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ON PRODUCTS OF SOBOLEV-ORLICZ SPACES

J. APPELL AND G. HARDY

We give conditions under which pointwise multiplication is a continuous bounded
operation on kth order Sobolev-Orlicz spaces. This result is used to derive a
sufficient condition under which the superposition operator is a continuous bounded
operator on these spaces.

The Sobolev-Orlicz spaces W*Lys generalise the classical Sobolev spaces W: in
rather the same way as the Orlicz spaces Lps generalise the classical Lebesgue spaces
L,. In applications they are useful, roughly speaking, whenever one has to deal with
differential equations involving strong nonlinearities; for a typical application see [7].
To apply the standard principles of nonlinear analysis to such equations, one has to
carry out a systematic study of various properties (like acting conditions, boundedness
conditions, or continuity conditions) of the nonlinear superposition operator

1) Fu(z) = f(z, u(z))

generated by some real function f on @ x R, with Q0 being say, a bounded domain in
the Euclidean space R?.

In the case k = 1, some results of this type for first order Sobolev-Orlicz spaces
have been obtained by Hardy [8-10] which in turn generalise corresponding results
for. first order Sobolev spaces by Marcus and Mizel [14, 15]; see also [16-21]. In the
case k > 1, however, nothing is known about the properties of the operator (1) in the
space W*Lps. On the other hand, [25] and [28] contain (sufficient) conditions under
which the operator (1) acts in a higher order Sobolev space W: and is continuous and
bounded. These results build essentially on certain algebraic operations with Lebesgue
spaces which were introduced and studied in detail in [28, 29] in the setting of so-called
multiplicator spaces of ideal spaces of measurable functions, covering not only Lebesgue
and Orlicz spaces, but also many classes of spaces arising in the interpolation theory of
linear operators.

The purpose of this paper is to give results for the superposition operator (1) in
higher order Sobolev-Orlicz spaces W*Lps (respectively W*Eps ) which are parallel to
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those in [25]. The main tools are the general theory of multiplicators of Orlicz spaces,
see [2, 27, 28], imbedding and density theorems for Sobolev-Orlicz spaces, see (8], and
some general facts about superposition operators in function spaces, see {3, 5].

In the first section, we discuss some properties of Sobolev conjugates and anti-
conjugates of Young functions which may be of independent interest for the general
theory of ideal spaces. Afterwards, we give a description of the multiplicator space
of two Sobolev-Orlicz spaces which may be regarded as a generalisation of both [2]
and [25]. Finally, in the last section we apply this to obtain an acting condition for the
operator (1) in the space W* Ej; this condition ensures the boundedness and continuity
of the operator (1) as well.

1. SOBOLEV-ORLICZ SPACES

Let © C R? be a bounded domain which has the cone property, see [13], and let
M = M(u) be a real Young function, that is, M is even and convex on R, M(0) =0,
and M (o0) = oo. The Orlicz space Lps = Lpg(Q1) consists of all measurable functions
u = u(z) on § for which the (Luxemburg) norm

(2) lullpy = inf{A: X >0, /nM[u(a:)/A]dz <1}

is finite. Apart from the space Lps, we consider the (separable) subspace Epr = Epr(02)
of all functions u € Ljs with absolutely continuous norms; the space Ejps is just the
closure of Loo = Loo(f2) with respect to the norm (2), and coincides with Lps if and
only if the Young function M satisfies a A, condition (see for example {11]).

Since the Orlicz space X = Lps is a symmetric (or rearrangement-invariant) space,
one may define its fundamental function (see [12])

(3) #(X;2) = |xpllx (mes D=2X);

it is easy to see that

1
(4) $(Lm;A) = TRk
Given a Young function M, the function
4 ‘M)
(5) JM(S, t): , m‘d‘l’ (0<3<t<m)

will be of fundamental importance in what follows (d is the dimension of £2). We will
always suppose that Jpr(0, 1) < oo, replacing M, if necessary, by an equivalent Young
function with the same asymptotic growth at infinity.
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We associate with M two sequences of Young functions M(;), M), --- and
. -1
M(_1), M(_3),--- by putting M)(t) = M(t), (Mu) (1) = Im(0,1), -,
-1 -1 -
(M) " (1) = Jmuy(0,1), and (M) ™ (1) = e¥19(d/dt)(M(1)), -,
-1 -1
(M_aony) ™ (8) = 41/4(d/dt) (M_x) ™ (2).

The functions M(y) and M(_x) (k > 1) will be called the kth Sobolev conjugate
and anticonjugate, respectively, of M. We denote the smallest integer k > 0 such that
JM(E)(I, ) < 00 by k = k(M); obviously, x < d. It is clear that M)y = M4
for all k,1 € Z. Observe that, by (4), the fundamental functions (3) of the space Las,
LM(I) , and LM(_l) are related by the formulae

1 /°° 1 dy
= 1-1/d ; )
¢(LM(1); ,\) x BTU4Y(Lyip)

. _ ¢2(LM;)‘) —1+1/d
#(00-01%) = Gizai
respectively.

The Sobolev-Orlicz space W*Lps = W*Lpg(Q) (respectively W*Eps = WEEp(02))
consists, by definition, of all measurable functions u = u(z) on Q such that all (dis-
tributional) derivatives D®u of u belong to Lps (respectively Eps) for 0 < |a| < k,
equipped with the norm
(6) lalla,ne = 3 1D%ullas-

la|<k
The following imbedding theorem for Sobolev-Orlicz spaces is fundamental (see [6], and
also Chapter 8 of [1) or Chapter 7 of [13]).

