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SUMMARY

Interactions between pathogens and hosts at the population level should be considered when

studying the effectiveness of control measures for infectious diseases. The advantage of doing

transmission experiments compared to field studies is that they offer a controlled environment in

which the effect of a single factor can be investigated, while variation due to other factors is

minimized. This paper gives an overview of the biological and mathematical aspects, bottlenecks

and solutions of developing and executing transmission experiments with animals. Different

methods of analysis and different experimental designs are discussed. Final size methods are often

used for analysing transmission data, but have never been published in a refereed journal ;

therefore, they will be described in detail in this paper. We hope that this information is helpful

for scientists who are considering performing transmission experiments.

INTRODUCTION

Prevention and control of infectious diseases in

animal husbandry are important topics in veterinary

research. Most of this research is focused on the

reduction of the clinical signs (i.e. disease). However,

an important characteristic of an infectious disease

is that the causative agent spreads from one animal

to another, and part of the processes that may result

in infection are determined by the interaction between

individual animals within a population. Depending

on the disease of interest, one might focus on the

control of the spread of the infection in the popu-

lation rather than controlling the disease in individual

hosts. Reasons for such an approach are that (i) it

is the most effective way to control disease, (ii) it is

directly related to the trade restriction associated

with not being free from disease, (iii) it might prevent

disease in other host species (in particular humans).

The combination of the interaction between the

infectious agent and the individual host, and the

interaction between hosts determines the course of

the infection in a population. Therefore, these inter-

actions at the population level should also be con-

sidered when studying the effectiveness of control

measures for infectious diseases.

When measuring the effect of control measures

on the spread of pathogens in a population, there

are two crucial questions to be answered: (1) to what

extent does an infection spread, and (2) is the

observed effect of a control measure significant and

relevant? Therefore, transmission of the pathogens
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has to be quantified. A useful variable for quantifi-

cation is the reproduction ratio, R. The basic repro-

duction ratio, R0 is the average number of secondary

cases caused by one typical infectious individual in a

completely susceptible population during its entire

infectious period [1]. Since the use of R0 is restricted

to the situation without intervention, the repro-

duction ratio is usually described by R in situations

with control measures. R has a threshold value

equal 1. This implies that an infection may spread

when R>1, possibly resulting in a major outbreak,

and will fade out when R<1, possibly resulting in

a minor outbreak [1]. Thus, control measures will

be most effective when they can bring R to a value

below 1.

Transmission can be quantified in laboratory

experiments and field studies. The main advantage of

a laboratory experiment is that it offers a controlled

environment in which the effect of a single factor can

be investigated, while variation due to other factors

is minimized. Furthermore, experiments can be less

expensive and less time-consuming than field studies.

Consequently, more treatments or control scenarios

can be evaluated, even those that are not yet actually

used or those that cannot be studied under field

conditions (e.g. exotic diseases). A disadvantage of

experiments is, however, that extrapolation of the

results may be difficult.

The first quantitative transmission experiments

were published by Greenwood et al. [2], who studied

transmission of a bacterium between mice, and were

further analysed by Kermack & McKendrick [3, 4],

Anderson & May [5] and De Jong et al. [6]. More

experiments that were carried out brought very

useful data on the characteristics of infections and/

or to the effectiveness of control measures. From

these experiments, knowledge on the design and

analysis of transmission experiments has been gained,

as well as insight into transmission characteristics and

interpretation of data of several infectious diseases.

Since the insights gained by these experiments,

have been described in various papers, the aim of our

paper is to give an overview of these insights, which

can be helpful for other researchers who are con-

sidering performing transmission experiments. We

focus on small-scale animal experiments, and on

diseases caused by viruses and bacteria. First, we will

give a brief description of a transmission experiment,

and we will discuss biological aspects of an exper-

iment : the infection model, and the diagnostic possi-

bilities to monitor the infection chain. Second, we

will discuss the analysis of the data with various

methods and models. Third, we will discuss the in-

terpretation of the observations and the mathematical

and statistical results.

BIOLOGICAL ASPECTS OF

TRANSMISSION EXPERIMENTS

Basically, an infection is started in a group of animals,

housed together in an isolated unit, by inoculation of

some animals in the group and contact exposure

of the other animals to the inoculated [7]. The infec-

tion chain is monitored by taking samples from indi-

vidual animals to diagnose a possible infection chain.

The number of contact infections, either at the end

of the infection chain or during the course of the

infection in the group (i.e. a local epidemic), are used

for statistical analysis to quantify transmission or to

test the effect of a control measure. Mathematical

models are used as the basis of the statistical methods

to analyse and interpret the results.

The above description seems straightforward, but

when intending to perform a transmission exper-

iment, each single aspect has to be considered very

carefully. In the following sections, different aspects,

bottlenecks and solutions for developing and ex-

ecuting a transmission experiment will be described.

Starting the infection chain

An infection has to be started artificially, which

implies that a suitable method to get infectious

animals is needed. In many mathematical models

used for the analysis, ‘equal infectiousness ’# for all

infected animals is assumed, independent of how they

became infected. Such an assumption would allow

extrapolation to more generations of infection (cas-

cade of new infections), which may not be observed

experimentally, but which may occur in field popu-

lations.

The infection chain is often started by direct

inoculation of one or more animals with a certain

dose, route and infection moment. The assumption

of equal infectiousness will be put under pressure,

when inoculated animals differ in infectiousness

# In the stochastic SIR model used in this paper infectiousness
differs stochastically between individuals, i.e. the lengths of the
infectious period differs between individuals whereas the prob-
ability distribution of the infectious period is the same for all
infectious individuals.
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from contact-infected animals (illustrated by Fig. 1).

