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Schubert Calculus on a Grassmann Algebra

Letterio Gatto and Taı́se Santiago

Abstract. The (classical, small quantum, equivariant) cohomology ring of the grassmannian G(k, n) is

generated by certain derivations operating on an exterior algebra of a free module of rank n (Schubert

calculus on a Grassmann algebra). Our main result gives, in a unified way, a presentation of all such

cohomology rings in terms of generators and relations. Using results of Laksov and Thorup, it also

provides a presentation of the universal factorization algebra of a monic polynomial of degree n into

the product of two monic polynomials, one of degree k.

1 Introduction

In [4] the first author showed that the cohomology ring of the complex grassmannian
G(k, n), parametrizing k-dimensional subspaces of C

n, can be realized as a commu-

tative ring of endomorphism of the k-th exterior power of a free Z-module M of rank
n. Such a result was achieved by studying a natural Hasse–Schmidt derivation on

the exterior algebra of M; Laksov and Thorup [9, 10] generalized it to the more in-

teresting situation regarding the cohomology of Grassmann bundles. Their point of
view is quite different, as it is based on the fact that the k-th exterior power of a free

A-module of rank n can be endowed with a natural module structure over the ring

S of symmetric polynomials (with A-coefficients). Indeed it is a free module of rank
1 over S. In particular, they show that the k-th exterior power of a free A-module of

rank n is a free module of rank 1 over S. They also supply a beautiful description of
the cohomology of G(k, E), the Grassmann bundle of k-dimensional subspaces in the

fibers of a vector bundle E, in terms of the universal factorization algebra of a certain

monic polynomial p (encoding the Chern classes of E) into the product of two monic
polynomials, one of degree k (cf. Remark 3.6).

The main goal of this paper is to generalize [4], via a translation of Laksov and
Thorup’s formalism, into the language of derivations. A derivation on

∧
M (the

exterior algebra of a module M over a commutative ring with unit) is a sequence

D := (D0,D1, . . . ) of endomorphisms such that the h-th order Leibniz’s rule,

(1.1) Dh(α ∧ β) =

∑

h1+h2=h
hi≥0

Dh1
α ∧ Dh2

β,

holds for each integer h ≥ 0 and each α, β ∈
∧

M (see 2.2). In [12], any such a
derivation is called a Schubert calculus on a Grassmann algebra. The terminology is

Received by the editors June 26, 2006; revised February 14, 2007.
Work partially sponsored by PRIN “Geometria sulle Varietà Algebriche” (Coordinatore A. Verra),

INDAM-GNSAGA and ScuDo, Politecnico di Torino.
AMS subject classification: Primary: 14N15; secondary: 14M15.
c©Canadian Mathematical Society 2009.

200

https://doi.org/10.4153/CMB-2009-023-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-023-x


Schubert Calculus on a Grassmann Algebra 201

motivated by the fact that if one takes M to be a finite free module over a graded com-
mutative Z-algebra of characteristic 0, there is a canonical derivation on

∧
M (gen-

eralizing that studied in [4]; see Section 3) describing, within a unified framework,
different kinds of cohomology theories on complex grassmannian varieties, such as,

e.g., the classical, the small quantum, or the equivariant one. Working on the exterior

algebra, instead of on a single exterior power, many formal manipulations get easier.
As an example we offer Theorem 4.7, the main result of this paper, which consists of a

simple formula giving, in a unified way, the presentation of the classical, small quan-

tum and equivariant cohomology ring of the complex grassmannian G(k, n). In fact,
the (classical, small quantum, equivariant) cohomology ring of all the grassmannians

G(k, n), 1 ≤ k ≤ n, is a quotient of a same commutative ring of endomorphisms of
the exterior algebra of a free module of rank n (see Sect. 3.4). As the latter is gener-

ated by derivations, the (classical, small quantum, equivariant) Schubert calculus on

G(k, n) can be reduced to the much simpler one on G(1, n) = P
n−1 (as in [4]; see

also [5]). Our best application of such a philosophy is an elementary description, as

in [6] (see also [12]), of the equivariant Schubert calculus on a grassmannian acted

on by a torus with isolated fixed locus, recovering, in particular, the case studied
in [7] (see also [8]).

2 Derivations on Exterior Algebras

2.1 Let M be an A-module, A[[t]] be the ring of formal power series in an indeter-
minate t over A and

∧
M[[t]] := (

∧
M)[[t]] be the A[[t]]-module of formal power

series with coefficients in
∧

M =
⊕

k≥0

∧k
M, the exterior algebra of M. The former

becomes an A[[t]]-algebra by setting

∑

i≥0

αit
i ∧

∑

j≥0

β jt
j
=

∑

h≥0

∑

i+ j=h

(αi ∧ β j)th.

2.2 An A-module homomorphism Dt :
∧

M →
∧

M[[t]] is said to be a derivation

on
∧

M if it is an A-algebra homomorphism, i.e., if for each α, β ∈
∧

M:

(2.1) Dt(α ∧ β) = Dtα ∧ Dtβ.

