i= t, we see that the left-hand side of (15) annihilates a− 1,
as φt℘ and a commute. But, the ZpIP-annihilator of a− 1 is generated by epd such that the
left-hand side equals w · d for an appropriate w ∈ Zp. The claim follows, since both sides of (15)
have the same image (namely, qtp − 1) under the augmentation map.

Now let H be the open subgroup of index t in G℘ containing a and φt℘. Then Λ(p)(H) is
commutative and Λ(p)(G℘) has Λ(p)(H)-basis φi℘, 06 i6 t− 1. We need to solve the equation

1 =
( t−1∑
i=0

ciφ
i
℘

)
(b− φ℘)

=
( t−1∑
i=0

ci(φi℘bφ
−i
℘ )φi℘

)
−

t−1∑
i=0

ciφ
i+1
℘

=
t−1∑
i=1

(ciφi℘bφ
−i
℘ − ci−1)φi℘ + (c0b− ct−1φ

t
℘)

for ci ∈ Λ(p)(H); that is, ci−1 = ciφ
i
℘bφ

−i
℘ for 16 i < t and c0b= 1 + ct−1φ

t
℘. From the first

relations, we obtain cs = ct−1
∏t−1
j=s+1 φ

j
℘bφ

−j
℘ for 06 s < t by downward induction on s; setting

s= 0 yields

c0b= ct−1

t−1∏
j=0

(φj℘bφ
−j
℘ ) = ct−1(1 + (qtp − 1)d),
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where the second equality is (15). Comparing with the second relation gives

ct−1(1 + (qtp − 1)d− φt℘) = 1

such that we have to show that 1 + (qtp − 1)d− φt℘ lies in Λ(p)(H)×. We may consider suitable
multiples of this element such that it suffices to check that

(1 + (qtp − 1)d)p−1 − (φt℘)p−1 = 1 + (q(p−1)t
p − 1)d− φ(p−1)t

℘ = (1− φ(p−1)t
℘ ) + (q(p−1)t

p − 1)d

lies in Λ(p)(H)×, and likewise that u := (1− φ(p−1)t
℘ )2 − (q(p−1)t

p − 1)2d is in Λ(p)(H)×. But,

(q(p−1)t
p − 1)d lies in Λ(p)(H) and p divides (q(p−1)t

p − 1); thus, u≡ (1− φ(p−1)t
℘ )2 mod pΛ(p)(H)

with 1− φ(p−1)t
℘ ∈ Λ(p)(H)×; hence, u ∈ Λ(p)(H)×, as desired. 2

We close this section with a few preparations for the Galois descent. If χ is a character of G
with open kernel, we define

Sχ := {p⊂K | IP 6⊂ ker(χ)}.

Lemma 4.5. Let S be a finite set of primes of K containing S∞. Let χ be an even character of
G with open kernel and put Σ := S ∪ Sp and Σχ := (S ∩ Sχ) ∪ Sp.

(i) If χ is of type S (i.e. Γ⊂ ker(χ)), we have an equality

Lp,Σ(s, χ) = Lp,Σχ(s, χ)
∏

p∈Σ\Σχ

det(1− σ℘u−scp |V
IP
χω−1), (16)

where we write φ℘ = σ℘ · γcp with σ℘ ∈H, cp ∈ Zp, and where ω denotes the Teichmüller
character.

(ii) We have an equality

Gχ,Σ(T ) =Gχ,Σχ(T )
∏

p∈Σ\Σχ

gp,χω−1(T ),

where gp,χ(T ) := detQc(ΓK)(1− φ−1
℘ εp|Vχ−1).

Proof. For (i), we have to evaluate both sides at s= 1− r, where r > 1 is divisible by p− 1. We
observe that

u(r−1)cp = κ(φ℘)r−1κ(σ℘)1−r =N(p)r−1ω(σ℘).
Now we compute that the right-hand side of (16) at s= 1− r equals

Lp,Σχ(1− r, χ)
∏

p∈Σ\Σχ

det(1− σ℘ω(σ℘)N(p)r−1|V IP
χω−1)

= LΣχ(1− r, χ)
∏

p∈Σ\Σχ

det(1− σ℘N(p)r−1|V IP
χ )

= LΣ(1− r, χ)
= Lp,Σ(1− r, χ).

