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Abstract

In a recent paper, Kleinberg (2000) considered a small-world network model consisting
of a d-dimensional lattice augmented with shortcuts. The probability of a shortcut being
present between two points decays as a power, r−α , of the distance, r , between them.
Kleinberg showed that greedy routeing is efficient if α = d and that there is no efficient
decentralised routeing algorithm if α �= d. The results were extended to a continuum
model by Franceschetti and Meester (2003). In our work, we extend the result to more
realistic models constructed from a Poisson point process wherein each point is connected
to all its neighbours within some fixed radius, and possesses random shortcuts to more
distant nodes as described above.
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1. Introduction

A classical random graph model introduced by Erdős and Rényi (1959) consists of n nodes,
with the edge between any pair of vertices being present with probability p(n), independent
of other pairs. Recently, there has been considerable interest in alternative models where the
nodes are given coordinates in a Euclidean space, and the probability of an edge between a pair
of nodes u and v is given by a function g(·) of the distance, r(u, v), between the nodes; edges
between different node pairs are independent. Such ‘random connection’ or ‘spatial random
graph’ models and variants thereof arise, for instance, in the study of wireless communications
networks.

The ‘small-world phenomenon’ (the principle that all people are linked by short chains
of acquaintances), which has long been a matter of folklore, was inaugurated as an area of
experimental study in the social sciences through the pioneering work of Milgram (1967).
Recent works have suggested that the phenomenon is pervasive in networks arising in nature
and technology, and motivated interest in mathematical models of such networks. While Erdős–
Rényi random graphs possess the property of having a small diameter (smaller than logarithmic
in the number of nodes, above the connectivity threshold for p(n)), they are not good models for
social networks because of the independence assumption. On the other hand, spatial random
graphs are better at capturing clustering because of the implicit dependence between edges
induced by the connection function g(·).
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Efficient routeing in Poisson small-world networks 679

Watts and Strogatz (1967) conducted a set of re-wiring experiments on graphs, and observed
that by re-wiring a few random links in finite lattices, the average path length was reduced
drastically (approaching that of random graphs). This led them to propose a model of ‘small-
world graphs’ which essentially consisted of a lattice augmented with random links acting as
shortcuts, which played an important role in shrinking the average path link. By the length
of a path we mean the number of edges in it, and distance refers to graph distance (length of
shortest path) unless otherwise specified.

The diameter of the Watts–Strogatz model in the one-dimensional case was obtained by
Barbour and Reinert (2001). Benjamini and Berger (2001) considered a variant of this one-
dimensional model wherein the shortcut between any pair of nodes, instead of being present
with constant probability, is present with probability given by a connection function g(·); they
specifically considered connection functions of the form g(r) ∼ βr−α , where β and α are given
constants and r(u, v) is the graph distance between u and v in the underlying lattice (i.e. the
L1 distance).

The general d-dimensional version of this model, on the finite lattice with nd points, was
studied by Coppersmith et al. (2002). They showed that the diameter of the graph is

�

(
log n

log log n

)
if α = d,

at most polylogarithmic in n if d < α < 2d,

at least polynomial in n if α > 2d,

where Xn = �(an) as n → ∞ if for all δ > 0 there exist cδ > 0 and Cδ > 0 such that, for all
n ≥ n0 (and some n0),

P

(
cδ ≤ Xn

an

≤ Cδ

)
> 1 − δ.

Finally, it was shown by Benjamini et al. (2004) that the diameter is a constant if α < d.
The sociological experiments of Milgram demonstrated not only that there is a short chain

of acquaintances between strangers but also that they are able to find such chains. What sort
of graph models have this property? Specifically, when can decentralised routeing algorithms
(which we define later) find a short path between arbitrary source and destination nodes?

This question was addressed by Kleinberg (2000) for the class of finite d-dimensional lattices
augmented with shortcuts where the probability of a shortcut being present between two nodes
decays as a power, r−α , of the distance, r , between them. Kleinberg showed that greedy
routeing is efficient if α = d and that there is no efficient decentralised routeing algorithm if
α �= d. The results were extended to a continuum model by Franceschetti and Meester (2003).
Note that these results show that decentralised algorithms cannot find short routes when α �= d,
even though such routes are present for α < 2d, by the results of Benjamini et al. (2004) and
Coppersmith et al. (2002); when α > 2d , no short routes are present.

2. Our model

In this work, we consider a model constructed from a Poisson point process on a finite square,
wherein each point is connected to all its neighbours within some fixed radius, and possesses
random shortcuts to more distant nodes. We can express this more precisely as follows.