The algebra homomorphism Dt can be written as a formal power series
∑

i≥0 Dit
i ,

with coefficients in the A-algebra EndA(
∧

M). Let D = (D0,D1, . . . ) denote the

sequence of the coefficients of Dt . Equation (2.1) implies that for each h ≥ 0, the
A-endomorphism Dh of

∧
M satisfies the h-th order Leibniz rule (1.1), obtained by

expanding both sides of (2.1) and equating the coefficients of th occurring on both

sides.

2.3 Let j : HomA(
∧

M,
∧

M[[t]]) → EndA(
∧

M[[t]]) be the natural map send-

ing any Ψt =
∑

i≥0 ψit
i ∈ HomA(

∧
M,

∧
M[[t]]) to the endomorphism j(Ψ) of∧

M[[t]] defined on each
∑

i≥0 αit
i ∈

∧
M[[t]] by

j(Ψ)(
∑

i≥0

αit
i) =

∑

i≥0

Ψ(αi) · t i
=

∑

h≥0

( ∑

i+ j=h

ψi(α j)
)

th.
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If Dt is a derivation, then j(Dt) is itself an A[[t]]-algebra endomorphism of
∧

M[[t]].
In fact it is obviously an A[[t]]-module endomorphism. Moreover,

j(Dt)
( ∑

i≥0

αit
i ∧

∑

j≥0

β jt
j
)

= j(Dt)
∑

h≥0

( ∑

i+ j=h

αi ∧ β j

)
th

=

∑

h≥0

( ∑

i+ j=h

Dt(αi ∧ β j)
)

th
=

∑

h≥0

( ∑

i+ j=h

Dtαi ∧ Dtβ j

)
th

=

∑

i≥0

Dtαi · t i ∧
∑

j≥0

Dtβ j · t j
= j(Dt)

∑

i≥0

αi · t i ∧ j(Dt)
∑

j≥0

β j · t j .

(2.2)

2.4 For each pair Dt ,D
′
t ∈ HomA(

∧
M,

∧
M[[t]]), define a product Dt ∗D ′

t through
the equality: (Dt ∗D ′

t )α = j(Dt)(D ′
tα). Clearly j(Dt)α = Dtα for each α ∈

∧
M and

(Dt ∗ D ′
t )(α) =

∑

h≥0

( ∑

i+ j=h

Di(D ′
jα)

)
th

= j(Dt)(
∑

j≥0

D ′
jα · t j)

= j(Dt)(D ′
tα) = (j(Dt) ◦ j(D ′

t ))α.

(2.3)

2.5 The product Dt ∗D ′
t of two derivations on

∧
M is a derivation on

∧
M. Indeed,

using (2.2) and (2.3):

(Dt ∗ D ′
t )(α ∧ β) = j(Dt)(D ′

t (α ∧ β)) = j(Dt)(D ′
tα ∧ D ′

tβ) =

= j(Dt)(D ′
tα) ∧ j(Dt)(D ′

tβ) = (Dt ∗ D ′
t )α ∧ (Dt ∗ D ′

t )β,

as desired. Now let D(1)
= (D(1)

i )i≥0 be any (possibly finite) sequence of endo-

morphisms of M and, for each m ∈ M, let D(1)
t (m) =

∑
i≥0 D(1)

i (m)t i . Then

D(1)
t : M → M[[t]] is an A-module homomorphism.

Proposition 2.1 There exists a unique derivation Dt :
∧

M →
∧

M[[t]] such that

Dt |M
= D(1)

t (or, equivalently, Di |M
= D(1)

i ).

Proof For each k ≥ 1, consider the A-multilinear map M⊗k → (
∧k

M)[[t]] defined

by mi1
⊗· · ·⊗mik

7→ D(1)
t mi1

∧· · ·∧D(1)
t mik

, which is clearly alternating. By the uni-

versal property of exterior powers, it factors through a unique A-module homomor-

phism
∧k

M → (
∧k

M)[[t]], given by D(k)
t (mi1

∧ · · · ∧mik
) = D(1)

t mi1
∧ · · · ∧D(1)

t mik

on monomials. Let Dtα = D(k)
t α for all α ∈

∧k
M and all k ≥ 0. It follows that if

α ∈
∧k1 M and β ∈

∧k2 M, equation (2.1) holds by the definition of Dt and the fact
that α ∧ β is a finite A-linear combination of elements of the form

{mi1
∧ · · · ∧ mik1

∧ mik1+1
∧ · · · ∧ mik1+k2

; 1 ≤ i1 < · · · < ik1+k2
}.

Since any element of
∧

M is a finite sum of homogeneous ones, equation (2.1) holds
for any arbitrary pair as well. The unicity part is straightforward: were D ′

t another

extension of D(1)
t , one would have D ′

t (mi1
∧ · · · ∧ mik

) = D(1)
t mi1

∧ · · · ∧ D(1)
t mik

=

Dt(mi1
∧ · · · ∧ mik

), for each mi1
∧ · · · ∧ mik

and each k ≥ 1. Hence D ′
t = Dt .
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2.6 Let St (
∧

M) be the set of all derivations Dt :=
∑

i≥0 Dit
i such that Di |M

∈
EndA(M) (i.e., the submodule M of

∧
M is Di-stable) and D0|M

is an isomorphism.

