ON OPEN PROJECTIONS OF GCR ALGEBRAS

TROND DIGERNES AND HERBERT HALPERN

Throughout this paper $\mathfrak A$ will denote a C^* -algebra and $\mathfrak B$ will denote its second dual, which is identified with the enveloping von Neumann algebra of $\mathfrak A$. A projection E in $\mathfrak B$ is said to be *open* if it supports a left ideal in $\mathfrak A$, that is, if $\mathfrak B E = \mathfrak F^-$ for some left ideal $\mathfrak F$ in $\mathfrak A$. Here the bar $^-$ means the *stong* closure. When $\mathfrak A$ has a unit, this definition coincides with the definition of Akemann [1, Definition II.1]. In the sequel, we shall solely be concerned with two-sided ideals, and consequently central projections [4, I, § 3, Corollary 3 of Theorem 2]. Our aim is to show that $\mathfrak A$ is CCR if and only if the open central projections are strongly dense in the set of central projections on $\mathfrak B$. If $\mathfrak A$ is a GCR algebra, this implies that the complete Boolean lattice generated by the open central projections of $\mathfrak B$ is the set of central projections of $\mathfrak B$. As a corollary we get the result that every ideal preserving automorphism of a GCR algebra is weakly inner. This was proved by Lance [4] for separable GCR algebras and recently extended to arbitrary GCR algebras by Elliott [5] using methods different from ours.

Before we begin we fix some notation. Let \mathfrak{P} be the complete Boolean algebra of central projections in \mathfrak{B} , let \mathfrak{P}_0 be the set of all open central projections in \mathfrak{B} , and let $\langle \mathfrak{P}_0 \rangle$ be the complete Boolean algebra generated by \mathfrak{P}_0 in \mathfrak{P} . For every $A \in \mathfrak{B}$ let C_A denote the orthogonal complement of the largest $P \in \mathfrak{P}$ such that AP = 0. If $A \in \mathfrak{A}$, then C_A is the support of the two-sided ideal in \mathfrak{A} that is generated by A and thus the projection C_A is in \mathfrak{P}_0 . Let \mathfrak{F}_a be the closed two-sided ideal of \mathfrak{B} generated by the abelian projections of \mathfrak{B} .

LEMMA 1. Let π be a non-degenerate representation of the CCR algebra \mathfrak{A} on a Hilbert space H, let $A \in \mathfrak{A}$, and let P be a central projection of the von Neumann algebra $\pi(\mathfrak{A})''$ generated by $\pi(\mathfrak{A})$. Then there is a net $\{Q_n\}$ of central projections of $\pi(\mathfrak{A})''$ which converge strongly to 1 and a corresponding net $\{A_n\}$ in $\pi(\mathfrak{A})$ such that $\pi(A)PQ_n = A_nQ_n$ for every Q_n .

Proof. There is a normal homomorphism ϕ of the enveloping von Neumann algebra \mathfrak{B} of \mathfrak{A} onto $\pi(\mathfrak{A})''$ such that $\phi(B) = \pi(B)$ for every $B \in \mathfrak{A}$ [3, 12.1.5]. Because ϕ maps the centre of \mathfrak{B} onto the centre of $\pi(\mathfrak{A})''$ and since ϕ is strongly continuous on bounded subsets of \mathfrak{B} , there is no loss generality in the assumption that π is the canonical embedding of \mathfrak{A} in \mathfrak{B} and that H is the canonical Hilbert space of \mathfrak{B} .

Received September 29, 1971 and in revised form, November 18, 1971. The research of the second named author was partially supported by NSF Grant GP-23568.

Now it is sufficient to find, for every finite subset $\mathfrak X$ of H and every $\epsilon > 0$, a projection $Q \in \mathfrak P$ and an element $A' \in \mathfrak X$ such that APQ = A'Q and such that $||x - Qx|| \le \epsilon$ for every $x \in \mathfrak X$. Let $\{P_i | 0 \le i \le i_0\}$ be a subset of $\mathfrak P_0$ indexed by the ordinals such that

- (i) $P_0 = 0$, $P_{i_0} = 1$;
- (ii) $P_i < P_{i+1} (i < i_0)$;
- (iii) $lub{P_i|i < j} = P_j$ if j is a limit ordinal; and
- (iv) $\mathfrak{V}(P_{i+1} P_i)$ is the strong closure of a closed two-sided ideal in $\mathfrak{V}(1 P_i)$ generated by elements in $\mathfrak{V}(1 P_i)$ that are contained in \mathfrak{F}_a [6, pp. 148–149].