• We consider a sequence of graphs indexed by n ∈ N.

• Nodes form a Poisson process of rate 1 on the square [0,
√

n]2.
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• Each node x is linked to all nodes that are a distance less than rn = √
c log n away, for a

sufficiently large constant c. In particular, if c > 1/π then this graph is connected with
high probability (w.h.p.), meaning with probability going to 1 as n tends to infinity; see
Penrose (2003). These links are referred to as local edges and the corresponding nodes
as the local contacts of x.

• For two nodes u and v such that r(u, v) >
√

c log n, the edge (u, v) is present with
probability anr(u, v)−α ∧ 1. Such edges are referred to as shortcuts. The parameter an

is chosen so that the expected number of shortcuts per node is equal to some specified
constant, d .

The objective is to route a message from an arbitrary source node s to an arbitrary destination t

using a small number of hops. We are interested in decentralised routeing algorithms, which do
not require global knowledge of the graph topology. It is assumed throughout that each node
knows its location (coordinates) on the plane, the location of all its neighbours, both local and
shortcut, and the location of the destination t . We show that efficient decentralised routeing is
possible only if α = 2. More precisely, we show the following.

• For α = 2, there is a greedy decentralised algorithm to route a message from source to
destination in O(log2 n) hops.

• For α < 2, any decentralised routeing needs more than nγ hops on average, for any γ

such that γ < (2 − α)/6.

• For α > 2, any decentralised routeing needs more than nγ hops on average, for any
γ < (α − 2)/2(α − 1).

As noted by Kleinberg (2000) for the lattice model, the case α = 2 corresponds to a ‘scale-free’
network, i.e. the expected number of shortcuts from a node x to nodes which lie between a
distance r and a distance 2r from it is the same for any r . In both Kleinberg’s model and our
model, the scale invariance is cut off at very small and very large distances because the graph
is on a finite number of nodes. Full scale invariance can be observed in the continuum model
of Franceschetti and Meester (2003) which is defined on the infinite plane (in two dimensions).
They showed that scale invariance is related to the impossibility of efficient decentralised
routeing when α �= 2 through the fact that shortcuts cannot make sufficient progress toward
the destination when α > 2 (they are too short), while they cannot home in on small enough
neighbourhoods of the destination when α < 2 (they are too long). Note that, while the number
of connections per node is deterministic in Kleinberg’s model, it is random (for both nearest
neighbours and shortcuts) in our model and in Franceschetti and Meester’s model.

A model very similar to ours was considered by Sharma and Mazumdar (2005), who used it to
describe an ad hoc sensor network. The sensors are located at the points of a Poisson process and
can communicate with nearby sensors through wireless links (corresponding to local contacts).
In addition, it is possible to deploy a small number of wired links (corresponding to shortcuts);
the question they addressed is that of how to place these wired links in order to enable efficient
decentralised routeing.

In the analysis presented below, we ignore edge effects for ease of exposition. This is
equivalent to considering distances as being defined on the torus obtained by identifying opposite
edges of the square.
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3. Efficiency of greedy routeing when α = 2

When α = 2, we show that the following approximately greedy algorithm succeeds w.h.p.
in reaching the destination in a number of hops which is polylogarithmic in n, the expected
number of nodes.

Denote by C(u, r) the circle of radius r centred at node u. If there is no direct link from
the source s to the destination t , then the message is passed via intermediate nodes as follows.
At each stage, the message carries the address (coordinates) of the destination t , as well as a
radius r which is initialised to r(s, t), the distance between s and t . Suppose that the message is
currently at node x and has radius r >

√
c log n. (If r ≤ √

c log n then the node which updated
r would have contained t in its local contact list and delivered the message immediately.)
If node x has a shortcut to some node y ∈ A(t, r), where the annulus A(t, r) is defined as
A(t, r) = C(t, r/2) \ C(t, r/4), then x forwards the message to y. If there is more than one
such node, then the choice can be arbitrary. Otherwise, it forwards the message to one of its
local contacts which is closer to t than itself. When a node y receives a message, it updates r

to r/2 if r(y, t) ≤ r/2, and leaves r unchanged otherwise.
In other words, if x can find a shortcut which reduces the distance to the destination by at least

one-half but by no more than three-quarters, it uses such a shortcut. Otherwise, it uses a local
contact to reduce the distance to the destination. In this sense, the algorithm is approximately
greedy. The reason for considering such an algorithm rather than a greedy algorithm that would
minimize the distance to the destination at each step is to preserve independence, which greatly
simplifies the analysis. Note that if a greedy step from x takes us to y (i.e. of all nodes to which
x possesses a shortcut, y is closest to t), then the conditional law of the point process in the
circle C(t, r(t, y)) is no longer unit-rate Poisson. The fact that there are no shortcuts from x

to nodes within this circle biases the probability law and greatly complicates the analysis. Our
approximate greedy algorithm gets around this problem.

