ENERGY LEVELS AND CLASSIFICATION PROBLEMS IN SPECTRA OF HIGHLY IONIZED ELEMENTS OF THE FIFTH PERIOD

M. EVEN ZOHAR and BENJAMIN S. FRAENKEL

The Laboratory of X-Rays and Far Ultraviolet Spectroscopy, The Racah Institute of Physics, The Hebrew University, Jerusalem

New Spectra of highly ionized atoms of the fifth period are to be published soon. Selected energy levels obtained with 10⁴ A peak current vacuum sparks are presented in Table I.

Among the spectra dealt with are the following:

(1) The isoelectronic sequences of Br1, Kr1, Rb1 and Sr1, in the elements Ru, Rh, Pd and Ag. Of special interest are the configurations, isoelectronic with Rb1, $4p^54d^2$ and $4p^54d5s$ which interact at about the tenth spectrum with $4p^65p$ and $4p^66p$ respectively.

A triple interaction is observed in sequences isoelectronic with SrI around the ninth spectrum – the configuration involved are $4p^64d4f$, $4p^64d5p$ and $4p^54d^3$.

(2) The isoelectronic sequence of Rhi in Snvi, Sbvii, Teviii and Iix.

A triple interaction is seen around the ninth spectrum and the configurations involved are $4d^85p$, $4d^84f$ and $4p^5d^{10}$.

Pure spectrograms of I were obtained, and I v to I vIII are being studied. Three unusually broad lines (Figure 1) are seen at about 140 Å. It is suggested that they belong to transitions of the form $4d^{10}5s^2-4d^95s^25f$, the energy of the last configuration being slightly above the ionization limit.

AUTOIONIZATION LINES OF IVI

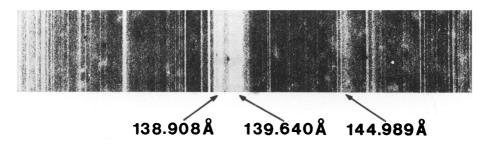


Fig. 1. Broad lines in Iodine.

Space Science Reviews 13 (1972) 555-556. All Rights Reserved Copyright © 1972 by D. Reidel Publishing Company, Dordrecht-Holland

 $\label{eq:TABLE I} TABLE\ I$ Selected Br1 isoelectronic sequence energy levels in cm^{-1}

		Rux	Rhxı	PdxII
$4s^24p^5$	$^{2}P3/2$	0	0	0
	${}^{2}P1/2$	33060	38800	45 180
$4s^24p^45s$ ($3p) ^4P5/2$	697790	793310	893 580
(1	$D) {}^{2}D5/2$	745 860	847460	954470

Selected Kr1 isoelectronic sequence energy levels in cm⁻¹

	Ruix	Rhx	Pdxi	Agxii
$4p^{6} {}^{1}S_{0} - 4p^{5} 4d^{3}P^{0}_{1}$	365730	395370	424780	454070
$^{3}D^{0}_{1}$	410380	444 560	478 750	512980
${}^{1}P^{0}{}_{1}$	501 610	542990	584090	625 030
Limit	1439000	1673700	1924200	2189500

The splitting of $4d^9$ ($^2D_{3/2}$ – $^2D_{5/2}$) in the isoelectronic sequence of Rh_I as obtained by Transitions from the $4d^85p$

Configurations (cm⁻¹)

Snvi	Sbvii	Teviii	IIX	
8705	10400	12300	14403	

Selected I vII lines

Transition	A	cm ⁻¹
$5s^2S_{1/2}$ - $6p^2P^0_{3/2}$	261.091	383008
$6p^2P^0_{1/2}$	265.098	377219
$5p^2P^0_{1/2}-6s^2S_{1/2}$	433.947	230443
$5p^2P^0_{3/2}-6s^2S_{1/2}$	464.135	215454
$5p^2P^0_{1/2} - 7s^2S_{1/2}$	269.937	370457
$5p^2P^0_{3/2}-7s^2S_{1/2}$	281.315	355474
$4f^2F^0_{7/2}$ – $5g^2G_{7/2}$	554.875	180221
$4f^2F^0_{7/2}-5g^2G_{9/2}$	554,504	180341
$4f^2F^0{}_{5/2}$ – $5g^2G_{7/2}$	550.901	181 521

Acknowledgement

The work presented here was facilitated in part by a grant of the Ford Foundation.