For example, in an experiment with pseudorabies

(PRV) in maternally immune pigs, the inoculated

piglets shed measurable amounts of virus, whereas in

the contact-infected piglets (detected by serocon-

version) no virus excretion was observed [8]. Then,

transmission may be overestimated and other ways

to obtain infected animals have to be developed.

Another example of differences in infectiousness can

be found in vaccination experiments with classical

swine fever (CSF) [9] and foot-and-mouth disease

(FMD) [10]. Artificially inoculated vaccinated ani-

mals did not become infectious in the vaccinated

groups whereas they did become infected in the

unvaccinated groups. In these situations, a trans-

mission experiment might not be necessary, given

that we are confident that inoculation reflects ex-

posure in the field. If not, the extended transmission

experiment which is described in the next paragraph

may be used.

When artificial inoculation results in a presumed

higher infectiousness of inoculated animals than

contact-infected animals, the design of a so-called

extended experiment might be more suitable (see e.g.

refs [8, 11]). In this experiment, artificially inoculated

animals are used to infect contact animals to create

infectious animals. These infectious animals are sub-

sequently placed with susceptible animals to start the

infection chain in the actual experiment. The main

advantage of this design is that the first generation of

contact-infected animals more closely resembles a

natural infection even when the initial inoculation

is artificial (e.g. by injection). A disadvantage is,

however, that the initial infection process is less

controlled and that the timing of the moment at

which the infectious animals should be placed with

the susceptible animals is hard to determine.

Monitoring the infection chain

The type of information needed for quantification

of transmission depends on the infectious agent, the

diagnostic tools, and the subsequent mathematical

analysis. It is important to consider which obser-

vations can be made and how these observations

relate to the infection states assumed in the model

used in the statistical analysis. When estimating

transmission, it is assumed that all infected animals

are equally infectious (samples from the same distri-

bution of infectiousness), and all contact-exposed

animals are equally susceptible.

In the mathematical model, an individual is as-

sumed to be infected when the individual is infectious

to others. Note that not all infected animals need to be

infectious, nor does an infected state automatically

mean that the animal will become diseased, or, vice

versa, that more diseased animals are also more

infectious. Diagnostic tools should ideally be able

to determine whether an animal has been infected

in such a way that it also is infectious to others.

Moreover, since the infectivity and length of the

infectious period varies between different infectious

diseases, the frequency of sampling should be con-

sidered, as well as the duration of the experiment to

allow the occurrence of contact infections.

Several diagnostic tools are available to detect

the presence of the agent or a former contact with

the agent, e.g. clinical examination, antigen detection

TRANSMISSION IN
TREATMENT GROUP IS

estimated right

INFECTIOUSNESS OF
INOCULATED ANIMALS
IN TREATMENT GROUP?
= contact infected animals

underestimateda< contact infected animals

overestimatedb> contact infected animals

TRANSMISSION IN
TREATMENT GROUP?

yes

not measurablecno

TRANSMISSION IN
CONTROL GROUP IS

estimated right

INFECTIOUSNESS OF
INOCULATED ANIMALS
IN CONTROL GROUP?
= contact infected animal

underestimateda< contact infected animal

overestimatedb> contact infected animal

TRANSMISSION IN
CONTROL GROUP?

yes

not measurablecno 

EVALUATION
TRANSMISSION
EXPERIMENT

a Improve inoculation method. 
b Improve inoculation method or switch to an extended transmission experiment. 
c The inoculation method is not successful to infect treated animals, while it was to infect control animals. This is no transmission experiment but a challenge experiment: statistical
tests are available to test whether the treatment has an effect on the success of the inoculation method.

Fig. 1. Evaluation of a transmission experiment with a treatment and control group. If the experiment only consists of a
control group (i.e. to estimate transmission parameters) the tree will not include the subtree about the treatment group.
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tests, and immunological assays. Clinical examination

can be relevant, but is often not very precise in de-

termining the moment of infection, nor is it a measure

for infectiousness, since virulence and infectiousness

are not necessarily correlated (e.g. PRV [12]).

Antigen detection seems a more appropriate way

of detecting an infection. Various techniques are

available to detect infectious agents, e.g. virus iso-

lation, culture of bacteria, antigen tests and PCR.

The question remains how antigen detection is corre-

lated with the infectious state. Difficulty may arise

when the agent is isolated from a site where it will not

be shed (e.g. determination of viraemia), when it is

shed intermittently, or when the diagnostic technique

does not distinguish between live and inactive par-

ticles (e.g. PCR). Moreover, the link between amount

of infectious agent isolation and infectivity to other

animals is not always clear. For Actinobacillus

pleuropneumoniae (App) infections in pigs, for ex-

ample, it was concluded that the number of bacteria

isolated from the nasal swab was closely related to

infectivity, and the number of bacteria isolated

from the tonsillar swabs not, although more fre-

quently higher numbers of bacteria were isolated from

tonsillar swabs than from nasal swabs [11].

Immune responses are often used as an indirect way

of detecting infections, e.g. serology, tuberculin tests

or lymphocyte proliferation assays. These tools can

be used when the experiment lasts long enough for

animals to develop an immune response after ex-

posure. However, these tools also have disadvantages.

First, infected animals may not always develop an

antibody response upon infection, as shown for pigs

vaccinated with the marker vaccines E2 against CSF

[13], and for App infections in pigs [14]. Second, in

vaccination experiments it might be impossible to

distinguish between immune responses triggered by

vaccination and by actual infections. Third, immunol-

ogical assays are expected to be even less informative

about whether animals were also infectious than are

antigen detection assays. When an animal becomes

seropositive but ‘not infectious ’, one could assume

this animal to be a ‘dead end host ’, thus, not infected

at all (e.g. ref. [8]). Then, transmission might be

overestimated if this animal is categorized as a case.

Fourth, the moment of infection is difficult to esti-

mate from an immune response, because, in general,

this runs far behind the moment of infection. Al-

though this does not change the interpretation of the

final size of an outbreak, it hampers the estimation of

the infection rate parameter b.