Observe that if the message passes through a node x, the value of r immediately after visiting
x lies between r(x, t) and 2r(x, t).

We have implicitly assumed that any node can find a local contact closer to t than itself. We
first show that this assumption holds w.h.p. if c is chosen to be sufficiently large. Fix c > 0
and n ∈ N. For two points x and y in the square [0,

√
n]2 and a realisation ω of the unit-rate

Poisson process on the square, define the properties

Pn(x, y, ω) = {∃ u ∈ ω : r(u, y) < r(x, y) and r(u, x) ≤ √
c log n}

and
Pn(ω) =

∧
{(x,y) : r(x,y)≥√

c log n}
Pn(x, y, ω).

Lemma 1. If c > 0 is sufficiently large then P(Pn(·)) → 1 as n → ∞.

Lemma 1 can be expressed as follows. With high probability, any two points x and y in the
square [0,

√
n]2, with r(x, y) >

√
c log n, have the property that there is a point u of the unit-

rate Poisson process within a distance
√

c log n of x which is closer than x to y. In particular,
if x and y are themselves points of the Poisson process, then u is a local contact of x which is
closer to y. The key point to note about Lemma 1 is that it gives a probability bound which is
uniform over all such node pairs.

Proof of Lemma 1. Suppose that r(x, t) ≥ √
c log n. Consider the circle C1 of radius√

c log n centred at x and the circle C2 of radius r(x, t) centred at t . For any point y �= x
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in their intersection, r(y, t) < r(x, t). Moreover, the intersection contains a sector of C1 of
angle 2π/3. Denote this sector by D1. Now consider a tessellation of the square [0,

√
n]2 by

small squares of side β
√

c log n. Note that, for a sufficiently small geometrical constant β that
does not depend on c or n (β = 1

2 suffices), the sector D1 fully contains at least one of the
smaller squares. Hence, if every small square contains at least one point of the Poisson process,
then every node at a distance greater than

√
c log n from t can find at least one local contact

which is closer to t . Number the small squares in some order and let Xi denote the number of
nodes in the ith small square, for i = 1, . . . , n/(β2c log n). The number of squares is assumed
to be an integer for simplicity. Clearly, the Xi are independent and identically distributed
Poisson random variables with mean β2c log n. Hence, by the union bound, we obtain

P(∃ i : Xi = 0) ≤
n/(β2c log n)∑

i=1

P(Xi = 0) = n

β2c log n
e−β2c log n,

which goes to zero as n tends to infinity, provided that β2c > 1. In particular, setting c > 4
suffices since we can take β = 1

2 .

We now state the main result of this section.

Theorem 1. Consider the small-world random graph described above with α = 2, expected
node degree d = 1, and c > 0 sufficiently large, as required by Lemma 1. Then, the number of
hops for message delivery between any pair of nodes is of order log2 n w.h.p.

Remark 1. In Franceschetti and Meester (2003), a greedy algorithm was found to route a
message in O(log n) hops whereas we require O(log2 n) hops, as did Kleinberg (2000). The
reason is that the average number of shortcuts per node is a constant in our model and in that of
Kleinberg (2000), whereas in the model of Franceschetti and Meester (2003), when the links
are restricted to have range between some fixed ε and

√
n, the number of links per node is

O(log n) (they do not distinguish between nearest neighbours and shortcuts).

Proof of Theorem 1. We first evaluate the normalisation constant an by noting that the
expected degree, d , of a node located at the centre of the square satisfies

d ≤ an

∫ √
n/2

√
c log n

x−22πx dx = πan(log n − log log n − log(2c)),

and so

an ≥ 1

log n
, (1)

for all n sufficiently large, by the assumption that d = 1.
Next, we compute the probability of finding a suitable shortcut at each step of the greedy

routeing algorithm. We think of the routeing algorithm as proceeding in phases. The value of
r is halved at the end of each phase. The value of r immediately after the message reaches
a node x satisfies the relation r(x, t) ∈ (r/2, r] at each step of the routeing algorithm. We
suppose that r > k

√
c log n, for some large constant k.

