# ON OPEN PROJECTIONS OF GCR ALGEBRAS 

## TROND DIGERNES AND HERBERT HALPERN

Throughout this paper $\mathfrak{A}$ will denote a $C^{*}$-algebra and $\mathfrak{B}$ will denote its second dual, which is identified with the enveloping von Neumann algebra of $\mathfrak{A}$. A projection $E$ in $\mathfrak{B}$ is said to be open if it supports a left ideal in $\mathfrak{Y}$, that is, if $\mathfrak{B} E=\mathfrak{S}^{-}$for some left ideal $\mathfrak{J}$ in $\mathfrak{N}$. Here the bar - means the stong closure. When $\mathfrak{A}$ has a unit, this definition coincides with the definition of Akemann [1, Definition II.1]. In the sequel, we shall solely be concerned with two-sided ideals, and consequently central projections [4, I, § 3, Corollary 3 of Theorem 2]. Our aim is to show that $\mathfrak{A l}$ is CCR if and only if the open central projections are strongly dense in the set of central projections on $\mathfrak{B}$. If $\mathfrak{A}$ is a GCR algebra, this implies that the complete Boolean lattice generated by the open central projections of $\mathfrak{B}$ is the set of central projections of $\mathfrak{B}$. As a corollary we get the result that every ideal preserving automorphism of a GCR algebra is weakly inner. This was proved by Lance [4] for separable GCR algebras and recently extended to arbitrary GCR algebras by Elliott [5] using methods different from ours.

Before we begin we fix some notation. Let $\mathfrak{B}$ be the complete Boolean algebra of central projections in $\mathfrak{B}$, let $\mathfrak{B}_{0}$ be the set of all open central projections in $\mathfrak{B}$, and let $\left\langle\mathfrak{B}_{0}\right\rangle$ be the complete Boolean algebra generated by $\mathfrak{B}_{0}$ in $\mathfrak{B}$. For every $A \in \mathfrak{B}$ let $C_{A}$ denote the orthogonal complement of the largest $P \in \mathfrak{B}$ such that $A P=0$. If $A \in \mathfrak{Y}$, then $C_{A}$ is the support of the twosided ideal in $\mathfrak{U}$ that is generated by $A$ and thus the projection $C_{A}$ is in $\mathfrak{B}_{0}$. Let $\Im_{a}$ be the closed two-sided ideal of $\mathfrak{B}$ generated by the abelian projections of $\mathfrak{B}$.

Lemma 1. Let $\pi$ be a non-degenerate representation of the CCR algebra $\mathfrak{A}$ on a Hilbert space $H$, let $A \in \mathfrak{Y}$, and let $P$ be a central projection of the von Neumann algebra $\pi(\mathfrak{H})^{\prime \prime}$ generated by $\pi(\mathfrak{H})$. Then there is a net $\left\{Q_{n}\right\}$ of central projections of $\pi(\mathfrak{H})^{\prime \prime}$ which converge strongly to 1 and a corresponding net $\left\{A_{n}\right\}$ in $\pi(\mathfrak{H})$ such that $\pi(A) P Q_{n}=A_{n} Q_{n}$ for every $Q_{n}$.

Proof. There is a normal homomorphism $\phi$ of the enveloping von Neumann algebra $\mathfrak{B}$ of $\mathfrak{M}$ onto $\pi(\mathfrak{H})^{\prime \prime}$ such that $\phi(B)=\pi(B)$ for every $B \in \mathfrak{N}[3,12.1 .5]$. Because $\phi$ maps the centre of $\mathfrak{B}$ onto the centre of $\pi(\mathfrak{H})^{\prime \prime}$ and since $\phi$ is strongly continuous on bounded subsets of $\mathfrak{B}$, there is no loss generality in the assumption that $\pi$ is the canonical embedding of $\mathfrak{U}$ in $\mathfrak{B}$ and that $H$ is the canonical Hilbert space of $\mathfrak{B}$.