In conclusion, although several diagnostic tools

are available to detect the presence of an infectious

agent in an animal or to detect a previous exposure

to an infectious agent, the link between the measure-

ments in individual animals with transmission in a

population is not always straightforward. Trans-

mission might be over- or underestimated when using

a certain diagnostic tool. Moreover, the transmission

experiments themselves may be used to determine the

relation between measurements in individual hosts

and the infectivity. For example in Bouma et al. [8],

maternally immune piglets became infected with

PRV after contact exposure to inoculated maternally

immune piglets, as measured by seroconversion.

However, these allegedly infected piglets failed to

cause seroconversion in a second generation of

maternally immune contact piglets. Thus, some

measure is suggested to be the measure for infected

and hence infectious individuals, then animals

labelled infected by that definition are housed with

contact animals and it is measured whether they, in

turn, by the same definition get infected.

The interpretation of the results, whether animals

are infected or infectious and how the experiments

can be analysed will be discussed in the following

sections.

MATHEMATICAL ASPECTS OF

TRANSMISSION EXPERIMENTS

Stochastic susceptible–infectious–removed (SIR)

model

Mathematical models are necessary to analyse non-

linear processes of directly transmitted infections.

A suitable basic model (i.e. as simple as possible

but with sufficient complexity to make a sound stat-

istical analysis) is the stochastic SIR model [15, 16].

This model describes how two events can occur with

an individual : the individual can become infected and

can recover from the infection. Infection occurs when

an infectious individual transmits the infection to a

susceptible individual. In the model it is assumed

that the contact rate c of each individual with other

individuals is constant and the probability p that

transmission takes place given a contact is also a

constant. From that it follows that the rate at which

one susceptible individual would become infected

equals b (=c .p) in a population with only infectious

individuals. In a population with infectious and sus-

ceptible individuals this rate would be b(I/N) where
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I is the number of infectious individuals and N

the total number of individuals present. Thus at the

population level the rate at which susceptible indi-

viduals become infected is b .S . (I/N) where S is the

number of susceptible individuals. Recovery is when

the infectious individual ceases to be infectious. It is

assumed that recovery occurs at a constant rate in-

dependent of the infection and exposure history of

that individual. The duration of the infectious period

is a stochastic variable that has an exponential distri-

bution with an expected duration equal to 1/a. At

the population level recoveries occur with rate aI.

In summary the stochastic SIR model can be given

by the following expressions :

Infection: [S0; I0] ! [S0x1; I0+1] rate: b � SI=N,
Recovery: [S0; I0] ! [S0; I0x1] rate: a=I:

From which it follows that the average number of

new infections caused by one infectious individual

in a totally susceptible population (R) equals b/a.

The SIR model, and thus also the statistical

methods based on the SIR model, are based on a

number of assumptions. Some of them have already

been mentioned. In summary, the most important

assumptions are: all animals within the population

have random contacts with each other; every class S,

I and R consists of a homogeneous group of indi-

viduals ; the infection rate is constant during the

entire infectious period; the duration of the infectious

period is exponentially distributed; and each re-

covered animal is fully immune to subsequent infec-

tion. Therefore, application of statistical methods

based on the SIR model requires these assumptions to

be checked carefully.

Statistical methods to quantify transmission

The choice of the statistical method depends on

the type of infection (host–agent relationship) and

Table 1. Overview of the characteristics of different methods to quantify transmission (source: [22] )

Martingale
estimator

FS
algorithm

TS
algorithm

MaxDiff
method

GLM
method

Epidemiological model

SI x + + x +
SIR + + + + +
SEIR* + + x x +

Assumptions

Final size reached + + x x x
Random mixing + + + + +
Defined I state + + + + +
Defined moment of infection x x x + +
Defined moment of recovery x x x + +
Exponentially distributed infectious period x + + + +
Independent periods between two samplings x x x + +

Data needed

No. infections at end of trials + + + + +
Moment of infections x x x + +
Moment of recovery x x x x +
Length of average infectious period x x + x x

Statistical inference
Estimation of R + + + x x
Estimation of b x x x x +
Testing size of R x + + x x
Testing size of b x x x x +
Testing difference in transmission x + + + +
Power to find difference n.a. x +/x + ++
Robust results ++ ++ + + +/x

Easy to compute? ++ ++ x +/x ++
Standard software available? x x x x +

* ‘E’ indicates the latent state.
n.a., Not applicable.
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the type of data collected in the experiment. We

distinguish two groups of statistical methods useful

for analysis of transmission experiments. In one

group the input is the total number of animals in-

fected at the end of the experiment (in relation to

the number of susceptible and infectious animals

at the start of the experiment). In the other group

of methods the number of new infections during

the experiment is the input (in relation to the

number of susceptible and infectious individuals

in the course of the experiment). Methods based on

the final size (FS) algorithm, the martingale esti-

mator and methods based on the transient state

(TS) algorithm fit into the first group, whereas the

MaxDiff method and the GLM method fit into

the second group. Table 1 gives an overview of the

characteristics of the different statistical quantifi-

cation methods. We will discuss the methods in the

next sections and will describe the methods based

on the FS algorithm in detail. Most methods are

described in detail elsewhere ; therefore we will not

describe them here. The FS methods were first de-

scribed by De Jong & Kimman [7]. However, a

more extensive description is only given in a pro-

ceeding paper [17] that is not available to all scien-

tists. For that reason this method is described in

detail here.

FS methods

The stochastic SIR model can be simplified when

only the final outcome is studied, i.e. the number of

infectious or susceptible individuals at the end of the

experiment [7]. The final outcome can only be studied

for infections where individuals recover and where

the experimental period is long enough so that

either all infected individuals do recover or all sus-

ceptibles are infected before the end of the exper-

iment. The final outcome is also called the ‘final size ’

of the experiment. The variable to be studied can

either be the number of new contact infections or the

the number of animals that escaped infection until

the end of the experiment.