Hence D0 :
∧

M →
∧

M is an isomorphism too.

Proposition 2.2 The pair (St(
∧

M), ∗) is a group.

Proof By 2.5, St(
∧

M) is closed under ∗. By its very definition, ∗ is associative. The
map 1 :

∧
M → (

∧
M)[[t]], sending any α ∈

∧
M to itself, thought of as a constant

formal power series, is the ∗-neutral element. Thinking of Dt as a formal power series

with coefficients in EndA(
∧

M), the formal inverse D−1
t of Dt (existing because of the

invertibility of D0) is a derivation as well. In fact

D−1
t (α ∧ β) = j(D−1

t )
(

(Dt ∗ D−1
t )α ∧ (Dt ∗ D−1

t )β)

= j(D−1
t )(j(Dt)D−1

t α ∧ j(Dt)D−1
t β)

= (j(D−1
t ) ◦ j(Dt))(D−1

t α ∧ D−1
t β) = D−1

t α ∧ D−1
t β,

since D−1
t ∗ Dt = Dt ∗ D−1

t = 1.

2.7 We fix another piece of notation. Let A[T] be the polynomial ring in in-

finitely many indeterminates T = (T1,T2, . . . ). For each k-tuple I := (i1, . . . , ik)

of positive integers, we denote by ∆I(T) := ∆(i1,...,ik)(T) the Schur polynomial

det[(Ti j−i)1≤i, j≤k] ∈ A[T] (setting T0 = 1 and T j = 0, if j < 0). By ex-

panding ∆I(T) along the last column, one sees that ∆I(T) belongs to the ideal

(Tik−1, . . . ,Tik−k) of A[T]. In particular ∆(2,3,...,h+1)(T) ∈ (T1, . . . ,Th). If D :=
(D0,D1, . . . , ) is the sequence of coefficients of some Dt ∈ St (

∧
M) such that

D0 = idV

M , one defines ∆I(D) to be the evaluation of ∆I(T) at D (via the sub-
stitution Ti 7→ Di).

2.8 For each i ≥ 0, define Di ∈ EndA(
∧

M) via the equality

D−1
t =

∑

i≥0

(−1)iDit
i .

By equating the coefficients of the same power of t on both sides of the equation
Dt ∗ D−1

t = 1, one gets D0 = D−1
0 , while, for each h ≥ 1,

Dh − Dh−1D1 + · · · + (−1)hDh = 0,

so that, e.g., D1 = D1, D2 = D2
1 − D2. In general, one has (see [2, Appendix A])

Dh = ∆(2,3,...,h+1)(D).

Proposition 2.3 (Integration by parts) Let Dt ∈ St (
∧

M). Then

Dhα ∧ β =

∑

i≥0

(−1)iDh−i(α ∧ Diβ)(2.4)

= Dhα ∧ β − Dh−1α ∧ D1β + · · · + (−1)iD0α ∧ Dhβ.
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Proof One expands both sides of the equality j(Dt)(α∧D−1
t β) = Dtα∧β, and then

compares the coefficients of th occurring on each side.

Example 2.4 One has D1α ∧ D0β = D1(α ∧ β) − D0α ∧ D1β and

D2α ∧ D0β = D2(α ∧ β) − D1(α ∧ D1β) + D0α ∧ D2β.

3 Schubert Calculus on a Grassmann Algebra

3.1 From now on, A will be assumed to be any graded ring
⊕

i≥0 Ai such that A0 =

Z. Let X be an indeterminate over A, M := XA[X] and M(p) := M/pM, where p is
either the 0 polynomial or a monic polynomial Xn − e1Xn−1 + · · · + (−1)nen ∈ A[X]

such that ei ∈ Ai . Then M(p) is a free A-module generated by ǫ = (ǫi)1≤i≤n, where
n is either deg(p) if p 6= 0, or ∞ if p = 0.

3.2 Let Ik
= {I = (i1, . . . , ik) ∈ N

k | 1 ≤ i1 < · · · < ik} (as in [3, §, Section 1]

and [4]). The weight of I ∈ Ik is wt(I) =
∑k

j=1(i j − j). It coincides with the weight

of the associated partition (ik − k, ik−1 − (k−1), . . . , i1 −1). If I := (i1, . . . , ik) ∈ Ik,

let ∧Iǫ denote ǫi1 ∧ · · · ∧ ǫik . Each exterior power
∧k

M(p) is a free A-module with

basis
∧k
ǫ := {∧Iǫ : I ∈ Ik

n}. If a ∈ Ah, the weight of a · ∧Iǫ is, by definition,

h + wt(I). Set (
∧k

M(p))w =
⊕

0≤h≤w

( ⊕
wt(I)=h Aw−h · ∧Iǫ

)
. Then

∧k
M(p) =

⊕
w≥0(

∧k
M(p))w, which is a graded A-module via weight.