Setting $P_{i'} = P_{i+1} - P_i$ for all $i < i_0$, we obtain a set of orthogonal central projections of sum 1. There are ordinals $\{i(j)|1 \le j \le n\}$ with $i(n) < i(n-1) < \ldots < i(1) < i_0$ such that

$$||\sum_{j} P_{i(j)}' x - x|| \le \epsilon/3$$

for every $x \in \mathfrak{X}$. There is also an orthogonal set $\{R_k\}$ of central projections of sum 1 and a corresponding bounded set $\{B_k\}$ of elements of \mathfrak{J}_a such that $A = \sum B_k R_k$ [6, Corollary, Theorem 6]. Consequently, there is a finite subset of the R_k of sum R such that

$$||Rx - x|| \le \epsilon/3n$$

for every $x \in \mathfrak{X}$. We have that $AR \in \mathfrak{J}_a$ and so $APR \in \mathfrak{J}_a$. We may find an element $A_1 \in \mathfrak{X}$ such that $A_1(1-P_{i(1)+1})=0$ and a projection Q_1' in \mathfrak{P} majorized by $RP_{i(1)}'$ with $||(Q_1'-P_{i(1)}')x|| \leq \epsilon/3n$ for every $x \in \mathfrak{X}$ such that $APRQ_1' = A_1Q_1'$ [6, Lemma 4]. Setting $Q_1 = RQ_1'$, we obtain a central projection Q_1 majorized by $P_{i(1)}'$ with

$$||(P_{i(1)}' - Q_1)x|| \le ||(P_{i(1)}' - Q_1')x|| + ||Q_1'|| ||(1 - R)x|| \le 2\epsilon/3n$$

for every $x \in \mathfrak{X}$ such that $APQ_1 = A_1Q_1$. Continuing by recursion, we obtain central projections Q_j majorized by $P_{i(j)}$ with

$$||(P_{i(j)}' - Q_j)x|| \le 2\epsilon/3n$$

for every $x \in \mathfrak{X}$ and elements A_j in \mathfrak{A} with $A_j(1-P_{i(j)+1})=0$ such that

$$(AP - (A_1 + \ldots + A_{j-1}))Q_j = A_jQ_j$$

for $2 \le j \le n$. Setting $Q = \sum Q_j$ and $A' = \sum A_j$, we obtain a central projection Q with

$$||x - Qx|| \le ||(1 - \sum_{j} P_{i(j)}')x|| + \sum_{j} ||(P_{i(j)}' - Q_{j})x|| \le \epsilon$$

for every $x \in \mathfrak{X}$ such that APQ = A'Q.

We can now obtain the following theorem.

THEOREM 2. A C^* -algebra $\mathfrak A$ is a CCR algebra if and only if $\mathfrak P_0$ is strongly dense in $\mathfrak P$.

Proof. Let \mathfrak{A} be a CCR algebra. Since \mathfrak{P}_0^- is clearly closed under taking least upper bounds of monotonely increasing nets, it is sufficient to show that every nonzero $P \in \mathfrak{P}$ majorizes a nonzero Q in \mathfrak{P}_0^- . We proceed to do this. Since \mathfrak{A} is strongly dense in \mathfrak{B} , there is an $A \in \mathfrak{A}$ such that $AP \neq 0$. There is a net $\{Q_n\}$ of projections in \mathfrak{P} which converges strongly to 1 and a corresponding net $\{A_n\}$ of elements of \mathfrak{A} such that $APQ_n = A_nQ_n$ (Lemma 1). But the nonzero projection C_AP is in \mathfrak{P}_0^- since $C_APQ_n = C_{An}Q_n$ and thus

$$\lim ||(C_A P - C_{A_n})x|| \le \lim \sup ||C_A P - C_{A_n}|| ||(1 - Q_n)x|| = 0$$

for every x in the Hilbert space of \mathfrak{B} . This completes the proof of this part of the theorem.

Conversely, let $\mathfrak{P}_0^- = \mathfrak{P}$. Let \mathfrak{B} be considered as a module over its centre \mathfrak{Z} . Let ϕ be a bounded module homomorphism of \mathfrak{B} into \mathfrak{Z} and let ψ be the unique extension of the restriction of ϕ to \mathfrak{A} to a σ -weakly continuous linear function of \mathfrak{B} into \mathfrak{Z} [6, Proposition 1]. It is sufficient to show that ψ is a module homomorphism of \mathfrak{B} into \mathfrak{Z} [6, Theorem 6]. If $P \in \mathfrak{P}_0$, then there is a monotonely increasing net $\{A_n\}$ in \mathfrak{A}^+ which converges σ -strongly to P [1, III.4]. Then for every $A \in \mathfrak{A}$ we have that

$$(1 - P)\psi(PA) = \lim_{n \to \infty} (1 - P)\psi(A_n A) = \lim_{n \to \infty} (1 - P)\phi(A_n A) = \lim_{n \to \infty} \phi((1 - P)A_n A) = 0$$