Statistical analyses to test hypotheses on R or to

estimate R are based on a known distribution over all

the possible FS outcomes, i.e. the FS distribution. The

FS distribution is described by a set of functions that

only depends on R. These functions can be deducted

from the stochastic SIR model by ignoring the timing

of infection and recovery events, which is described

below.

The population of individuals that we observed

is classified in three mutually exclusive categories :

susceptible (S ), infectious (I ), and recovered (R).

Therefore, the population can be represented by the

pair (s, i), i.e. the number of susceptible and infec-

tious individuals. The probability p(s, i) is the

probability that the population state is (s, i) at any

moment in time, i.e. from the start of the exper-

iment until infinity. These probabilities depend on

the parameter R and the number of susceptible and

infectious individuals at the start of the experiment

(s0, i0).

Given that the population state is (s, i), it will be

(s – 1, i+1) if a susceptible individual becomes in-

fected or it will be (s, i – 1) if an infectious individual

recovers. Thus, either an infection event occurs with

probability :

Prob(infection)=
b � si=N

b � si=N+a � i , (1)

or either a recovery event occurs with the comp-

lementary probability

Prob(recovery)=1xProb(infection):

Since the reproduction ratio is R=b/a, the prob-

ability of an infection event can be simplified:

Prob(infection)=
R � s

R � s+N
: (2)

The simplification clearly illustrates that the FS

distribution only depends on R and not on b and a

separately.

The probability of having reached an arbitrary

state (s, i) in the infection chain during the whole

epidemic process can be calculated based on the

infection and recovery probabilities :

p(s, i)=p(s, i+1) � N

R � s+N
+p(s+1, ix1)

r
R � (s+1)

R � (s+1)+N

� �
, (3a)

for 0fs+ifs0+i0, 0fsfs0, and 2fi and

p(s, i)=p(s, i+1) � N

R � s+N
(3b)

for i=0, 1. Since the start situation of a trial is known,

i.e. p(s0, i0)=1, the probability for each other state in

the infection chain can be calculated.

The FS probability distribution is given by the set

of the probabilities of all possible FS situations, i.e.
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p(s, 0) for 0fsfs0. From the definition of p(s, i)

and the fact the FS states are absorbed it follows

that :
Ps=s0

s=0 p(s, 0)=1. For example, given that the

infection chain starts in state (5, 5), it will end in

one of the following absorbing states: (0, 0), (1, 0),

(2, 0), (3, 0), (4, 0) or (5, 0). Thus, the FS probability

distribution consists of the corresponding six state

probabilities. With the probability distribution of

all trials within one experiment, a joint probability

distribution of the whole experiment can be calculated

easily. Subsequently, different tests on the value of

R can be performed and an estimate on R can be

obtained.

In the test and estimation methods presented below

equal numbers and sizes of transmission trials are

assumed for simplicity of notation. However general-

ization to unequal numbers of trials or even unequal

numbers of individuals per trial is possible and

straightforward.

Obtaining a point estimate for R

Given a value of R, the probability of each possible

outcome (final size) can be calculated exactly from

the FS probability distribution. Conversely, given

the outcome of a transmission experiment, R can be

estimated using the maximal likelihood estimation

as follows. Suppose m transmission trials have been

performed each with (s0, i0) as initial state. Let X

be the number of contact infections in the jth trial.

Then, the probability distribution of outcomes X1, …,

Xm in m trials is :

f(x1, . . . , xmjR)=
Ym
j=1

p(s0xxj, i=0jR): (4)

When changing our point of view, we alterna-

tively denote the corresponding likelihood function

f (R|x1, …, xm), where s0xxj denotes the number of

susceptible individuals in trial j escaping infec-

tion. The value of R that maximizes the likelihood

function is called the maximum likelihood estimate

of R.

Testing against threshold value 1

One-sided and two-sided statistical tests on R can be

based on probability distributions like those given

in equation (4). For eradication of an infectious

agent, R should be brought below 1. To show that

R<1 the composite null hypothesis H0 : Ro1

should be considered. This hypothesis can be tested

by calculating the probability that k or less contact

infections occur in m trials under the condition R=1:

g(kjR=1)=
Xk
y=0

P(yjR=1), (5)

which leads to the highest p value (thus a conserva-

tive test). p(y) is the multiplication of all distributions

[eqn (4)] where Y=
Pm

1 Xj. The critical region of

the test, i.e. whereH0 is rejected is formed by all values

of y below k where k is the maximum value for which

g(k|R=1)=0.05 still holds.

Another hypothesis that may be of interest is H0 :

Rf1. Rejecting this hypothesis implicates that R

might well be >1, making it uncertain whether the

infectious agent can be eradicated from the popu-

lation and meaning that major outbreaks can occur.

To reject H0 : Rf1 the probability that the observed

number of contact infections y or more contact

infections would occur in m trials under the null

hypothesis should be smaller than 0.05.

Obtaining a confidence interval for R

A two-sided 95% confidence interval (95% CI) for

R is constructed by finding all R such that H0 : R=r

is not rejected in a test with error level of 0.05. A

natural choice for a test statistic is Y, as before, the

total number of contact infections in m trials. Then,

given Y=y the 95% CI is constructed by collecting

all R values such that the hypothesis H0 : R=r would

not be rejected. In case of extreme outcomes, where

none or all susceptible individuals were contact-

infected, a one-sided confidence interval would be

more appropriate.

