A NOTE ON MULTIVARIATE POISSON FLOWS ON STOCHASTIC PROCESSES

FREDERICK J. BEUTLER,* The University of Michigan

Abstract

In [1], a deterministic counting rate condition is shown to be necessary and sufficient for a counting process induced on a Markov step process Z to be multivariate Poisson. We show here that the result continues to hold without Z being a Markov step process.

MARKOV STEP PROCESS

It was assumed in [1] that a Markov step process Z induces a multivariate counting process \(N = (N_1, N_2, \cdots, N_c) \). The infinitesimal generator \(A \) of \(Z \) was used there to characterize a vector process whose respective components \(r_i(Z(t)) \) can be heuristically interpreted as the counting rates for the corresponding \(N_i \) at time \(t \). It is shown in [1] that if the components of \(N \) do not have simultaneous jumps, a determinacy condition based on the sigma algebras \(N_t = \sigma\{N(u), u \leq t\} \) is necessary and sufficient for \(N \) to consist of mutually independent Poisson processes. This condition is that for each \(t \) we have almost surely

\[
E[r(Z(t)) | N_t] = E[r(Z(t))].
\]

The above result is extended in the present letter to processes \(Z \) that need not be Markov. To this end, let \(Z \) be measurable with respect to an increasing family of sigma algebras \(\{F_t\} \), and suppose further that \(Z \) induces the counting process \(N \) (as defined in [2], Chapter 2) in the sense that \(N_t \subseteq F_t \) for each \(t \). Let \(E[N_i(t)] < \infty \) for each \(t, i = 1, 2, \cdots, c \), with the \(N_i \) having the respective \(F_t \)-intensities (see [2], II.D7) \(\lambda_i \). It is also presumed that the conditional expectations \(E[\lambda_i(\cdot) | N] \) have an \(N_t \)-progressive version, which we can (and shall) assume to be \(N_t \)-predictable ([2], Theorem II.T13) without loss of generality.

Now if \(I \) stands for the indicator function, it is tautologically true that

\[
I[N_i(t) - N_i(s) > n_i] = \int_s^t I[N_i(u) - N_i(s) = n_i] dN_i(u)
\]

for any \(0 \leq s \leq t \). (Equation (2), together with its possible implications, were called to the author’s attention by Dr B. Melamed.) Moreover, \(N_i(t) - \int_0^t \lambda_i(s) ds \) is not only an \(F_t \)-martingale, but also a fortiori an \(N_t \)-martingale. It then follows from the definition of

Received 26 October 1982.

* Postal address: Computer, Information and Control Engineering Program, The University of Michigan, Ann Arbor, MI 48109, U.S.A.
intensity that on the right side of (2)

\[
(3) \quad E \left[\int \left[N_t(u) - N_t(s) = n_i \right] dN_t(u) \right| N_t] = E \left[\int \left[N_t(u) - N_t(s) = n_i \right] \lambda_t(u) \, du \right| N_t].
\]

Equations (2) and (3) may be combined by taking the conditional expectation in (2) respective to \(N_t \), and substituting. If we then also add over \(n_i = 0, 1, 2, \cdots \) and apply Fubini’s theorem, we obtain

\[
(4) \quad E[N_t(t) - N_t(s) \mid N_t] = \int_s^t E[\lambda_t(u) \mid N_t] \, du.
\]

This equation effectively generalizes (1.18) of [1]; our \(\lambda_t \) plays the role of the \(\rho_i \) of [1], which in [1] is generated by a Markov step process \(Z \). Indeed, under the assumptions of [1], our (4) specializes precisely to Equation (1.18) in [1].

Condition (3.2) in [1] may be replaced by

\[
(5) \quad E[\lambda_t(t) \mid N_t] = E[\lambda_t(t)]
\]

almost surely with respect to \(dt \, dP \) measure. As in [1], this condition (in the presence of the preceding hypotheses on \(N, N_t, F, \) and \(E[\lambda(\cdot) \mid N] \) above) is necessary and sufficient for \(N \) to be a multivariate Poisson process respective to \(N_t \). The proofs are easy exercises in the martingale theory of multivariate counting processes.

If (5) is met, we have in (4)

\[
(6) \quad E[\lambda_t(u) \mid N_t] = E\{E[\lambda_t(t) \mid N_t] \mid N_t\} = E[\lambda_t(t)].
\]

Thus \(N \) is a multivariate Poisson process according to the multichannel Watanabe theorem (see [2], Theorem II.T6). Conversely, let \(N \) be multivariate Poisson. From (4) and the \(N_t \)-independent increment property it follows that \(N_t \) has the predictable \(N_t \)-intensity \(E[\lambda(\cdot)] \). But also, a version of \(E[\lambda(\cdot) \mid N] \) is such an intensity (see [2], Theorem II.T14). The uniqueness of predictable intensities ([2], Theorem II.T12) then yields (5), as was desired.

References