and hence $\psi(PA) = P\psi(PA)$. Here the limits are taken in the σ -weak topology. Since \mathfrak{A} is σ -weakly dense in \mathfrak{B} , \mathfrak{P}_0 is a bounded and σ -strongly dense in \mathfrak{P} , and ψ is σ -weakly continuous, we see that $\psi(PA) = P\psi(PA)$ for every $A \in \mathfrak{B}$ and $P \in \mathfrak{P}$. But this means that

$$\psi(PA) = P\psi(PA) + P(1-P)\psi((1-P)A) = P\psi(PA) + P\psi((1-P)A) = P\psi(A)$$

for every $A \in \mathfrak{B}$ and $P \in \mathfrak{P}$. Now because ψ is a uniformly continuous linear function into \mathfrak{Z} and because elements of \mathfrak{Z} are uniform limits of linear combinations of projections of \mathfrak{Z} , we obtain that $\psi(CA) = C\psi(A)$ for every $A \in \mathfrak{B}$ and $C \in \mathfrak{Z}$. Hence ψ is a module homomorphism of \mathfrak{B} into \mathfrak{Z} .

We now consider GCR algebras.

THEOREM 3. If \mathfrak{A} is a GCR algebra, then $\langle \mathfrak{P}_0 \rangle = \mathfrak{P}$.

Proof. It is sufficient to show that $\langle \mathfrak{P}_0 \rangle^- = \mathfrak{P}$ since the complete Boolean algebra of projections $\langle \mathfrak{P}_0 \rangle$ contains every projection in the weakly closed algebra which it generates [2, Theorem 2.8]. Given $P \in \mathfrak{P}$, a finite subset \mathfrak{X} of the Hilbert space H of \mathfrak{B} , and $\epsilon > 0$, it is sufficient to find a Q in $\langle \mathfrak{P}_0 \rangle^-$ such that $||(P-Q)x|| \leq \epsilon$ for every $x \in \mathfrak{X}$. Let $\{P_i|0 \leq i \leq i_0\}$ be a maximal set of central projections indexed by the ordinals such that

- (i) $P_0 = 0$;
- (ii) $P_i < P_{i+1} \ (i < i_0);$
- (iii) $lub{P_i|i < j} = P_j$ if j is a limit ordinal; and

(iv) $\mathfrak{B}(P_{i+1} - P_i)$ is the strong closure of a CCR ideal \mathfrak{F}_i contained in $\mathfrak{A}(1 - P_i)$ (cf. proof of Lemma 1).

Then clearly we must have $P_{i_0} = 1$.

We notice that each P_i is in \mathfrak{P}_0 since P_i supports the ideal

$${A \in \mathfrak{A} | A (1 - P_i) = 0}.$$

Thus, every projection $P_{i'} = P_{i+1} - P_i$ is in $\langle \mathfrak{P}_0 \rangle$. Since $\sum P_{i'} = 1$, we may find ordinals $i(1), \ldots, i(n)$ such that $||(1 - \sum_j P_{i(j)}')x|| \le \epsilon/3$ for every $x \in \mathfrak{X}$. Now $\mathfrak{F}_{i(j)}$ is strongly dense in $\mathfrak{B}P_{i(j)}'$, and thus there is positive element A_j in the unit sphere of $\mathfrak{F}_{i(j)}$ with

$$||(A_i - P_{i(i)})x|| \le \epsilon/3n$$

for every $x \in \mathfrak{X}$. Therefore, we have

$$||(C_{A_j} - P_{i(j)}')x|| \le \epsilon/3n$$

for every $x \in \mathfrak{X}$. We may find a central projection Q_j majorized by $P_{i(j)}$ with

$$||(P_{i(j)}' - Q_j)x|| \le \epsilon/3n$$

for every $x \in \mathfrak{X}$ such that

$$A_i P Q_i = B_i Q_i$$

for some $B_j \in \mathfrak{A}$ (Lemma 1). Since all $C_{B_j}P_{i(j)}'$ are in $\langle \mathfrak{P}_0 \rangle$, their least upper bound $Q = \sum C_{B_j}P_{i(j)}'$ is also in $\langle \mathfrak{P}_0 \rangle$. We then have that

$$\begin{aligned} ||(P-Q)x|| &\leq ||P(1-\sum_{j}P_{i(j)}')x|| + \sum_{j}||P(P_{i(j)}'-C_{A_{j}})x|| + \\ &\sum_{j}||(C_{A_{j}}P-C_{B_{j}})P_{i(j)}'|| ||(P_{i(j)}'-Q_{j})x|| \leq \epsilon \end{aligned}$$

for every $x \in \mathfrak{X}$.