3.3 By Proposition 2.1 there is a unique sequence D := (D0,D1, . . . ) of A-endo-
morphisms of

∧
M(p) such that (i) (the h-th order) Leibniz’s rule (1.1) holds for

each h ≥ 0 and each α, β ∈
∧k

M(p) and (ii) the initial conditions Dhǫ
i

= ǫi+h

are satisfied, for each h ≥ 0 and each i ≥ 1. Notice that Di ◦ D j = D j ◦ Di in

EndA(
∧

M(p)), as a simple induction shows.

Proposition 3.1 The following formula holds:

(3.1) Dh(ǫi1 ∧ · · · ∧ ǫik ) =

∑
ǫi1+h1 ∧ · · · ∧ ǫik+hk ,

summing over all h-tuples (hi)1≤i≤k of non negative integers such that h1 + · · ·+hk = h.

Proof See [9] or, since equality (3.1) is defined over the integers, use the same in-
ductive proof as in [4, Proposition 2.6].

Example 3.2 When expanding Dh(ǫi1 ∧ · · · ∧ ǫik ), cancellations may occur on the

right hand side of (3.1), due to the Z2-symmetry of the ∧-product. For instance:

D2(ǫ1 ∧ ǫ2) = ǫ3 ∧ ǫ2 + ǫ2 ∧ ǫ3 + ǫ1 ∧ ǫ4
= ǫ1 ∧ ǫ4.

The surviving summands are predicted by Pieri’s formula for Dh, a rule to speed up

computations of “derivatives” of k-vectors.
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Theorem 3.3 (Pieri’s formula) Pieri’s formula holds:

(3.2) Dh(ǫi1 ∧ · · · ∧ ǫik ) =

∑

(hi )∈P(I,h)

ǫi1+h1 ∧ · · · ∧ ǫik+hk ,

where, if I = (i1, . . . , ik) ∈ Ik, we denote by P(I, h) the set of all k-tuples of non

negative integers (h1, . . . , hk) such that i1 + h1 < i2 ≤ i2 + h2 < · · · < ik−1 ≤ ik and

h1 + · · · + hk = h.

Proof See [9] or, since formula (3.2) is defined over the integers, use the same proof
as in [4, Theorem 2.4].

3.4 Let A be as in 3.1 and A[T] be as in 2.8. If a ∈ Al, the degree of the monomial

aTm1

i1
· · ·T

m j

i j
is defined to be l + m1i1 + · · · + m ji j . Then A[T] is itself a graded

ring
⊕

h≥0 A[T]h, where A[T]h is the submodule of all elements of A[T] of degree h.

There is a natural evaluation map, evD : A[T] → EndA(
∧

M(p)), sending P ∈ A[T]
to P(D) (obtained by “substituting” Ti 7→ Di into P). We denote by A∗(

∧
M(p))

the image of evD in EndA(
∧

M(p)) and by A∗(
∧k

M(p)) the image of the natural

restriction map

ρk : A∗
(∧

M(p)
)
→ EndA(

k∧
M(p)

)
,

given by P(D) 7→ P(D)|Vk M(p)
. Pieri’s formula implies Giambelli’s formula, a special

case of the general determinantal formula stated in [9, Main Theorem], which reads,
in this case, as:

(3.3) ǫi1 ∧ · · · ∧ ǫik = ∆(i1,...,ik)(D) · ǫ1 ∧ · · · ∧ ǫk,

where, as in 2.8, ∆(i1,...,ik)(D) = evD(∆(i1,...,ik)(T)).

Hence, we have shown the following.

Theorem 3.4 The natural evaluation map

evǫ1∧···∧ǫk : A∗(
∧

M(p)) →
k∧

M(p), mapping P(D) 7→ P(D)ǫ1 ∧ · · · ∧ ǫk

is surjective.

3.5 It follows that ker(ρk) = ker(evǫ1∧···∧ǫk ), and then

A∗(
k∧

M(p)) =
A∗(

∧
M(p))

ker(evǫ1∧···∧ǫk )
.

We call the induced map Πk : A∗(
∧k

M(p)) →
∧k

M(p), defined by

P(D) + ker evǫ1∧···∧ǫk 7→ P(D)ǫ1 ∧ · · · ∧ ǫk,

the Poincaré isomorphism.
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Remark 3.5. Let Ik
n = {I ∈ Ik | ik ≤ n}. A routine check shows that if I =

(i1, . . . , ik) ∈ Ik
n and H ∈ P(I, h) then I + H := (i1 + h1, . . . , ik + hk) ∈ Ik. De-

note by Ik,w the set of all I ∈ Ik such that wt(I) = w. Combining Pieri’s formula (3.2)
with Giambelli’s formula (3.3), one has, for each I ∈ Ik and each h ≥ 0:

Dh∆I(D)ǫ1 ∧ · · · ∧ ǫk
= Dh · ∧

Iǫ =

∑

H∈P(I,h)

∧I+Hǫ =

∑

H∈P(I,h)

∆I+H (D)ǫ1 ∧ · · · ∧ ǫk,

proving the equality Dh∆I(D) =
∑

H∈P(I,h) ∆I+H(D) in the ring A∗(
∧k

M(p)).