This proves (i). For (ii), we observe that gp,χ(us − 1) = det(1− σ℘u−scpεp|Vχ) if χ is of type S.
Hence, (i) implies (ii) in this case. If χ= ψ ⊗ ρ, where ψ is of type S and ρ is of type W , then
we have an equality

gp,ψ⊗ρ = gp,ψ(ρ(γK)(1 + T )− 1).
Since similar equalities hold for Gχ,Σ and Gχ,Σχ , we get (ii) in general. 2
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Corollary 4.6. Keep the notation of Lemma 4.5, but assume that χ is an odd character and
Σ contains Sram. Then

jχ(Φ̇Σ) = LK,Σχ(χ−1ω)
∏

p∈Σ\Σχ

gp,χ−1(γK − 1).

The following proposition is contained in the author’s dissertation [Nic08, Proposition 3.2.7],
but it has not yet been published in a peer-reviewed journal.

Proposition 4.7. Let L/K be a Galois CM-extension with Galois group G, p 6= 2 a rational
prime and T a finite G-invariant set of places of L such that T ∩ Sp = ∅. If X−T denotes the
projective limit of the minus p-ray class groups ATLn(p), there is an exact sequence of ZpG−-
modules ⊕

p∈Sp

(indGGP
Zp)−→ (X−T )ΓL �ATL(p).

Proof. The canonical restriction map XT → clTL(p) is surjective on minus parts, since the cokernel
is a quotient of ΓL on which j acts trivially. It clearly factors through (X−T )ΓL .

Recall that MT is the maximal abelian pro-p-extension of L∞ unramified outside T . We put
YT = Gal(MT /L). Let P1, . . . ,Ps be the primes in L above p. Exactly these primes ramify in
L∞/L, and we denote the finitely many primes in L∞, which lie above P1, . . . ,Ps, by P∞ik ,
16 i6 s. Moreover, we choose above each P∞ik a prime P̃ik in MT , and denote its inertia group
in YT by Iik.

We obviously have an isomorphism YT /XT ' ΓL. So, we can pick a preimage γ ∈ YT of γL,
and thus

YT =XT · 〈γ〉. (17)

Let Y ′T be the closure of the commutator subgroup of YT . Then G acts on YT /Y ′T via conjugation,
and we may assume that γj ≡ γ mod Y ′T , as we may choose a lift j̃ ∈Gal(MT /K) of j and replace
γ by γ(1+j̃)/2. The condition on the set T forces that the extension MT /L∞ does not ramify
above p. Therefore, Iik ∩XT = 1, and we get inclusions

Iik� YT /XT = ΓL.

Hence, each Iik is isomorphic to Γp
nik

L for an appropriate integer nik. We fix a topological
generator σik of Iik which maps to γp

nik

L via the above inclusion. But, for fixed i, each two
of these inertia groups are conjugate, and hence ni := nik does not depend on k. Corresponding
to (17), we write σik = aikγ

pni with aik ∈XT .

Let M0 be the p-ray class field of L to the ray MT such that Gal(M0/L)' clTL(p). Because
of the obvious exact sequence

Gal(MT /M0)� YT � clTL(p),

we are interested in the Galois group Gal(MT /M0). We claim that it equals the subgroup N of
YT generated by Y ′T and the inertia groups Iik. For this, let N be the intermediate field of the
extension MT /L fixed by N . Then N is the largest subfield of MT which is abelian over L and
unramified above p. Thus, M0 ⊂N . If we assume that M0 6=N , we find an intermediate field
N0 of finite degree over L such that M0 (N0 ⊂N . Let N be the conductor of N0/L. Then the
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primes which divide N are exactly the primes in T . The commutative diagram

o×L
// (oL/N)× //

����

clNL // //

����

clL

o×L
// (oL/MT )× // clTL // // clL

now implies that the order m of the kernel of the surjection clNL � clTL is prime to p, since the
primes dividing m are below the primes in T . What we have shown is N0 =M0, in contradiction
to our assumption.

Lemma 4.8. Let Y ′T be the closure of the commutator subgroup of YT . Then

Y ′T =XγL−1
T .

Proof. The proof of [Was82, Lemma 13.14] nearly remains unchanged. We only have to replace
the inertia subgroup I1 in [Was82] by 〈γ〉. 2

Since γj = γ mod Y ′T , the above lemma implies that we obtain an isomorphism

ATL(p)'X−T /〈(X
−
T )γL−1, a

e−
ik 〉.