Now we consider the corollary mentioned in the introduction. We remind the reader that an automorphism α of $\mathfrak A$ is said to be ideal-preserving if $\alpha(\mathfrak F) \subset \mathfrak F$ for each ideal $\mathfrak F$ of $\mathfrak A$. For GCR algebras this is equivalent to the requirement that $\alpha(\mathfrak F) = \mathfrak F$ [7]. Further, the automorphism α is said to be universally weakly inner if, for every representation π of $\mathfrak A$, the automorphism α_{π} of $\pi(\mathfrak A)$ defined by $\alpha_{\pi}(\pi(A)) = \pi(\alpha(A))$ is implemented by a unitary element of $\pi(\mathfrak A)^-$. (Note that α_{π} is well-defined whenever α is ideal-preserving.) Lance [7] showed that ideal-preserving automorphism of a separable GCR algebra is universally weakly inner. In a recent paper Elliott [5] proved that same result for an arbitrary GCR algebra by using a decomposition into "champs continus". At the end of the paper he asked if the fact that the enveloping von Neumann algebra of a GCR algebra is type I could be used to prove the same result. The following corollary answers this question in the affirmative.

COROLLARY 4. An ideal preserving automorphism α of a GCR algebra $\mathfrak A$ is universally weakly inner.

Proof. We identify $\mathfrak A$ with a weakly dense *-subalgebra of the enveloping von Neumann algebra $\mathfrak B$ of $\mathfrak A$ and prove that α is inner in $\mathfrak B$. The automor-

phism α has an extension to an automorphism of \mathfrak{B} . We also denote this extension by α . Since \mathfrak{A} is GCR, the algebra \mathfrak{B} is of type I and so it suffices to show that $\alpha(P) = P$ for every $P \in \mathfrak{P}$ [4, III, § 3, Corollary 2 of Proposition 3]. Clearly, if P is open, we have that $\alpha(P) = P$ by the strong continuity and ideal preserving property of α and α^{-1} . Thus the same relation holds for finite Boolean polynomials in open projections and hence for strong limits of such polynomials. By Theorem 2, every central projection of \mathfrak{B} is obtained in this way and so there is a unitary $U \in \text{such that } \alpha(A) = UAU^{-1}$ for every A in \mathfrak{B} .

Now let π be an arbitrary nondegenerate representation of \mathfrak{A} . There is a normal homomorphism ϕ of \mathfrak{B} onto the von Neumann algebra $\pi(\mathfrak{A})''$ generated by $\pi(\mathfrak{A})$ such that $\phi(A) = \pi(A)$ for every $A \in \mathfrak{A}$ [3, 12.1.5]. Then we have that

$$\alpha_{\pi}(\pi(A)) = \pi(\alpha(A)) = \phi(\alpha(A))$$

$$= \phi(UAU^*) = \phi(U)\phi(A)\phi(U)^*$$

$$= \phi(U)\pi(A)\phi(U)^*$$

for every $A \in \mathfrak{A}$. Clearly, the operator $\phi(U)$ is unitary in $\pi(\mathfrak{A})''$. Hence the automorphism α_{π} is implemented by the unitary operator $\phi(U)$ in

$$\pi(\mathfrak{A})^- = \pi(\mathfrak{A})^{\prime\prime}.$$

Addendum (July 13, 1972). Trond Digernes has shown that a separable GCR algebra is completely characterized by the fact that $\mathfrak{P}_0 = \mathfrak{P}$. This will appear in an article, A new characterization of separable GCR-algebras in Proc. Amer. Math. Soc. Herbert Halpern has recently shown that a C^* -algebra (perhaps non-separable) is GCR if and only if the Boolean σ -algebra generated by \mathfrak{P}_0 contains all minimal projections of \mathfrak{P} .

References

- C. Akemann, The general Stone-Weierestrass problem, J. Functional Analysis 4 (1969), 277-294.
- 2. W. G. Bade, On Boolean algebras of projections and algebras of operators, Trans. Amer. Math. Soc. 80 (1955), 345–360.
- 3. J. Dixmier, Les C*-algebres et leurs representations (Gauthier-Villars, Paris, 1964).
- Les algebres d'operateurs dans l'espace Hilbertien (Gauthier-Villars, Paris, 2^e édition, 1969).
- G. Elliott, Ideal preserving automorphisms of postliminary C*-algebras, Proc. Amer. Math. Soc. 27 (1971), 107-109.
- 6. H. Halpern, A generalized dual for a C^* -algebra, Trans. Amer. Math. Soc. 153 (1971), 139–156.
- 7. E. Lance, Automorphisms of postliminary C*-algebras, Pacific J. Math. 23 (1967), 547-555.

University of Oslo, Oslo, Norway; University of Cincinnati Cincinnati, Ohio