Remark 3.6. (see [10]) Let Factk
A(p) be the universal factorization algebra of the

monic polynomial p into the product of two monic polynomials, one of degree k.

Let p = p1q be the universal factorization of p in Factk
A(p), where deg(p1) = k,

and denote by si the complete symmetric polynomial of degree i in the universal
roots of p1. Then Factk

A(p) is generated, as an A-algebra, by (si)i≥1 and the map

A∗(
∧k

M(p)) → Factk
A(p), defined by Di 7→ si , is an A-algebra isomorphism. This

is because of the module structure of
∧k

A[X] over the ring of symmetric functions
defined and studied in [9]. In fact our formula (3.2) is the same as Pieri’s formula

(2.1.1) in [9], after replacing si with Di . Let π : E → Y be a vector bundle of rank

n and let πk : G(k, E) → Y be the Grassmann bundle over Y of k-planes in the
fibers of E. In [10] the authors show that, if A := A∗(Y) is the Chow ring of Y

and p = Xn + c1Xn−1 + · · · + cn ∈ A[X] is such that ci := ci(E) are the Chern

classes of E, there is an isomorphism Factk
A(p) → A∗(G(k, E)). Let Qk be the uni-

versal quotient bundle over G(k, E). Then, the same proof as in [10] works using

derivations. By the basis theorem ([2, p. 268]) the unique A-module homomorphism

ιk : A∗(G(k, E)) → A∗(
∧k

M(p)), mapping ∆I(c(Qk − p∗
k E) to ∆I(D), is certainly an

isomorphism. To check that it is also a ring homomorphism, it is sufficient to check

it on products of the form ch(Qk − p∗
k E) · ∆I(c(Qk − p∗

k E):

ιk(ch(Qk − p∗
k E) · ∆I(c(Qk − p∗

k E)) = ιk

( ∑

H∈P(I,h)

∆I+H(c(Qk − p∗
k E))

)

=

∑

H∈P(I,h)

∆I+H (D) = Dh∆I(D)

= ιk(ch(Qk − p∗
k E) · ιk(∆I((c(Qk − p∗

k E)),

by [2, Proposition 14.6.1] and 3.5.

Remark 3.7. Theorem 3.4 can be proved by showing that for each I ∈ Ik, there exists
GI ∈ A[T] such that ∧Iǫ = GI(D) · ǫ1 ∧ · · · ∧ ǫk. This can be achieved via integration

by parts (2.4), as follows. We say that
∧k

M(p) enjoys the property G j , for some
1 ≤ j ≤ k, if, for each i j+1 < · · · < ik such that j < i j+1, there exists a polynomial

G j,i j+1,...,ik
∈ A[T] such that ǫ1∧· · ·∧ǫ j ∧ǫi j+1 ∧· · ·∧ǫik = G j,i j+1,...,ik

(D) ·ǫ1∧· · ·∧ǫk.

We shall show, by descending induction, that
∧k

M(p) enjoys G j for each 1 ≤ j ≤ k.

In fact Gk is trivially true.

https://doi.org/10.4153/CMB-2009-023-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-023-x


Schubert Calculus on a Grassmann Algebra 207

Let us suppose that G j holds for some 2 ≤ j ≤ k − 1. Then G j−1 holds. In fact,
for each j − 1 < i j < · · · < ik,

ǫ1 ∧ · · · ∧ ǫ j−1 ∧ ǫi j ∧ · · · ∧ ǫik = Di j− j(ǫ
1 ∧ · · · ∧ ǫ j−1 ∧ ǫ j) ∧ ǫi j+1 ∧ · · · ∧ ǫik ,

basically by [4, Corollary 2.5]. By applying integration by parts (2.4), one gets:

ǫ1 ∧ · · · ∧ ǫ j−1 ∧ ǫi j ∧ · · · ∧ ǫik =

i j− j∑

h=0

Di j− j−h(ǫ1 ∧ · · · ∧ ǫ j ∧ Dh(ǫi j+1 ∧ · · · ∧ ǫik )).

But Dh(ǫi j+1 ∧ · · · ∧ ǫik ) is a sum of elements of the form ǫh j+1 ∧ · · · ∧ ǫhk , with j <
h j+1 < · · · < h j . Then, by the inductive hypothesis, one concludes that G j−1 holds,

too. In particular G1 holds and the claim is proved.

4 Presentations for Intersection Rings

Proposition 4.1 Let D−1
t :=

∑
j≥0(−1) jD jt

j be the inverse of Dt ∈ St (
∧

M(p)).

Then Dh|Vk M(p)
= 0, for each h > k.