Denote by NA the number of nodes in the annulus A(t, r) and observe that NA is Poisson
with mean 3πr2/16. The distance from x to any of these nodes is bounded above by 3r/2,
and so the probability that a shortcut from x is incident on a particular one of these nodes is
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bounded below by an(3r/2)−2. Thus, conditional on NA, the probability that x has a shortcut
to one of the NA nodes in A(t, r) is bounded below by

p(r, NA) = 1 −
(

1 − 4an

9r2

)NA

. (2)

If x does not have such a shortcut, the message is passed via local contacts which are successively
closer to t , and hence satisfy the same lower bound on the probability of a shortcut to A(t, r).
Consequently, the number of local steps, Lx , until a shortcut is found is bounded above by a
geometric random variable with conditional mean 1/p(r, NA). Since NA ∼ Po(3πr2/16), we
obtain, by a standard application of the Chernoff bound,

P

(
NA ≤ γ r2

16

)
≤ exp

(
− (3π − γ )r2

16
+ γ r2

16
log

3π

γ

)
,

for any γ < 3π .
Suppose first that r ≥ k

√
c log n, for some large constant k. Taking γ = 3π/2, we obtain

P

(
NA ≤ 3πr2

32

)
≤ exp

(
−3πk2c log n

32
(1 − log 2)

)
. (3)

Now suppose that NA < 3πr2/32. The number of local hops, Lx , to route the message from
x to A is bounded above by the number of nodes outside A, since the distance to t is strictly
decreasing after each hop. Hence,

E

[
Lx

∣∣∣∣ NA <
3πr2

32

]
≤ n − area(A) ≤ n. (4)

Next, if NA ≥ 3πr2/32, then we have, by (2) and (1),

p(r, NA) ≥ 1 − exp

(
−πan

24

)
≥ 1 − exp

(
− π

24 log n

)
≥ π

48 log n
,

where the last inequality holds for all n sufficiently large. Since the number of hops to reach A

is bounded above by a geometric random variable with mean 1/p(r, NA), we have

E

[
Lx

∣∣∣∣ NA ≥ 3πr2

32

]
≤ 48

π
log n. (5)

Finally, we obtain, from (3), (4), and (5),

E[Lx] ≤ n exp

(
−3πk2c(1 − log 2)

32
log n

)
+ 48

π
log n. (6)

The first term in the sum in (6) can be made arbitrarily small by choosing k large enough, so
E[Lx] = O(log n). It can also be seen from the arguments above that Lx = O(log n) w.h.p.
In other words, while r ≥ k

√
c log n, the number of hops during each phase is of order log n.

Moreover, the number of such phases is of order log n since the initial value of r is at most√
2n, and r halves at the end of each phase.
Hence, the total number of hops until r < k

√
c log n is of order log2 n. Once the message

reaches a node x with r(x, t) < k
√

c log n, the number of additional hops to reach t is bounded
above by the total number of nodes in the circle C(t, k

√
c log n). By using the Chernoff bound

for a Poisson random variable, it can be shown that this number is of order log n w.h.p. This
completes the proof of Theorem 1.
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4. The impossibility of efficient routeing when α �= 2

We now show that if α < 2 then no decentralised algorithm can route between arbitrary
source–destination pairs in a time which is polylogarithmic in n. In fact, the number of routeing
hops is polynomial in n with some fractional power that depends on α.

We now make precise what we mean by a decentralised routeing algorithm. As specified
earlier, each node knows the locations of all its local contacts at distance

√
c log n and all its

shortcut neighbours, as well as other nodes (if any) from which shortcuts are incident to it. A
routeing algorithm specifies a (possibly random) sequence of nodes

s = x0, x1, . . . , xk = t, xk+1 = t, . . . ,

where the only requirement is that each node xi is chosen from among the local or shortcut
contacts of nodes {x0, . . . , xi−1}. (This is the same definition as used by Kleinberg (2000).)

Theorem 2. Consider the small-world random graph described above with α < 2 and arbi-
trarily large constants c and d . Suppose that the source s and destination t are chosen uniformly
at random from the node set. Then the number of hops for message delivery in any decentralised
algorithm exceeds nγ w.h.p., for any γ < (2 − α)/6.

It is not important that the source and destination are chosen uniformly but only that the
distance between them is of order na w.h.p., for some a > 0.