[^0]Now it is sufficient to find, for every finite subset $\mathfrak{X}$ of $H$ and every $\epsilon>0$, a projection $Q \in \mathfrak{P}$ and an element $A^{\prime} \in \mathfrak{N}$ such that $A P Q=A^{\prime} Q$ and such that $\|x-Q x\| \leqq \epsilon$ for every $x \in \mathfrak{X}$. Let $\left\{P_{i} \mid 0 \leqq i \leqq i_{0}\right\}$ be a subset of $\mathfrak{B}_{0}$ indexed by the ordinals such that
(i) $P_{0}=0, P_{i_{0}}=1$;
(ii) $P_{i}<P_{i+1}\left(i<i_{0}\right)$;
(iii) $\operatorname{lub}\left\{P_{i} \mid i<j\right\}=P_{j}$ if $j$ is a limit ordinal; and
(iv) $\mathfrak{B}\left(P_{i+1}-P_{i}\right)$ is the strong closure of a closed two-sided ideal in $\mathfrak{A}\left(1-P_{i}\right)$ generated by elements in $\mathfrak{A}\left(1-P_{i}\right)$ that are contained in $\Im_{a}$ [6, pp. 148-149].
Setting $P_{i}{ }^{\prime}=P_{i+1}-P_{i}$ for all $i<i_{0}$, we obtain a set of orthogonal central projections of sum 1. There are ordinals $\{i(j) \mid 1 \leqq j \leqq n\}$ with $i(n)<i(n-1)<\ldots<i(1)<i_{0}$ such that

$$
\left\|\sum_{j} P_{i(j)}{ }^{\prime} x-x\right\| \leqq \epsilon / 3
$$

for every $x \in \mathfrak{X}$. There is also an orthogonal set $\left\{R_{k}\right\}$ of central projections of sum 1 and a corresponding bounded set $\left\{B_{k}\right\}$ of elements of $\Im_{a}$ such that $A=\sum B_{k} R_{k}[\mathbf{6}$, Corollary, Theorem 6]. Consequently, there is a finite subset of the $R_{k}$ of sum $R$ such that

$$
\|R x-x\| \leqq \epsilon / 3 n
$$

for every $x \in \mathfrak{X}$. We have that $A R \in \Im_{a}$ and so $A P R \in \Im_{a}$. We may find an element $A_{1} \in \mathfrak{A}$ such that $A_{1}\left(1-P_{i(1)+1}\right)=0$ and a projection $Q_{1}{ }^{\prime}$ in $\mathfrak{B}$ majorized by $R P_{i(1)}{ }^{\prime}$ with $\left\|\left(Q_{1}{ }^{\prime}-P_{i(1)}{ }^{\prime}\right) x\right\| \leqq \epsilon / 3 n$ for every $x \in \mathfrak{X}$ such that $A P R Q_{1}{ }^{\prime}=A_{1} Q_{1}{ }^{\prime} \quad\left[6\right.$, Lemma 4]. Setting $Q_{1}=R Q_{1}{ }^{\prime}$, we obtain a central projection $Q_{1}$ majorized by $P_{i(1)}{ }^{\prime}$ with

$$
\left\|\left(P_{i(1)}{ }^{\prime}-Q_{1}\right) x\right\| \leqq\left\|\left(P_{i(1)}{ }^{\prime}-Q_{1}{ }^{\prime}\right) x\right\|+\left\|Q_{1}{ }^{\prime}\right\|\|(1-R) x\| \leqq 2 \epsilon / 3 n
$$

for every $x \in \mathfrak{X}$ such that $A P Q_{1}=A_{1} Q_{1}$. Continuing by recursion, we obtain central projections $Q_{j}$ majorized by $P_{i(j)^{\prime}}$ with

$$
\left\|\left(P_{i(j)}^{\prime}-Q_{j}\right) x\right\| \leqq 2 \epsilon / 3 n
$$

for every $x \in \mathfrak{X}$ and elements $A_{j}$ in $\mathfrak{A}$ with $A_{j}\left(1-P_{i(j)+1}\right)=0$ such that

$$
\left(A P-\left(A_{1}+\ldots+A_{j-1}\right)\right) Q_{j}=A_{j} Q_{j}
$$

for $2 \leqq j \leqq n$. Setting $Q=\sum Q_{j}$ and $A^{\prime}=\sum A_{j}$, we obtain a central projection $Q$ with

$$
\|x-Q x\| \leqq\left\|\left(1-\sum_{j} P_{i(j)^{\prime}}\right) x\right\|+\sum\left\|\left(P_{i(j)}^{\prime}-Q_{j}\right) x\right\| \leqq \epsilon
$$

for every $x \in \mathfrak{X}$ such that $A P Q=A^{\prime} Q$.
We can now obtain the following theorem.
Theorem 2. $A C^{*}$-algebra $\mathfrak{A}$ is a CCR algebra if and only if $\mathfrak{P}_{0}$ is strongly dense in $\mathfrak{P}$.