Testing the difference in R between two treatment

groups

One reason to perform a transmission experiment

is to determine the effect of an intervention on the

transmission of an infectious agent. We can compare

the levels of transmission under two different exper-

imental conditions or treatments, e.g. vaccinated

or not vaccinated. In the null hypothesis there is no

difference in transmission between the two treatment

groups, H0 : Rcon=Rtreat, whereas the alternative

hypothesis is that the intervention has reduced the

transmission, H0 : Rcon>Rtreat. (Here Rcon denotes

the R in the control group, and Rtreat the R in the

treatment group.) Because we assume that the treat-

ment will not result in an increased R, a one-sided

test is discussed, but modification to a two-sided test

is straightforward.
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A natural test statistic for this test is the total

number of contact infections observed in the control

trials (Ycon) minus the total number of contact infec-

tions in the treatment trials (Ytreat) :

Z=YconxYtreat: (6)

To test H0 : Rcon=Rtreat, the probability that the

difference in the number of contact infections is

larger than or equal to the observed difference in the

number of contact infections z, has to be calculated

under the condition Rcon=Rtreat. The probability of

observing difference z is the sum of all possible pro-

ducts of the two probability functions – five for each

treatment group:

h(zjR)=
Xzmaxxz

i=0

P(y=i+zjR) � P(y=ijR), (7)

where zmax is the maximum difference possible. H0

is rejected if the probability of having the observed

difference z or more is<0.05 for any value of R, i.e. if

m(zjR)=maxR
XZmax

j=z

h(zjR)f0�05: (8)

The reason that the maximum probability m(z|R)
is <0.05 for any arbitrary R chosen is because H0 :

Rcon=Rtreat is a composite null hypothesis. The R

for which that is obtained is possibly different for

each observed outcome.

Transient state (TS) methods

TS methods are based on an algorithm that generates

a time-dependent probability distribution over all

(transient and absorbing) states of the infection chain.

The TS algorithm takes the time course of the exper-

imental epidemic or infection chain into account.

The TS algorithm is described in detail by Velthuis

et al. [18].

In summary, the adjacent state probabilities that

can occur given the start condition of the experiment

satisfy the forward differential-difference equations:

d

dt
ps, i(t)=(i+1)ps, i+1(t)+ R0

(s+1)(ix1)

N

� �

rps+1, ix1(t)x R0
si

N
+i

� �
ps, i(t), (9)

for 0fs+ifs0+i0, 0fsfs0, and 0fifs0+i0.

Subject to the initial value ps0, i0(0)=1, this equation

can be solved using standard methods. The solution

that we call the TS algorithm can be used to calculate

a continuous-time state probability for each state in

the epidemic process :

ps, i(t)=ex R0
si
N+i

� �
t

Z t

0
(i+1)e R0

si
N+i

� �
cps, i+1(c)dc

�

+
Z t

0
R0

(s+1)(ix1)

N
e R0

si
N+i

� �
cps+1, ix1(c)dc

�
:

(10)

The practical use of the TS algorithm is restricted

to experiments with only few individuals. This is

because its high degree of recursiveness may cause

numerical problems, memory limitation or long

computation time [15, 19, 20]. The high degree of re-

cursiveness in the TS algorithm disappears if time

tends to infinity, turning the TS algorithm into the

readily applicable FS algorithm, which is described

in the section about FS methods.

The estimation methods and testing methods based

on the TS probability distribution are similar to the

methods that are described for the FS probability

distribution. The input needed for these methods is

the number of contact infections at the end of each

trial and the average infectious period. The latter is

often unknown.

When planning to use a quantification method

based on the TS algorithm, a FS situation does

not necessarily need to have been reached, but the

duration of the experiment in terms of the average

infectious period has to be known. This information,

however, is often not available. A solution for this

problem is to assume a worst-case scenario, e.g. the

average infectious period equals the expected lifespan

of the animals, which is very well defined for farm

animals. Assuming this, it is possible to express the

duration of the transmission experiment in terms

of the average infectious period and to use the TS

algorithm.

Martingale estimator

By applying a method of moments for martingales

as described in Becker ([21], chapter 7) an estimate

of R, the martingale estimate, can be obtained as

described in Bouma [12]. The martingale estimate

converges to a true value if more data become

available, not only for the stochastic SIR model

as assumed here, but also for other more general

models.

The FS and TS methods are based on the assump-

tion that the infectious period is exponentially
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distributed, whereas the martingale estimator is not.

Furthermore, the martingale estimator is based on

large populations only, while the FS and TS methods

are not limited to population size. Thus, it is ques-

tionable whether the use of the martingale estimator

for experiments with small groups of animals is valid.

However, if all susceptible animals become contact-

infected in all transmission trials the martingale

estimator might be a useful method to estimate R,

since the estimate of R will go to infinity when using

the FS or TS maximum-likelihood estimate, while it

converges to a true value when using the martingale

estimator. This is because the martingale estimator

uses the remaining length of the individual infectious

periods immediately after the last infection occurred

as extra information.

MaxDiff method

The MaxDiff method is developed to detect a differ-

ence in transmission between two treatment groups

that occurs during the experiment but is not visible

at the end of the experiment, i.e. the difference in the

number of contact infections grows during the exper-

iment, but disappears at the end (Fig. 2). TheMaxDiff

method is described in detail by Velthuis et al. [22].

The test statistic used in the MaxDiff method is

the maximum difference in the number of contact

infections that have occurred during the course of

the experiment (i.e. the so-called maximum differ-

ence). The probability distribution over all possible

maximum differences under the null hypothesis

(which is that there is no difference in transmission)

can be generated by Monte-Carlo simulations. The

simulations are based on the transmission processes

assumed in the stochastic SIR model and can be

done for all experimental designs (s0, i0). With the

probability distribution it can be tested whether

the observed maximal difference lies within the criti-

cal region or not. The power of the MaxDiff test is

also calculated with help of simulations. It appears

that the power of the MaxDiff test is often sufficient

to detect a difference in transmission between two

treatments, while the power of the tests based on the

FS or TS algorithms is not sufficient (Table 2).