Proof By induction on k. If k = 0 one has Dh(m) = 0, for each h ≥ 2 and each m ∈
M(p). In fact, if m ∈ M(p), Dtm =

∑
i≥0 Di

1m · t i . Therefore D−1
t m = m − D1m · t ,

i.e., Dh|M(p)
= 0 for each h ≥ 2. Suppose now the property is true for k − 1 and let

h > k. Any mk ∈
∧k

M(p) is a finite A-linear combination of elements of the form

m∧mk−1 for suitable m ∈ M(p) and mk−1 ∈
∧k−1

M(p). It then suffices to check the

property for elements of this form. One has Dh(m∧mk−1) =
∑h

j=0 D jm∧Dh− jmk−1.

As D jm = 0, for j ≥ 2, it follows that
∑h

j=0 D jm ∧ Dh− jmk−1 = D1m ∧ Dh−1mk−1.
By the inductive hypothesis, this last term vanishes as well, because h−1 > k−1.

In the sequel M will be as in 3.1 (i.e., M(p) for p = 0).

Proposition 4.2 The ring A∗(
∧k

M) is generated by (D1,D2, . . . ,Dk) as an A-alge-

bra.

Proof Let D−1
t =

∑
i≥0(−1)iDit

i be the inverse of Dt . First one observes that, for

each h ≥ 1, Dh = evD(∆(2,3,...,h+1)(T)) = ∆(2,3,...,h+1)(D) and that ∆(2,3,...,h+1)(T) ∈
A[T] in fact lands in the subring A[T1, . . . ,Th] of A[T], by Remark 2.7. One knows

that Dk+ j = 0 in A∗(
∧k

M(p)) for each j ≥ 1 (Proposition 4.1). Working modulo

ker(ρk) (see 3.4) we may hence write

∑

i≥0

Dit
i
=

1

1 − D1t + D2t2 + · · · + (−1)kDktk
.

Define D̃ j(Tk) ∈ A[T1, . . . ,Tk] ⊆ A[T] as

(4.1)
∑

j≥0

D̃ j(Tk)t i
=

1

1 − ∆(2)(T)t + ∆(23)(T)t2 + · · · + (−1)k∆(23···k+1)(T)tk
.
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One clearly has that D j − D̃ j(Dk) ∈ ker(ρk) for each j ≥ 0. Moreover, if 1 ≤ j ≤ k,

D̃ j(Tk) = T j , proving the claim.

Example 4.3 In A∗(
∧2

M) one has, using the recipe (4.1):

(4.2) D̃3(T2) := D̃3(T1,T2) = T2T1 − T1(T2
1 − T2) = −T3

1 + 2T1T2

and

D̃4(T2) = D̃3(T2)T1 − T2(T2
1 − T2)

= (−T3
1 + 2T1T2)T1 − T2(T2

1 − T2) = −T4
1 + T2

1 T2 + T2
2 .

(4.3)

Proposition 4.4 Let P ∈ A[T1, . . . ,Tk]w ⊂ A[T]w such that P(D)ǫ1 ∧ · · · ∧ ǫk
= 0

(w ≥ 0). Then P = 0.

Proof Any polynomial P ∈ A[T1, . . . ,Tk] of degree w is a unique A-linear combi-

nation of ∆I(T), with I ∈ Ik,w (since the Schur polynomials {∆I(T) | I ∈ Ik} are a

Z-basis of Z[T]). Hence P =
∑

I∈Ik,w aI∆I(T) for some (unique!) aI ∈ Aw−wt(I) and

if P(D)ǫ1 ∧ · · · ∧ ǫk
= 0, then

0 = P(D) · ǫ1 ∧ · · · ∧ ǫk
=

∑

I∈Ik,w

aI∆I(D) · ǫ1 ∧ · · · ∧ ǫk
=

∑

I∈Ik,w

aI · ∧
Iǫ.

Since {
∧I
ǫ}I∈Ik,w are A-linearly independent, aI = 0 for all I ∈ Ik,w, i.e., P = 0.

Corollary 4.5 The map evD : A[T] −→ A∗(
∧

M) in subsection 3.4 is an isomor-

phism. Hence:

(4.4) A∗(
∧

M) = A[D] := A[D1,D2, . . . ] ∼= A[T],

the polynomial ring in infinitely many indeterminates, while

(4.5) A∗(
k∧

M) = A[Dk] := A[D1,D2, . . . ,Dk].

Proof Apply Proposition 4.4. One may assume that P ∈ A[T] is homogeneous of

degree w ≥ 0. Suppose that evD(P) = P(D) = 0 ∈ A∗(
∧

M). There is k ≥ 1 such
that P ∈ A[T1,T2, . . . ,Tk]. But then P(D) · ǫ1 ∧ · · · ∧ ǫk

= 0 implies P = 0, because

otherwise one would have a relation (of degree w), whence (4.4). Since A∗(
∧k

M) =

ρk

(
A∗(

∧
M)

)
and, by Proposition 4.1, ρk(Dh) = 0 for all h ≥ k + 1, one gets the

presentation (4.5).