As already mentioned, the inertia groups Iik are conjugate for fixed i; hence, σik ≡ σi1 mod Y ′T
and likewise aik ≡ ai1 mod Y ′T for all k. Hence,

ATL(p)'X−T /〈(X
−
T )γL−1, a1, . . . , as〉,

where we have defined ai := a
e−
i1 . Since X−T /(X

−
T )γL−1 = (X−T )ΓL , Proposition 4.7 follows from

the following lemma. 2

Lemma 4.9. If Pj = P
g
i for an element g ∈G, then aj ≡ agi mod (X−T )γL−1.

Proof. Let τ ∈Gal(MT /K) be a lift of g. Then g acts on (X−T )ΓL via conjugation by τ . P̃
τ
i1 is a

prime in MT above Pj ; hence, there exists an x ∈ YT such that P̃
τ
i1 = P̃

x
j1. Replacing τ by x−1τ ,

we may assume that x= 1. Hence,

〈σj1〉= Ij1 = Iτi1 = 〈στi1〉.

Since the restriction to L∞ induces an isomorphism Ij1 ' Γp
nj

L and

στi1|L∞ = (γp
ni

L )τ = (γp
ni

L )g = γp
ni

L ,

we have ni = nj and σj1 = στi1, i.e.

aj1 = (ai1γp
nj )τ · γ−p

nj
.

But, γτ |L∞ = γL implies that γτ = xτ · γ for an element xτ ∈XT . Hence, the assertion follows
from the above equation, since xe−τ vanishes in (X−T )ΓL , as j trivially acts on γ mod Y ′T and
commutes with τ . 2

5. An integrality conjecture

Let L/K be a Galois CM-extension with Galois group G. Let S and T be two finite sets of places
of K such that:
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– S contains all the infinite places of K and all the places which ramify in L/K, i.e. S ⊃
Sram ∪ S∞;

– S ∩ T = ∅;
– ETS is torsion free.

We refer to the above hypotheses as Hyp(S, T ). For a fixed set S, we define AS to be the ζ(ZG)-
submodule of ζ(QG) generated by the elements δT (0), where T runs through the finite sets of
places of K such that Hyp(S, T ) is satisfied. Note that AS equals the ZG-annihilator of the roots
of unity of L if G is abelian by [Tat84, Lemma 1.1, p. 82].

For each finite prime p of K, we define a ZGP-module Up by

Up := 〈NIP , 1− εpφ
−1
P 〉ZGP

⊂QGP,

where we recall that εp = |IP|−1NIP . Note that Up = ZGP if p is unramified in L/K such that
the definition of the following ζ(ZG)-module is indeed independent of the set S as long as S
contains the ramified primes:

U :=
〈 ∏

p∈S\S∞

nr(up)
∣∣∣∣ up ∈ Up

〉
ζ(ZG)

⊂ ζ(QG).

Definition 5.1. Let S be a finite set of primes which contains Sram ∪ S∞. We define a ζ(ZG)-
module by

SKu(L/K, S) := AS · U · L(0)] ⊂ ζ(QG).

We call SKu(L/K) := SKu(L/K, Sram ∪ S∞) the (fractional) Sinnott–Kurihara ideal.

For abelian G, this definition coincides with the Sinnott–Kurihara ideal SKu(L/K) in [Gre07]
(see also [Sin80, p. 193]).

Let I(G) be the ζ(ZG)-module generated by the elements nr(H), H ∈Mn×n(ZG), n ∈ N.
Actually, I(G) is a commutative ring and we have inclusions

ζ(ZG)⊂ I(G)⊂ ζ(M(G)),

where M(G) is a maximal order in QG. We now state the following integrality conjecture.

Conjecture 5.2. The Sinnott–Kurihara ideal SKu(L/K) is contained in I(G).

Remark 1. (i) Since clearly SKu(L/K, S)⊂ SKu(L/K, S′) if S′ ⊂ S, Conjecture 5.2 implies that
SKu(L/K, S)⊂ I(G) for all admissible sets S.

(ii) If the sets S and T satisfy Hyp(S, T ), the Stickelberger element θTS is contained
in SKu(L/K, S). Hence, Conjecture 5.2 predicts that θTS ∈ I(G), which is part of [Nic,
Conjecture 2.1].