Especially when both Rcon and Rtreat are above

threshold one [22].

Generalized linear models (GLM)

A different method to estimate a transmission par-

ameter or to test hypothesis is based on a GLM.

Becker [21] described the application of a GLM to

epidemiological models in detail and used a specific

version of the SIR model. An adapted version of

a GLM to analyse transmission experiments is
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Fig. 2. Theoretical results of a transmission experiment that is stopped (dashed vertical line) before a final size situation has

been reached in all trials (left panel) and two possible end situations that could have been observed when the final-size
situations have been reached (right panels).
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described by Velthuis et al. [14]. The GLM method is

like all other methods also based on the stochastic

SIR model. With the GLM method the infection rate

parameter b can be estimated and the hypothesis

about its size can be tested. The power to find a

difference in transmission between two treatment

groups is generally higher than all other methods

that have been described above (Table 2).

A disadvantage of the GLM method is that it

assumes periods between two subsequent samplings

are independent of each other. This means that each

susceptible animal at the start of a period has the

same probability of becoming infected in the sub-

sequent period. This is questionable, since the resist-

ance of a susceptible animal to become infected may

vary in time.

An advantage of the GLM method is that it can

account for heterogeneous populations. One of the

assumptions of the stochastic SIR model is that the

classified groups in the different infection states (S, I

or R) are homogeneous, i.e. all S animals are assumed

to be equally susceptible, all I animals equally infec-

tious per time period# and all R animals equally

immune. The validity of this assumption can be

questioned for particular applications, as illustrated,

e.g. for the infectivity of App-infected pigs [11], or

the difference in infectivity between PRV-inoculated

pigs and contact-infected pigs [8]. Only with the

GLM method it is feasible to include heterogeneity

by adding variables that describe which fraction of

an infection group meets a specific characteristic [14].

Another type of heterogeneity is observed in ex-

periments where inoculated and contact animals

are treated differently, e.g. when contact animals

are vaccinated and inoculated animals not. In this

situation only the effect of vaccination on the sus-

ceptibility can be tested with help of a GLM

analysis [14].

Experimental design

Experiments are usually hampered by the limited

number of animals that can be used. The design

depends on the type of research question to be

answered. The research question can be the esti-

mation of a transmission parameter, or the question

can be a comparison between transmission par-

ameters due to different treatments. In the first two

paragraphs of this section it is discussed which exper-

imental design is optimal given the research ques-

tion to be answered. In the third paragraph the

duration of the experiment is discussed. In the fourth

paragraph the choice of the statistical method will

be discussed.

Number of trials and the number of susceptible and

infectious animals at the start

The comparison of the different designs will be

based on the power calculations with the FS method.

Table 2. Power calculations of the different tests to find a difference in transmission between two treatment

groups applied on data of a five-to-five transmission experiment with two trials per treatment

Sampling
interval*

Rcon, Rtreat

1.5, 0.5 3.5, 0.5 3.5, 1.5 10.0, 0.5 10.0, 1.5 10.0, 3.5

Power FS 0.276 0.725 0.140 0.871 0.203 0.006
Power MaxDiff 0.50 0.263 0.775 0.265 0.982 0.695 0.140

0.25 0.272 0.787 0.290 0.986 0.782 0.271
0.10 0.271 0.797 0.317 0.990 0.827 0.351
0.01 0.272 0.799 0.330 0.993 0.861 0.433

Power TS# 0.276 0.746 0.351 0.995 0.882 0.466
Power GLM 0.50 0.493 0.872 0.792 0.982 0.992 0.683

0.25 0.498 0.863 0.809 0.929 0.993 0.858

0.10 0.484 0.851 0.807 0.890 0.992 0.915
0.01 0.486 0.859 0.805 0.894 0.991 0.928

* The interval between two subsequent observations or samplings used in the 10 000 simulations. Expressed in numbers of
average infectious periods.
# The maximum calculated power according to the TS algorithm.

# Actually for each I individual the infectiousness is drawn from
the same distribution of infectiousness by assuming a constant b
and a variable infectious period 1/a.
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This is because these power calculations are

straightforward, while the calculations of other

methods are not. The analysis is in practice often done

with another method of analysis when this method

gives higher power than the power obtained by the FS

method. Thus, when we find a design that gives

sufficient power with the FS method, it will certainly

have sufficient power with the improved method. We

compared different experimental designs based on

equal numbers of animals. Two issues arise here, first,

the ratio of inoculated animals vs. contact animals

and second, the number of animals in each trial (and

thus the number of replicates).

Ratio I0/S0

When designing an experiment, one can choose

S0 large and I0 small, S0 small and I0 large or S0

approximately equal to I0. If the number of animals

inoculated to become I0 is small, there is a risk that

these animals do not become infected and infectious.

Moreover, if I0 is chosen to be small and all in-

oculated animals become infected, minor outbreaks

can occur due to chance processes, even if R>1.

Figure 3 illustrates for two different experimental

designs (I0=1, S0=9 and I0=5, S0=5) the FS

distribution of the stochastic SIR model for R=5.

The probability of having a minor outbreak is high

(i.e. 0.18) when starting with one infectious indi-

vidual, whereas this probability is zero when starting

with five infectious individuals. If the number of

susceptible animals is small it is possible that all

susceptible animals can be infected, even if R<1.

This suggests that a design with S0BI0 is a good

compromise.

Number of animals and number of trial replications

Often the number of animals and isolation units

available are limited. Therefore, a decision has to

be made on how the number of animals will be

distributed over the number of trials. First we will

discuss the design when the goal is to estimate trans-

mission parameters. We compared different designs

by comparing the accuracy of estimated transmission

parameters, i.e. the length of the confidence interval.

To demonstrate the effect of experimental design

on the estimated R value we simulated nine different

experimental designs for three different values of R.