4.1 For each i ≥ 1, let νqn+i
= (p(X))qXi . Then ν = (ν1, ν2, . . . ) is an A-basis of

M := M(0), such that ν i
= Xi for each 1 ≤ i ≤ n. Let

∧
M∧pM :=

⊕
k≥1

∧k−1
M∧

pM be the bilateral ideal of
∧

M generated by p. As pM is the submodule of M

generated by ν i with i > n, the submodule
∧k−1

M∧pM is the A-submodule of
∧k

M

generated by ν i1 ∧ · · · ∧ ν ik , with ik > n. The natural map
∧

M →
∧

M(p) (resp.
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∧k
M →

∧k
M(p)) is surjective and has kernel

∧
M ∧ pM (resp.

∧k−1
M ∧ pM).

Hence, one has canonical isomorphisms

∧
M(p) =

∧
M∧

M ∧ pM
and

k∧
M(p) =

∧k
M

∧k−1
M ∧ pM

.

Let φk :
∧k

M →
∧k

M(p) be the canonical projection and let

Jk(p) := {P(D) ∈ A[D1, . . . ,Dk] | P(D)ǫ1 ∧ · · · ∧ ǫk ∈
k−1∧

M ∧ pM},

which is an ideal of A[D1, . . . ,Dk] = A∗(
∧k

M).

Theorem 4.6 For each j ≥ 1, let

D̃n−k+ j(Dk, p) = D̃n−k+ j (Dk) +

n−k+ j∑

i=1

ciD̃n−k+ j−i (Dk).

Then:

(4.6) Jk(p) = (D̃n−k+1(Dk, p), . . . , D̃n(Dk, p)).

Proof Let D ′
t =

∑
i≥0 D ′

i t
i be the unique derivation on

∧
M such that D ′

t ν
j

=∑
i≥0 ν

i+ jt i . Then

(i) D ′
i ∈ A∗(

∧
M(p)) for each i ≥ 0,

(ii) ρk(D ′
i ) = Di if 1 ≤ i ≤ n − k and

(iii)

(4.7) ρk(D ′
n−k+ j) = D̃n−k+ j(Dk, p), ∀ j ≥ 1.

To check (i), is sufficient to show that each D ′
i is an A-polynomial expression in the

Dis. As a matter of fact, if i ≤ n − k,

D ′
i (X1 ∧ · · · ∧ Xk) = D ′

i (ν1 ∧ · · · ∧ νk) = ν1 ∧ · · · ∧ νk−1 ∧ νk+ j

= X1 ∧ · · · ∧ Xk−1 ∧ Xk+i
= Di(X1 ∧ · · · ∧ Xk),

(4.8)

and, for each j ≥ 1:

D ′
n−k+ j (X1 ∧ · · · ∧ Xk) = D ′

n−k+ jν
1 ∧ · · · ∧ νk

= ν1 ∧ · · · ∧ νk−1 ∧ νn+ j

= X1 ∧ · · · ∧ Xk−1 ∧ (Xn+ j + c1Xn+ j−1 + · · · + cn+ j−kXk + · · · + cnX j)

= X1 ∧ · · · ∧ Xk−1 ∧ Xn+ j +

n−k+ j∑

i=1

ci(X1 ∧ · · · ∧ Xk−1 ∧ Xn+ j−i )

= (D̃n−k+ j(Dk) +

n−k+ j∑

i=1

ciD̃n−k+ j−i (Dk))X1 ∧ · · · ∧ Xk.

(4.9)
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Therefore formulas (4.8) and (4.9) show (i), (4.8) shows (ii) and (4.9) shows (iii). We
can now prove equality (4.6). Clearly (D̃n−k+ j(Dk, p)) j≥1 ⊆ Jk(p), because

D̃n−k+ j(Dk, p)ν1 ∧ · · · ∧ νk
= D ′

n−k+ jν
1 ∧ · · · ∧ νk

= ν1 ∧ · · · ∧ νk−1 ∧ νn+ j ∈
k−1∧

M ∧ pM.

To show that Jk(p) ⊆ (D̃n−k+ j(Dk, p)) j≥1 as well, let P ∈ A[T1, . . . ,Tk] ⊆ A[T] such

that

P(D ′)X1 ∧ · · · ∧ Xk ∈
k−1∧

M ∧ pM.

Without loss of generality one may assume that P is homogeneous of degree w. Then

P(D ′)ν1 ∧ · · · ∧ νk
=

∑
aI∆I(D ′)ν1 ∧ · · · ∧ νk

=

∑
ν i1 ∧ · · · ∧ ν ik ,

where the last sum is over all (i1, . . . , ik) ∈ Ik,w such that ik > n. By subsection 2.7,
∆I(D ′) belongs to the ideal (D ′

ik−1, . . . ,D
′
ik−k) and, since ik > n, one sees that if

∆I(D ′)ν1 ∧ · · · ∧ νk ∈
∧k−1

M∧pM, then ∆I(D ′) ∈ (D̃n−k+ j(D ′
k)) j≥1. The relation

D ′
n+1 − D ′

nD
′
1 + · · · + (−1)n−k+1D ′

n−k+1D
′
k = 0,

holding in A∗(
∧k

M(p)), implies that D ′
n+1

(∧k
M(p)

)
⊆ (D ′

n−k+1, . . . ,D
′
n)

∧k
M(p)

(here , as in 2.8, (−1)iD
′
i stands for the i-th coefficient of (D ′

t )
−1

).