(iii) In the above definitions, we may replace Z and Q by Zp and Qp, respectively. We obtain
a local Sinnott–Kurihara ideal SKup(L/K) contained in ζ(QpG) and a ζ(ZpG)-module Ip(G).
Since we have an equality

I(G) =
⋂
p

Ip(G) ∩ ζ(QG),

we have an equivalence

SKu(L/K)⊂ I(G)⇐⇒ SKup(L/K)⊂ Ip(G) ∀p.
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If G is abelian, we obviously have I(G) = ζ(ZG) = ZG and the results in [Bar77/78, Cas79,
DR80] each imply the following theorem (cf. [Gre07, § 2]).

Theorem 5.3. Conjecture 5.2 holds if L/K is an abelian CM-extension.

6. The ETNC in almost tame extensions

Let us fix a finite Galois extension L/K of number fields with Galois group G and a finite set
S of places of K which contains Sram ∪ S∞. In [Bur01], the author defines the following element
of K0(ZG, R):

TΩ(L/K, 0) := ψ∗G(χG,R(τS , λ−1
S ) + ∂̂G(L∗S(0)])).

Here, ψ∗G is a certain involution on K0(ZG, R) which is not important for our purposes, since
we will be only interested in the nullity of TΩ(L/K, 0). Furthermore, τS ∈ Ext2

G(ES ,∆S) is
Tate’s canonical class (cf. [Tat66]), where ∆S is the kernel of the augmentation map ZS(L)� Z
which maps each P ∈ S(L) to 1. Finally, λS denotes the negative of the usual Dirichlet map,
so λS : R⊗ ES → R⊗∆S, u 7→ −

∑
P∈S(L) log |u|PP, and χG,R(τS , λ−1

S ) is the refined Euler
characteristic associated to the perfect 2-extension whose extension class is τS , metrized by λ−1

S .
For more precise definitions, we refer the reader to [Bur01]. The ETNC for the motive h0(L)
with coefficients in ZG in this context asserts that the element TΩ(L/K, 0) is zero. Note that
this statement is also equivalent to the lifted root number conjecture formulated by Gruenberg
et al. [GRW99] (cf. [Bur01, Theorem 2.3.3]).

It is also proven in [Bur01] that TΩ(L/K, 0) lies in K0(ZG,Q) if and only if Stark’s conjecture
holds. In this case, the ETNC decomposes into local conjectures at each prime p by means of
the isomorphism

K0(ZG,Q)'
⊕
p -∞

K0(ZpG,Qp).

Now let L/K be a Galois CM-extension. Since Stark’s conjecture is known for odd characters
(cf. [Tat84, Theorem 1.2, p. 70]), TΩ(L/K, 0) has a well-defined image TΩ(L/K, 0)−p in
K0(ZpG−,Qp). Recall that T consists of a prime p0 - p and all finite places of K which ramify
in L/K and do not lie above p, and we have chosen p0 such that ETS is torsion free. We have the
following reformulation of [Nic10a, Theorem 2].

Theorem 6.1. Let p be an odd prime and L/K a Galois CM-extension which is almost tame
above p. Then

TΩ(L/K, 0)−p = 0⇐⇒ FittZpG−(ATL(p)) = [〈θTS1
〉]nr(ZpG−),

where S1 denotes the set of all wildly ramified primes above p.

We have the following connection to the integrality Conjecture 5.2 (cf. [Nic, Proof of
Theorem 5.1, Corollary 5.6]).

Theorem 6.2. Let p be an odd prime and L/K a Galois CM-extension and assume that
TΩ(L/K, 0)−p vanishes. If the p-part of the roots of unity of L is a c.t. G-module or if L/K
is almost tame above p, then the p-part of Conjecture 5.2 holds, i.e. SKup(L/K)⊂ Ip(G).

The aim of this section is to prove a partial reverse of this theorem for almost tame extensions.

Lemma 6.3. Let p be an odd prime and L/K a Galois CM-extension which is almost tame
above p. Assume that the Iwasawa µ-invariant attached to the extension L+

∞/K vanishes.
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Then

FittZpG−(X−T /(γL − 1)) = [〈θTSp〉]nr(ZpG−).

Proof. By Theorem 4.4, the Fitting invariant of X−T over Λ(G)− is generated by ΨΣ, where we
put Σ = T ∪ Sp. Now [Nic10b, Theorem 6.4] implies that FittZpG−(X−T /(γL − 1)) is generated by∑

χ∈Irr(G)

augΓL(jχ(ΨΣ))eχ. (18)

But, using Corollary 4.6, we compute

jχ(ΨΣ) =
(∏

p∈T
jχ(ξp)

)
· jχ(Φ̇Σ)

=
(∏

p∈T
jχ(nr(Ξp · (1− φ−1

P εp)))
)
LK,Σχ(χ−1ω)

=
(∏

p∈T
jχ(nr(εp(1−N(p)φ−1

P ) + 1− εp))
)
LK,Σχ(χ−1ω).