Proof. Let $\mathfrak{A}$ be a CCR algebra. Since $\mathfrak{F}_{0}-$ is clearly closed under taking least upper bounds of monotonely increasing nets, it is sufficient to show that every nonzero $P \in \mathfrak{B}$ majorizes a nonzero $Q$ in $\mathfrak{B}_{0}{ }^{-}$. We proceed to do this. Since $\mathfrak{H}$ is strongly dense in $\mathfrak{B}$, there is an $A \in \mathfrak{U}$ such that $A P \neq 0$. There is a net $\left\{Q_{n}\right\}$ of projections in $\mathfrak{B}$ which converges strongly to 1 and a corresponding net $\left\{A_{n}\right\}$ of elements of $\mathfrak{N}$ such that $A P Q_{n}=A_{n} Q_{n}$ (Lemma 1). But the nonzero projection $C_{A} P$ is in $\mathfrak{B}_{0}^{-}$since $C_{A} P Q_{n}=C_{A n} Q_{n}$ and thus

$$
\lim \left\|\left(C_{A} P-C_{A_{n}}\right) x\right\| \leqq \lim \sup \left\|C_{A} P-C_{A_{n}}\right\|\left\|\left(1-Q_{n}\right) x\right\|=0
$$

for every $x$ in the Hilbert space of $\mathfrak{B}$. This completes the proof of this part of the theorem.

Conversely, let $\mathfrak{B}_{0^{-}}=\mathfrak{B}$. Let $\mathfrak{B}$ be considered as a module over its centre $\mathcal{3}$. Let $\phi$ be a bounded module homomorphism of $\mathfrak{B}$ into 3 and let $\psi$ be the unique extension of the restriction of $\phi$ to $\mathfrak{A}$ to a $\sigma$-weakly continuous linear function of $\mathfrak{B}$ into $\mathfrak{Z}$ [ $\mathbf{6}$, Proposition 1]. It is sufficient to show that $\psi$ is a module homomorphism of $\mathfrak{B}$ into $\mathcal{B}\left[\mathbf{6}\right.$, Theorem 6]. If $P \in \mathfrak{B}_{0}$, then there is a monotonely increasing net $\left\{A_{n}\right\}$ in $\mathfrak{Y}^{+}$which converges $\sigma$-strongly to $P$ [1, III.4]. Then for every $A \in \mathfrak{A}$ we have that

$$
\begin{aligned}
& (1-P) \psi(P A)=\lim (1-P) \psi\left(A_{n} A\right)=\lim (1-P) \phi\left(A_{n} A\right)= \\
& \lim \phi\left((1-P) A_{n} A\right)=0
\end{aligned}
$$

and hence $\psi(P A)=P \psi(P A)$. Here the limits are taken in the $\sigma$-weak topology. Since $\mathfrak{A}$ is $\sigma$-weakly dense in $\mathfrak{B}, \mathfrak{P}_{0}$ is a bounded and $\sigma$-strongly dense in $\mathfrak{P}$, and $\psi$ is $\sigma$-weakly continuous, we see that $\psi(P A)=P \psi(P A)$ for every $A \in \mathfrak{B}$ and $P \in \mathfrak{B}$. But this means that

$$
\psi(P A)=P \psi(P A)+P(1-P) \psi((1-P) A)=
$$

$$
P \psi(P A)+P \psi((1-P) A)=P \psi(A)
$$

for every $A \in \mathfrak{B}$ and $P \in \mathfrak{B}$. Now because $\psi$ is a uniformly continuous linear function into 3 and because elements of 3 are uniform limits of linear combinations of projections of $\mathcal{B}$, we obtain that $\psi(C A)=C \psi(A)$ for every $A \in \mathfrak{B}$ and $C \in 3$. Hence $\psi$ is a module homomorphism of $\mathfrak{B}$ into 3 .