By induction

D ′
n+ j

( k∧
M(p)

)
⊆ (D ′

n−k+1, . . . ,D
′
n)

k∧
M(p)

as well. Hence, because of (4.7), one has Jk(p) ⊆ (ρk(D ′
n−k+1), . . . , ρk(D ′

n)) =

(D̃n−k+1(Dk, p), . . . , D̃n(Dk, p)), i.e., Jk(p) is given precisely by (4.6).

Theorem 4.7 The following isomorphism holds:

A∗(
k∧

M(p)) =
A[D1, . . . ,Dk]

(D̃n−k+1(Dk, p), . . . , D̃n(Dk, p))
.

Proof Notation is as in 4.1. Recall that by Corollary 4.5 and formula (4.5),

D1, . . . ,Dk, are algebraically independent elements of A∗(
∧k

M). Clearly, P(D) ∈

ker(φk) if and only if P(D)ǫ1 ∧ · · · ∧ ǫk ∈
∧k−1

M ∧ pM, i.e., if and only if P(D) ∈

Jk(p). Hence A∗(
∧k

M(p)) = A∗(
∧k

M)/ Jk(p), and the conclusion follows by

Corollary 4.5 and Theorem 4.6.

Remark 4.8. By [10], the polynomial p, as above, factors in the ring A∗(
∧k

M(p))[X]

as the product (Xk + D1Xk−1 + · · ·+ Dk) · q, where q is a monic polynomial of degree

n − k (with A∗(
∧k

M(p))[X]-coefficients).
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Example 4.9 Let M = XA[X] and p(X) = X4 + c1X3 + c2X2 + c3X + c4, ci ∈ Ai .
Then one has

(4.10) A∗(
2∧

M(p)) =
A[D1,D2]

(D̃3(D2, p), D̃4(D2, p))
,

where

D̃3(D2, p) = D̃3(D2) + c1D̃2(D2) + c2D̃1(D2) + c3

= 2D1D2 − D3
1 + c1D2 + c2D1 + c3

and

D̃4(D2, p) = D̃4(D2) + c1D̃3(D2) + c2D̃2(D2) + c3D̃1(D2) + c4

= D2
2 + D2

1D2 − D4
1 + c1(2D1D2 − D3

1) + c2D2 + c3D1 + c4,

which we obtained from (4.2) and (4.3). Let us enumerate some particular cases.

(1) If A = Z, thought of as a graded ring concentrated in degree 0, then ci = 0,

1 ≤ i ≤ 4. Then p = X4 and presentation (4.10) becomes:

A∗(
2∧

M(X4)) =
A[D1,D2]

(2D1D2 − D3
1,D

2
2 + D2

1D2 − D4
1)
,

which coincides (Cf. [4, 5]) with the presentation of the integral cohomology ring of
the grassmannian G(2, 4) of 2-planes in C

4 (or of the grassmannian G(1,P
3) of lines

in the complex projective 3-space).

(2) If A = Z[q], and p(X) = X4 + q, then (4.10) reads:

A∗(
2∧

M(X4 + q)) =
Z[q][D1,D2]

(2D1D2 − D3
1,D

2
2 + D2

1D2 − D4
1 + q)

,

which is the Witten–Siebert–Tian presentation of the small quantum cohomology ring

QH∗(G(2, 4)) ([1, 13, 14]; see also [4]);

(3) If π : E → Y is a holomorphic vector bundle of rank 4 on a smooth complex
variety of dimension m ≥ 0, and p(X) = X4 + π∗c1 X3 + π∗c2 X2 + π∗c3 X + π∗c4 ∈
A∗(Y)[X], where ci are the Chern classes of E as in [2], p. 141, then M(p) = A∗(P(E)),
A = A∗(Y) and D1 = c1(OP(E)(−1)), thought of as operator on A∗(Y); in this

case (4.10) gives the presentation of A∗(G(2, E)) (Cf. 3.6). If Y is a point, then

A∗(Y) = Z, ci = 0 and one recovers once again the presentation of the Chow ring of
the grassmannian G(2, 4).

(4) Let A = Z[y1, y2, y3, y4] and p(X) =
∏4

i=1(X−yi +y1)+q ∈ A[q]. In this case

presentation (4.10) is that the quantum equivariant cohomology ring QH∗
T(G(2, 4)) of

the Grassmannian G(2, 4) under the action of a 4-dimensional compact or algebraic

torus via a diagonal action with only isolated fixed points, as studied by Mihalcea
in [11, Theorem 4.2], setting p = 2 and m = 4. This is compatible with the main

result of the paper [6, Theorem 3.7], with [4, Theorem 2.9] and is now a consequence

of [8]. Notice that our generators are not the same as used in [11] (Cf. [6]).
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