Hence, (18) equals ∑
χ∈Irr(G)

(∏
p∈T

det(1−N(p)φ−1
P |V

IP
χ )
)
LΣχ(0, χ−1) = θTSp . 2

We define an element αp ∈ ζ(QpG−) by

αp =
∏

p∈Sp\S1

nr(1− εpφ−1
P )

such that we have an equality θTS1
· αp = θTSp . We start with the following special case, where we

get Conjecture 5.2 for free.

Proposition 6.4. Let p be an odd prime and L/K a Galois CM-extension such that j ∈GP for
all P above p. Assume that the Iwasawa µ-invariant attached to the extension L+

∞/K vanishes.
Then TΩ(L/K, 0)−p = 0 and the p-part of Conjecture 5.2 holds.

Proof. As before, the canonical restriction map X−T →ATL(p) is surjective. By [Nic10b,
Proposition 3.5(i)], this implies that

FittZpG−(X−T /(γL − 1))⊂ FittZpG−(ATL(p)).

Since we have j ∈GP for all P above p by assumption, the element αp lies in nr(K1(ZpG−)) and
thus Lemma 6.3 implies that θTS1

∈ FittZpG−(ATL(p)). In particular, we have θTS1
∈ Ip(G). Let E

be a splitting field of QpG. Since θTS1
= (δT (0, χ)LS1(0, χ−1))χ and

|ATL(p)|= x ·
∏

χ∈Irr(G)
χ odd

(δT (0, χ)LS1(0, χ−1))χ(1)

with an appropriate unit x ∈ o×E by [Nic10a, Proposition 4], the Stickelberger element θTS1
is

actually a generator of FittZpG−(ATL(p)) by [Nic10b, Proposition 5.4]. Now Theorem 6.1 implies
the vanishing of TΩ(L/K, 0)−p , which also implies Conjecture 5.2 by Theorem 6.2. 2
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Let us denote the normal closure of L over Q by Lcl, which is again a CM-field. We will
henceforth make the following additional assumption:

Lcl 6⊂ (Lcl)+(ζp).

Note that this assumption fails only for finitely many primes p, since such a p has to ramify in
Lcl/Q.

Lemma 6.5. Let N > 0 be a natural number. Then there are infinitely many primes r ∈ Z such
that:

(i) r ≡ 1 mod pN ;

(ii) j ∈GR for all primes R in L above r;

(iii) the Frobenius automorphism Frobp at p in Gal(Q(ζr)/Q) generates Gal(kr/Q), where kr
denotes the unique subfield of Q(ζr) of degree pN over Q.

Proof. The proof of [Gre00, Proposition 4.1] carries over unchanged to the present situation. 2

Let N ∈ N be large and choose a prime r as in Lemma 6.5 which does not ramify in Lcl/Q.
We put L′ := Lkr, K ′ =Kkr and G′ = Gal(L′/K) =G× CN , where CN 'Gal(kr/Q) is cyclic
of order pN , generated by Frobp. Note that L′/K is again almost tame above p. Moreover, we
define T ′ := T ∪ Sr, where Sr denotes the set of places in K above r. Using the same arguments
as in [Nic10a] following Proposition 9, we have an isomorphism

AT
′

L′ (p)'ATL′(p)

and hence ATL′(p) is G′-c.t. by [Nic10a, Theorem 1]. As in [Nic10a], the restriction map induces
an isomorphism

(ATL′(p))CN 'A
T
L(p). (19)

We will need the following lemma.

Lemma 6.6. Assume that G′ is a direct product of a group G and an abelian group C. Then
we have |G| · Ip(G′)⊂ ζ(ZpG′) for all primes p.