The total number of animals in each design is 72

and the start condition of each trial is I0=S0. The

designs differ only in the number of trials and the

number of animals per trial, i.e. 36 trialsr2 animals,

18r4, 12r6, 9r8, 6r12, 4r18, 3r24, 2r36 and

1r72. Per design we simulated 1000 experiments in

two steps. First, the exact probability on each FS

situation was calculated. With these probabilities

the cumulative probabilities were calculated by ad-

ding up all probabilities from S=0 until any possible

FS outcome. Second, we generated 1000 random

values between zero and one representing random

probabilities. The final size of a simulated experiment

is X if the random probability is bigger or equal than

the cumulative probability of x and lower than the

cumulative probability of x+1. For each experiment

the R value and its 95% confidence intervals were

estimated under the FS assumption by the maximum-

likelihood method. Per design, means of the 1000

estimates of R and the upper and lower boundaries of

the 95% confidence interval are estimated (Fig. 4).

From Figure 4 it can be seen that the confidence

interval is smaller for designs with more animals per

trial, although the difference for the different designs

is small. Thus, one large trial is better than many

small trials. However, it can be seen that there is

not much difference between one large trial and a few

repetitions of smaller trials. It is advisable to have

at least some repetitions to make the conclusions

more robust with respect to the model assumptions.

Note that the maximum R value in Figure 4 is 1.5.

It is not possible to estimate R with an acceptable

accurate upper bound of the confidence interval for

larger values of R. This is, however, not important

for control strategies.

If transmission parameters of two populations

are compared, the quantitative criterion in comparing

designs is the power of the test, i.e. the probability of
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Fig. 3. The final-size distributions of the stochastic SIR
model for R=5 for the experimental designs I0=1, S0=9
and I0=5, S0=5.
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finding a difference if a difference is present. The

power to find a difference in transmission between

two treatment groups is calculated by adding the

probabilities for all z in the critical region and then

assuming the alternative hypothesis with separate

values for R with and without treatment. Then the

power is :

power(z1, . . . , zmjRcon,Rtreat)

=
Xm
i=1

Xzmaxxzi

x=0

P(y=xjRcon) � P(y=x+zijRtreat): (11)

We compared different designs by comparing powers,

given certain values of Rcon and Rtreat. The total

number of animals in each design is again 72, the start

condition of each trial is I0=S0 and the number of

trials per treatment is equal (mcon=mtreat). The de-

signs differ only in the number of trials per treatment

and the number of animals per trial. Table 3 shows

the different designs and their corresponding powers

for different values of Rcon and Rtreat. The best design

(in terms of the highest power) depends on the ex-

pected Rcon and Rtreat. If Rtreat is expected to be <1

and Rcon >1 the power is higher for designs with

fewer trials and more animals per trial. However, the

powers of all designs are sufficient (>0.8) if Rcon

is assumed to be 3.5 and 10.0, thus all designs are

good enough to find a difference in transmission.

However, if Rtreat is expected to be >1 it is better to

conduct an experiment with more repeated trials with

fewer animals per trial. Especially if Rtreat is close to

but higher than 1 it is possible to find a difference in

transmission by conducting one-to-one experiments.

Duration of the experiment

The duration of an experiment should be long enough

and the sampling scheme intensive enough to provide

sufficient information about the infection chains

Table 3. Power calculations for different experimental designs to find a difference in transmission between two

treatment groups

(S0, I0)

No. repetitions Rcon, Rtreat Critical

region
a=0.05mc mt 1.5, 0.5 3.5, 0.5 10.0, 0.5 10.0, 1.5 10.0, 3.5

(1, 1) 18 18 0.306 0.814 0.991 0.755 0.224 6–18
(2, 2) 9 9 0.372 0.886 0.995 0.678 0.080 7–18

(3, 3) 6 6 0.461 0.932 0.997 0.619 0.040 7–18
(6, 6) 3 3 0.461 0.938 0.990 0.343 0.004 8–18
(9, 9) 2 2 0.505 0.950 0.987 0.288 0.002 8–18

(18, 18) 1 1 0.552 0.957 0.983 0.229 0.001 8–18
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Fig. 4. The 95% confidence interval of the estimated
R value of 1000 simulated experiments of different sizes,

given S0 (total)=36; I0 (total)=36; N0 (total)=72; S0BI0,
in which R=0.5, 1.0 or 1.5, respectively.
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for a sound analysis. The amount of information

needed depends on the quantification method that

will be used to analyse the data. For example, for

a quantification method based on the FS algorithm,

the local epidemics in the different trials should

have reached a FS situation before the experiment

ends. Therefore, ideally the experiment must last

long enough to reach this final size. This is not feasible

for all infections, since the timescale of the spread

of an agent from one animal to another depends

on the infection of interest and depends on the treat-

ment that is evaluated (i.e. it is possible that an inter-

vention slows down the transmission dynamics to

such an extent that reaching a FS situation will take

a considerable period of time).

When the final size is not reached at the moment at

which the transmission experiment is terminated,

important information might be missed. In Figure 2

two possible scenarios are presented. In the left panel

of the figure the number of infections per treatment

group in a transmission experiment is presented

against time. The experiment was terminated at the

moment where the FS situation had not been reached

in all trials (dashed vertical line). If this experiment had

lasted longer the results could have been different. For

example, the difference in the number of contact in-

fections could have increased (see the top right panel)

or this difference could have decreased (see the bottom

right panel). The different end situations would lead

to different conclusions as to the significance of the

difference in transmission between the two treatments.

The risk of drawing wrong conclusions if an FS-

based method is used when the final size has not

been reached in all trials has been investigated [18, 22].

From these studies it can be concluded that the R

value is underestimated in these situation.

For analyses of a transmission experiment with

a method based on the TS algorithm [22], the FS

situation does not need to be reached in all trials.