We now consider GCR algebras.
Theorem 3. If $\mathfrak{A}$ is a GCR algebra, then $\left\langle\mathfrak{B}_{0}\right\rangle=\mathfrak{B}$.
Proof. It is sufficient to show that $\left\langle\mathfrak{\beta}_{0}\right\rangle^{-}=\mathfrak{B}$ since the complete Boolean algebra of projections $\left\langle\mathfrak{B}_{0}\right\rangle$ contains every projection in the weakly closed algebra which it generates [2, Theorem 2.8]. Given $P \in \mathfrak{B}$, a finite subset $\mathfrak{X}$ of the Hilbert space $H$ of $\mathfrak{B}$, and $\epsilon>0$, it is sufficient to find a $Q$ in $\left\langle\mathfrak{B}_{0}\right\rangle^{-}$such that $\|(P-Q) x\| \leqq \epsilon$ for every $x \in \mathfrak{X}$. Let $\left\{P_{i} \mid 0 \leqq i \leqq i_{0}\right\}$ be a maximal set of central projections indexed by the ordinals such that
(i) $P_{0}=0$;
(ii) $P_{i}<P_{i+1}\left(i<i_{0}\right)$;
(iii) $\operatorname{lub}\left\{P_{i} \mid i<j\right\}=P_{j}$ if $j$ is a limit ordinal; and
(iv) $\mathfrak{B}\left(P_{i+1}-P_{i}\right)$ is the strong closure of a CCR ideal $\Im_{i}$ contained in $\mathfrak{A}\left(1-P_{i}\right)$ (cf. proof of Lemma 1).
Then clearly we must have $P_{i_{0}}=1$.
We notice that each $P_{i}$ is in $\mathfrak{P}_{0}$ since $P_{i}$ supports the ideal

$$
\left\{A \in \mathfrak{X} \mid A\left(1-P_{i}\right)=0\right\}
$$

Thus, every projection $P_{i}{ }^{\prime}=P_{i+1}-P_{i}$ is in $\left\langle\mathfrak{B}_{0}\right\rangle$. Since $\sum P_{i}{ }^{\prime}=1$, we may find ordinals $i(1), \ldots, i(n)$ such that $\left\|\left(1-\sum_{j} P_{i(j)^{\prime}}\right) x\right\| \leqq \epsilon / 3$ for every $x \in \mathfrak{X}$. Now $\Im_{i(j)}$ is strongly dense in $\mathfrak{B} P_{i(j)}{ }^{\prime}$, and thus there is positive element $A_{j}$ in the unit sphere of $\mathfrak{\Im}_{i(j)}$ with

$$
\left\|\left(A_{j}-P_{i(j)}\right) x\right\| \leqq \epsilon / 3 n
$$

for every $x \in \mathfrak{X}$. Therefore, we have

$$
\left\|\left(C_{A_{j}}-P_{i(j)}\right) x\right\| \leqq \epsilon / 3 n
$$

for every $x \in \mathfrak{X}$. We may find a central projection $Q_{j}$ majorized by $P_{i(j)}{ }^{\prime}$ with

$$
\left\|\left(P_{i(j)^{\prime}}-Q_{j}\right) x\right\| \leqq \epsilon / 3 n
$$

for every $x \in \mathfrak{X}$ such that

$$
A_{j} P Q_{j}=B_{j} Q_{j}
$$

for some $B_{j} \in \mathfrak{N}$ (Lemma 1). Since all $C_{B_{j}} P_{i(j)}{ }^{\prime}$ are in $\left\langle\mathfrak{B}_{0}\right\rangle$, their least upper bound $Q=\sum C_{B_{j}} P_{i(j)}{ }^{\prime}$ is also in $\left\langle\mathfrak{B}_{0}\right\rangle$. We then have that

$$
\begin{aligned}
\|(P-Q) x\| \leqq\left\|P\left(1-\sum_{j} P_{i(j)}{ }^{\prime}\right) x\right\|+\sum_{j}\left\|P\left(P_{i(j)}{ }^{\prime}-C_{A_{j}}\right) x\right\|+ \\
\sum_{j}\left\|\left(C_{A_{j}} P-C_{B_{j}}\right) P_{i(j)}{ }^{\prime}\right\|\left\|\left(P_{i(j)}{ }^{\prime}-Q_{j}\right) x\right\| \leqq \epsilon
\end{aligned}
$$

for every $x \in \mathfrak{X}$.
Now we consider the corollary mentioned in the introduction. We remind the reader that an automorphism $\alpha$ of $\mathfrak{N}$ is said to be ideal-preserving if $\alpha(\mathfrak{F}) \subset \mathfrak{F}$ for each ideal $\mathfrak{J}$ of $\mathfrak{N}$. For GCR algebras this is equivalent to the requirement that $\alpha(\mathfrak{S})=\mathfrak{J}$ [7]. Further, the automorphism $\alpha$ is said to be universally weakly inner if, for every representation $\pi$ of $\mathfrak{A}$, the automorphism $\alpha_{\pi}$ of $\pi(\mathfrak{H})$ defined by $\alpha_{\pi}(\pi(A))=\pi(\alpha(A))$ is implemented by a unitary element of $\pi(\mathfrak{H})^{-}$. (Note that $\alpha_{\pi}$ is well-defined whenever $\alpha$ is ideal-preserving.) Lance [7] showed that ideal-preserving automorphism of a separable GCR algebra is universally weakly inner. In a recent paper Elliott [5] proved that same result for an arbitrary GCR algebra by using a decomposition into "champs continus". At the end of the paper he asked if the fact that the enveloping von Neumann algebra of a GCR algebra is type I could be used to prove the same result. The following corollary answers this question in the affirmative.