Proof. Choose a maximal order M(G) containing ZpG. Then M(G) is a direct sum of matrix
rings of type Mn×n(oD), where oD denotes the valuation ring of a skew field D. We have

ζ(Mn×n(oD)) = ζ(oD) = oF ,

where oF is the ring of integers of the field F = ζ(D) which is finite over Qp. Since the
reduced norm maps M(G) into its center and |G| · ζ(M(G))⊂ ζ(ZpG), it suffices to show that
the reduced norm maps Mm×m(Mn×n(oD)[C]) into oF [C]. Let us at first assume that D = F .
Then the map

σ :Mn×n(F )[C] −→Mn×n(F [C]),∑
c∈C

Mcc 7→
(∑
c∈C

αij(c)c
)
i,j

is an isomorphism of rings, where Mc = (αij(c))i,j lies in Mn×n(F ). Likewise, σ induces an
isomorphism

σ :Mn×n(oF )[C]'Mn×n(oF [C]).
Therefore, we have

nr(Mm×m(Mn×n(oF )[C])) = nr(Mnm×nm(oF [C])) = nr(oF [C]) = oF [C].
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For arbitraryD, there is a field E, Galois over F , such that E ⊗F D 'Ms×s(E) for some integer s.
We have just proven that the reduced norm maps Mm×m(Mn×n(oD)[C]) into oE [C]. But, the
image is invariant under the action of Gal(E/F ) and is therefore contained in oF [C]. 2

Let α′p ∈ ζ(QpG
′) be defined analogously to αp such that θT

′
S1
· α′p = θT

′
Sp

. Now choose a second
natural number M 6N and put

ν :=
pM−1∑
i=0

Frobip
N−M

p ∈ ZpCN ⊂ ζ(ZpG′).

Lemma 6.7. Let f be the least common multiple of the residual degrees fp(K/Q) of all p ∈ Sp.
If N −M > vp(|G| · f), then |G| · α′p is a non-zero-divisor in ζ(ZpG′)/ν.

Proof. We first observe that Lemma 6.6 implies that |G| · α′p lies in ζ(ZpG′). Since ZpCN/ν and
likewise ζ(ZpG′)/ν are reduced rings, we have to show that no minimal prime of ζ(ZpG′) contains
both |G| · α′p and ν. The minimal primes are given by

pχ′ := {x ∈ ζ(ZpG′) | χ′(x) = 0}, χ′ ∈ Irr(G′).

We may write χ′ as a product χ · χN of irreducible characters χ of G and χN of
CN ; then χ′(Frobp) = χ(1) · ζps for some s6N . Assume that ν ∈ pχ′ ; hence, 0 = χ′(ν) =

χ(1)
∑pM−1

i=0 ζip
N−M

ps . But, since χ(1) 6= 0, this implies that s > N −M . If also |G| · α′p ∈ pχ′ ,
there are a prime p ∈ Sp and a prime P′ in L′ above p such that the inertia group at P′

acts trivially on Vχ′ and det(1− φ−1
P′
|V IP′
χ ) vanishes. But, this determinant is a product of

some 1− ζ · ζ−fp

ps , where ζ is a root of unity of order dividing |G| and, by assumption, we have

vp(ord(ζfp

ps)) = s/vp(fp)> (N −M)/vp(fp)> vp(|G|). This is a contradiction. 2

We are ready to prove the main result of this section, which generalizes [Nic10a, Theorem 4].

Theorem 6.8. Let p be an odd prime and L/K a Galois CM-extension which is almost tame
above p. Assume that the Iwasawa µ-invariant attached to the extension L+

∞/K vanishes and that
Lcl 6⊂ (Lcl)+(ζp). Moreover, assume that for each integer M there is an integer N >M such
that there is a prime r = r(N) as in Lemma 6.5, unramified in Lcl/Q, such that the p-part
of Conjecture 5.2 is true for L′/K. Then TΩ(L/K, 0)−p = 0. In particular, the p-parts of the
following conjectures hold:

(i) the strong Stark conjecture for odd characters as formulated by Chinburg [Chi83,
Conjecture 2.2];

(ii) the (weak) non-abelian Brumer conjecture of [Nic, Conjectures 2.1 and 2.3];

(iii) the (weak) non-abelian Brumer–Stark conjecture of [Nic, Conjectures 2.6 and 2.7];

(iv) the weak non-abelian strong Brumer–Stark conjecture of [Nic, Conjecture 3.6].

Moreover, L/K fulfills the non-abelian strong Brumer–Stark property at p (cf. [Nic,
Definition 3.5]).

Remark 2. (i ) Since Conjecture 5.2 is known to be true for abelian Galois groups, it seems to
be likely that we can prove this conjecture attached to the extensions L′/K if so for L/K.