However, one of the inputs needed for this method

is the duration of the experiment expressed as the

number of average infectious periods, which is often

unknown. A solution for this problem is to assume

a worst-case scenario, namely, to assume that the

average infectious period is equal to the expected

lifespan of the animals, which is very well defined

for most farm animal species. With this assumption

the duration of the transmission experiment can be

expressed in terms of the number of average infectious

periods, and the methods based on the TS algorithm

can be used to analyse the experiment.

For the use of the MaxDiff method the average

infectious period does not need to be known [22].

When using the MaxDiff method to test for a differ-

ence in transmission between two treatment groups

the experiment should last long enough to observe

a significant difference in the number of contact in-

fections (see Fig. 2). In this case, it should be possible

to stop the experiment immediately when a significant

difference in the number of contact infections has

been reached. This would be good for animal welfare

and, of course, cost reduction. However, note that if

an experiment is stopped too early, extra information

will be missed and the estimation of transmission

parameters will be less precise.

Choice of method of analysis

Based on a chosen experimental design (i.e. a five-

to-five experiment) the different methods of analysis

will be compared in this section. One of the main

considerations in choosing a test is the power of the

test. In Table 2 the power to find a difference in trans-

mission for a five-to-five transmission experiment

with two trials per treatment group is calculated

for different tests. The power of the MaxDiff test is

generally less than the maximum power of the TS

test, but will approach the maximum power if the

sampling interval becomes extremely small. The

power of the GLM test is large for almost all combi-

nations of Rcon, Rtreat. The power of the MaxDiff

test is only sufficiently large (>0.80) if Rcon, Rtreat is

10.0, 0.5 or if Rcon, Rtreat is 10.0, 1.5 with a sampling

interval of 0.01. Slightly smaller powers (>0.70) are

obtained for the combinations 3.5, 0.5 and 10.0, 1.5.

The power increases with the difference between Rcon

and Rtreat, but is insufficient in all but one scenario

where Rcon and Rtreat are both >1. The sampling

interval (in the range of 0.01–0.50 average infectious

periods) has only a small influence on the power

of the MaxDiff test when both Rcon and Rtreat are

small, whereas it has more influence when Rcon and

Rtreat are both >1. The largest effect is observed

for the combinations 10.0, 1.5 and 10.0, 3.5, which

can be explained by the on average small periods

in which MaxDiff can be observed, 0.538 and 0.150

respectively.

Methods that used information of the course of

the infection chain are more powerful than FS

methods, especially when after treatment the R value

is still >1. Thus, based on the power calculations

the GLM and MaxDiff methods are always preferred

for the analysis of the experimental data. However,
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these methods of analysis presuppose that measure-

ments give sufficient information to know at which

moments in time animals are susceptible, infected,

infectious, and recovered. In reality such interpret-

ation can only be given by making additional

assumptions, for example about the duration of the

latent period, about how infectious animals are based,

for example, on excretion of the microorganism.

More information is not always available. In this

case it is better to base your analysis on a method

that needs less information. For example, the FS

method can be used when the treatment reduces

the R value to <1 and therefore the FS method has

sufficient power to find a difference in treatment. If

the FS situation is not reached in the experiment, one

could choose to use the TS methods, although for

these methods information about the duration of

the infectious period is needed.

If one is only interested in the estimation of a

transmission parameter and not in testing a difference

in transmission between two treatments, the choice

of a statistical method is different. With the FS and

TS methods it is possible to estimate the R value

based on the experimental data. With the GLM it is

possible to estimate the two transmission parameters

a and b separately. Having an estimate of both par-

ameters it is also possible to estimate R.

Besides the power calculation, the choice of a stat-

istical test depends also on other aspects, such as the

quality of the available data, whether there is hetero-

geneity in the susceptible or infectious group of

animals, whether a FS situation has been reached or

not or whether the maximal difference in the number

of infections between two treatments has already been

reached or not. All these items have already been

discussed in the previous sections. The decision tree

given in Figure 5 illustrates a summary of all aspects

that influence the choice of which method of analysis

to use in which situation.

INTERPRETATION OF RESULTS

The results of the transmission that are based on

experiments, in which a lot of factors have been

controlled, may differ from the field situation and

extrapolation might be questionable. Like all con-

clusions basedonan experimental study the conclusion

holds for these specific circumstances, i.e. for these

type of animals, for this specific laboratory-cultured

pathogen and in this specific environment. So, will

the conclusions drawn from these experiments also

apply to the field situation? This is not always the

case. For example, in the research on the transmission

of PRV it appeared that the R value among vacci-

nated specific-pathogen-free (SPF) pigs estimated

from transmission experiments was repeatedly sig-

nificantly <1 [7, 8, 12], whereas the R value of this

virus among vaccinated conventional pigs in a field

study was significantly >1 [23]. The difference in

husbandry conditions as a cause for this discrepancy

was excluded by comparing the transmission of

PRV among vaccinated SPF pigs and vaccinated
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conventional pigs under the same experimental

circumstances [24]. The difference in transmission

was still present in this transmission experiment, in-

dicating that transmission depends more on the type

of animals used than the environment.

Although the extrapolation to the field situation

is questionable, transmission experiments provide

well-founded information about transmission since

they offer a controlled environment in which the effect

of a single factor can be investigated, while variation

due to other factors is minimized. To test the effect of

an intervention (like vaccination) on transmission it

is best to start a transmission experiment with SPF

animals before doing a transmission experiment with

another type of animal (e.g. with maternal immunity

or conventional animals), since SPF animals are

probably more similar. If the transmission is reduced

or substantially changed in this experiment, the next

step might be to test the intervention among another

type of animal and thereafter under field conditions.

If the effect of an intervention is not substantially

large in a transmission experiment with SPF animals

(which is designed with sufficient power) it might be

not worthwhile testing the intervention under other

circumstances.
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