Corollary 4. An ideal preserving automorphism $\alpha$ of a GCR algebra $\mathfrak{\{}$ is universally weakly inner.

Proof. We identify $\mathfrak{A}$ with a weakly dense *-subalgebra of the enveloping von Neumann algebra $\mathfrak{B}$ of $\mathfrak{A}$ and prove that $\alpha$ is inner in $\mathfrak{B}$. The automor-
phism $\alpha$ has an extension to an automorphism of $\mathfrak{B}$. We also denote this extension by $\alpha$. Since $\mathfrak{A}$ is GCR, the algebra $\mathfrak{B}$ is of type I and so it suffices to show that $\alpha(P)=P$ for every $P \in \mathfrak{B}[4$, III, § 3, Corollary 2 of Proposition 3]. Clearly, if $P$ is open, we have that $\alpha(P)=P$ by the strong continuity and ideal preserving property of $\alpha$ and $\alpha^{-1}$. Thus the same relation holds for finite Boolean polynomials in open projections and hence for strong limits of such polynomials. By Theorem 2, every central projection of $\mathfrak{B}$ is obtained in this way and so there is a unitary $U \in$ such that $\alpha(A)=U A U^{-1}$ for every $A$ in $\mathfrak{B}$.

Now let $\pi$ be an arbitrary nondegenerate representation of $\mathfrak{A}$. There is a normal homomorphism $\phi$ of $\mathfrak{B}$ onto the von Neumann algebra $\pi(\mathfrak{H})^{\prime \prime}$ generated by $\pi(\mathfrak{H})$ such that $\phi(A)=\pi(A)$ for every $A \in \mathfrak{U}[3,12.1 .5]$. Then we have that

$$
\begin{aligned}
\alpha_{\pi}(\pi(A)) & =\pi(\alpha(A))=\phi(\alpha(A)) \\
& =\phi\left(U A U^{*}\right)=\phi(U) \phi(A) \phi(U)^{*} \\
& =\phi(U) \pi(A) \phi(U)^{*}
\end{aligned}
$$

for every $A \in \mathfrak{A}$. Clearly, the operator $\phi(U)$ is unitary in $\pi(\mathfrak{H})^{\prime \prime}$. Hence the automorphism $\alpha_{\pi}$ is implemented by the unitary operator $\phi(U)$ in

$$
\pi(\mathfrak{H})^{-}=\pi(\mathfrak{H})^{\prime \prime} .
$$

Addendum (July 13, 1972). Trond Digernes has shown that a separable GCR algebra is completely characterized by the fact that $\mathfrak{B}_{0}=\mathfrak{F}$. This will appear in an article, A new characterization of separable GCR-algebras in Proc. Amer. Math. Soc. Herbert Halpern has recently shown that a $C^{*}$-algebra (perhaps non-separable) is GCR if and only if the Boolean $\sigma$-algebra generated by $\mathfrak{P}_{0}$ contains all minimal projections of $\mathfrak{P}$.

## References

1. C. Akemann, The general Stone-Weierestrass problem, J. Functional Analysis 4 (1969), 277-294.
2. W. G. Bade, On Boolean algebras of projections and algebras of operators, Trans. Amer. Math. Soc. 80 (1955), 345-360.
3. J. Dixmier, Les $C^{*}$-algebres et leurs representations (Gauthier-Villars, Paris, 1964).
4. _L_Les algebres d'operateurs dans l'espace Hilbertien (Gauthier-Villars, Paris, $2^{\mathrm{e}}$ édition, 1969).
5. G. Elliott, Ideal preserving automorphisms of postliminary $C^{*}$-algebras, Proc. Amer. Math. Soc. 27 (1971), 107-109.
6. H. Halpern, A generalized dual for a $C^{*}$-algebra, Trans. Amer. Math. Soc. 153 (1971), 139-156.
7. E. Lance, Automorphisms of postliminary $C^{*}$-algebras, Pacific J. Math. 23 (1967), 547-555.

University of Oslo,
Oslo, Norway;
University of Cincinnati
Cincinnati, Ohio


[^0]:    Received September 29, 1971 and in revised form, November 18, 1971. The research of the second named author was partially supported by NSF Grant GP-23568.