(ii) Since the strong Stark conjecture at p is a theorem for odd characters in the case at hand
(cf. [Nic10a, Corollary 2]), it follows from the results in [Nic] that the weak variants of the
above conjectures are true unconditionally (cf. [Nic, Corollary 4.2]).
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Proof of Theorem 6.8. We first observe that enlarging L to L′ does not affect the vanishing
of µ by [NSW00, Theorem 11.3.8]. Now choose natural numbers M 6N such that r = r(N)
fulfills the above conditions and N −M > vp(|G| · f), where f was defined in Lemma 6.7. Let
G′ = Gal(L′∞/K) and let X−T ′ be the projective limit of the minus p-ray class groups AT

′
L′n

(p). Then
X−T ′ has projective dimension at most one and the EIMC for the extension (L′∞)+/K implies
that

FittΛ(G′)−(X−T ′) = [〈ΨT ′∪Sp〉]nr(Λ(G′)−).

For each prime p of K, let P′ ⊂ L′ be a prime above p. By Proposition 4.7, we have a right exact
sequence ⊕

p∈Sp

indGGP′
Zp→ (X−T ′)ΓL′ �AT

′
L′ (p).

The Fitting invariant of the left-most term is generated by α′p, whereas θT
′

Sp
= θT

′
Sp

(L′/K) is a
generator of FittZpG′−((X−T ′)ΓL′ ) by Lemma 6.3. Since j ∈GR for all primes above r, we may

replace θT
′

Sp
by θTSp . The above sequence gives rise to the following inclusion of Fitting invariants

(cf. [Nic10b, Proposition 3.5(iii)]):

FittZpG′−

(⊕
p∈Sp

indGGP′
Zp
)
· FittZpG′−(AT

′
L′ (p))⊂ FittZpG′−((X−T ′)ΓL′ ).

If we choose a generator ξ′ of FittZpG′−(AT
′

L′ (p)), there exists x ∈ ζ(ZpG′) such that

α′pξ
′ = x · θTSp = x · α′pθTS1

.

It follows from Lemma 6.6 that multiplication by |G|2 yields an equality in ζ(ZpG′) (since
Conjecture 5.2 holds by assumption) such that Lemma 6.7 gives

|G| · ξ′ ≡ |G| · x · θTS1
mod ν. (20)

Let aug : ZpG′→ ZpG be the natural augmentation map. Since Fitting invariants behave well
under base change (cf. [Nic10b, Lemma 5.5]), the element ξ := aug(ξ′) generates the Fitting
invariant of ATL(p) by (19). But, since aug(θTSp(L

′/K)) = θTSp(L/K) and aug(ν) = pM , (20) implies
that

ξ ≡ aug(x) · θTS1
(L/K) mod pM−mIp(G),

where pm is the exact power dividing |G|. This gives an inclusion

FittZpG(ATL(p))⊂ [〈θTS1
〉]nr(ZpG),

as we may choose M arbitrarily large. Now we can conclude as in Proposition 6.4 that θTS1
is in

fact a generator of FittZpG(ATL(p)) and we are done via Theorem 6.1. 2

Remark 3. Note that we have not used the whole statement of Conjecture 5.2. It suffices to
assume that the denominators of the elements θTS1

(L′/K) for varying r = r(N) are bounded,
independently of N .

Acknowledgement

I would like to thank the referee, who detected a non-trivial mistake within the proof of
Theorem 4.4 in an earlier version of this paper.

1202

https://doi.org/10.1112/S0010437X11005331 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005331


On the equivariant Tamagawa number conjecture in tame CM-extensions, II

References
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réels, Groupe d’Etude d’Analyse Ultramétrique (1977/78), Exp. No. 16.

Ble06 W. Bley, On the equivariant Tamagawa number conjecture for abelian extensions of a
quadratic imaginary field, Doc. Math. 11 (2006), 73–118.

Bur01 D. Burns, Equivariant Tamagawa numbers and Galois module theory I, Compositio Math.
129 (2001), 203–237.

BF01 D. Burns and M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients,
Doc. Math. 6 (2001), 501–570.

BG03 D. Burns and C. Greither, On the equivariant Tamagawa number conjecture for Tate motives,
Invent. Math. 153 (2003), 305–359.

BJ11 D. Burns and H. Johnston, A non-abelian Stickelberger theorem, Compositio Math. 147
(2011), 35–55.

Cas79 P. Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques,
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