Proof of Theorem 2. We first evaluate the normalisation constant an by noting that the
expected degree satisfies

d ≥ an

∫ √
n/2

√
c log n

x−α2πx dx = 2πan

2 − α

(
n(2−α)/2

22−α
− (c log n)(2−α)/2

)
,

which, on simplification, yields

an ≤ 4d

n(2−α)/2
, (7)

for all n sufficiently large. Note that an is an upper bound on the probability that there is a
shortcut between any pair of nodes.

Suppose that the source s and destination t are chosen uniformly from all nodes in [0,
√

n]2.
Fix δ ∈ (γ, 1

2 ) and define Cδ = C(t, nδ) to be the circle of radius nδ centred at t . It is clear that,
for any ε > 0, the distance r(s, Cδ) from s to the circle Cδ is bigger than n1/2−ε w.h.p. Suppose
now that this inequality holds, but that there is a routeing algorithm which can route from s to t

in fewer than nγ hops. Denote by s = x0, x1, . . . , xm = t the sequence of nodes visited by
the routeing algorithm, with m ≤ nγ . We claim that there must be a shortcut from at least one
of the nodes x0, x1, . . . , xm−1 to the set Cδ . Indeed, if there is no such shortcut, then t must
be reached starting from some node outside Cδ and using only local links. Since the length
of each local link is at most

√
c log n and the number of hops is at most nγ , the total distance

traversed by local hops is strictly smaller than nδ (for large enough n, by the assumption that
δ > γ ), which yields a contradiction. We now estimate the probability that there is a shortcut
from one of the nodes x0, . . . , xm−1 to the set Cδ .

The number of nodes in the circle Cδ , denoted by NC , is Poisson with mean πn2δ , so
NC < 4n2δ w.h.p. Now, by (7) and the union bound we obtain

P(∃ shortcut between u and Cδ | NC < 4n2δ) ≤ 16dn(4δ+α−2)/2,
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for any node u. Applying this bound repeatedly for each of the nodes x0, x1, . . . , xm−1 generated
by the routeing algorithm, we obtain

P(∃ shortcut to Cδ within nγ hops | NC < 4n2δ) ≤ 16dn(2γ+4δ+α−2)/2.

Now γ < (2 − α)/6 by assumption, and δ > γ can be chosen arbitrarily. In particular, we can
choose δ so that 2γ + 4δ + α − 2 is strictly negative, in which case the conditional probability
of a shortcut to Cδ goes to zero as n → ∞. Since P(NC ≥ 4n2δ) also goes to zero, we conclude
that the probability of finding a route from s to t with fewer than nγ hops also goes to zero.
This concludes the proof of Theorem 2.

Remark 2. Theorem 2 continues to hold if we assume one-step lookahead. By this we mean
that when a node decides where to send the message at the next step, it can not only use the
locations of all its local and shortcut contacts, but also the locations of their contacts. All this
means is that after visiting nγ nodes, the algorithm has knowledge of O(nγ log n) nodes. If
none of these nodes has a shortcut into the set Cδ , which is the case w.h.p., then the arguments
above still apply. The same is true for k-step lookahead, for any constant k.

Theorem 3. Consider the small-world random graph described above with α > 2 and arbi-
trarily large constants c and d . Suppose that the source s and destination t are chosen uniformly
at random from the node set. Then the number of hops for message delivery in any decentralised
algorithm exceeds nγ w.h.p., for any γ < (α − 2)/2(α − 1).

Proof. For a node u, the probability that a randomly generated shortcut has length greater
than r is bounded above by

(∫ ∞

r

x−α2πx dx

)(∫ √
n/2

√
c log n

x−α2πx dx

)−1

≤ constant × r2−α(log n)(α−2)/2,

for all n sufficiently large. Since there are 2d shortcuts per node on average, the probability
that two nodes u and v separated by a distance r or more possess a shortcut between them is
bounded above by the same function, but with the constant suitably modified.

Now, for randomly chosen nodes s and t , r(s, t) > n1/2−ε w.h.p., for any ε > 0. Hence,
there can be a path of length nγ hops between s and t only if at least one of the hops is a shortcut
of length n1/2−ε−γ or more. By the above and the union bound, the probability of there being
such a shortcut is bounded above by

constant × nγ (n1/2−ε−γ )2−α(log n)(α−2)/2.

The exponent of n in the above expression is

2 − α

2
(1 − 2ε) + γ (α − 1).

The exponent above is negative for sufficiently small ε > 0 provided that

γ <
α − 2

2(α − 1)
.

In other words, if this inequality is satisfied, then the probability of finding a route with fewer
than nγ hops goes to zero as n → ∞. This establishes the claim of the theorem.
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