LEMMA 1. Let M be a Young function. In case Jp(1l, 00) = oo, the space
WLy is imbedded in the Orlicz space LM(I), while in case Jp(1, 00) < oo the
space WLy is imbedded in the (generalised) Holder space C* = C*(§1) generated by
the function p(t) = Jp(t~¢, o). More generally, for k < x(M) the space W*Ly is
imbedded in the Orlicz space Ly, , while for k > k(M) the space W* Ly is imbedded
in the Holder space C*~*~1:# with u as above. All statements are true as well with L
replaced by E.

The simplest example of a Young function is of course

(7) M(w) = Myfw) = ~ | (1 <p< o)
8 M) = Mo(u)={ ® IS
(8) @ =Ma@ =]
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which gives the Lebesgue spaces L, amd L., respectively. In this case, the requirement
Jm(1, 00) = oo means that p < d, and L,y is the Lebesgue space Lay/(a—p) (M as
in (7)); on the other hand, in case Ja(1, 00) < oo (that is, p > d) we get for C# the
classical Holder space generated by u(t) = t*~4/? More generally, the Young function
(7) generates the sequence M()(u) = |u|dp/(d-kp) (k € Z); this shows that Lemma 1
generalises the classical Sobolev imbedding theorems for the spaces W: (see for example
1, 13]).

2. MULTIPLICATOR SPACES

Given two function spaces X and Y over 2, we denote by Y : X the multiplicator
space (see (28, 29]) of all functions v = v(z) on Q such that uv € Y for all v € X,
equipped with the natural norm

(9) [olly. x = sup{llwolly : lullx <1}.

It is evident that the “size” of the multiplicator space Y : X depends on the relation
between X and Y. If X = Lps and Y = Ly are Orlicz spaces, this can be made
precise.

We write N < M if

= N(Au)
(10) Jm ) <
for some A > 0,and N < M if

. N(Au)
(11) S M) 0

for all A > 0. In the first case we have Lyy C Ln (continuous imbedding); in the
second case this imbedding is absolutely continuous (which means that the elements of
the unit ball in Lys have uniformly absolutely continuous norms in Ly ). From general
results (see [4]) about the fundamental function (3) of a symmetric space it follows that
(10) is equivalent to

= M~(2)
(12) t—glo N—‘l(?)— < 0,
and (11) is equivalent to
. M7t
(13) b Ry T
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Given two Young functions M and N, we denote by N : M the Young function (8) if
N xM,but N £ M, and the Young function

(19) (N s M)(w) = sup{N(wv) - M(v)}

if N < M. With this terminology, the formula
(15) LN : LM = LN:M

holds; see [2, 27, 28]. Observe that the case N £ M is not interesting, since the
multiplicator space Ly : Lps then contains only the zero function. In the particular
case M(u) = |ul’ /p and N(u) = |u|? /¢ (1 < p, ¢ < o©) we have N < M if and only
if g< p,and N < M if and only if ¢ < p; in the last case, the Young function (14) is
just (N : M)(u) = |u|” /r with 1/r =1/q—1/p.

We are now going to study the Sobolev conjugates and anti-conjugates of a Young
function from the viewpoint of multiplicators. To begin with, we remark that, if M is
a Young function satisfying

(16) M~Y(at) < a*4M~(t) (t>0)

for some a < 1, then M < M(,y. In fact from (16) it follows that

) M7'(t)
y TiFi/d a4~ e (6>0)
(see [12], Lemma 1.4); consequently,
(M) ~'(1) _ M), -1/d
M) ‘(t) / ey

as t — 00, that is (13) holds. Observe that (16) is satisfied for M(u) = |u|? /p if and
only if p < d.

Another relation of Sobolev conjugates with the orderings (10) and (11) are given
in the following

LEMMA 2. Let M and N be two Young functions such that N < M (respectively
N < M ). Then the following holds.

(a) Ny < M) (respectively N3y < M),
(b) N(-1) < M(_,) (respectively N(_1y < M(_y)).
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PROOF: The proof of (a) is trivial, therefore we drop it. The proof of (b) follows
from the following general fact on real functions: if g4 = u(t) and v = v(t) are increasing
C* functions such that

t
p(t)-—»oo,v(t)—»oo,l:—gt%—u\ (t — o)
from some A € [0, 0o), then Hm ll()<°°
1 ? t— 00 l"(t)
To see this, suppose that im “( ) _
’ &5 ) =

and choose T > 0 such that u(t) < (A+ 1)v(t) and p'(t) 2 (A+2)/(7) for ¢, 7 > T.
Given t > T, we find 7 € (T, t) such that [u(t) — p(T)]/'(7) = [v(t) — »(T))p'().
This implies that (A + 2)[v(t) — »(T)] < u(t) — p(T) < (A + 1)v(t) — u(T), hence
v(t) € (A +2)¥(T) ~ u(T), a contradiction for ¢ large enough.

The assertion with < replaced by < is proved similarly. 0

We shall call two Young functions M and N compatible if N M implies that
N : Mu) < (N:M)_,y. Observe that the Young functions M(u) = [uff /p and
N(u) = |u|? /g are always compatible, as a simple computation shows.

We are now ready to prove our main results on multiplicators of Sobolev-Orlicz
spaces.

THEOREM 1. Let M, N and R be Young functions such that R M, R< N,
R and M are compatible, R and N are compatible, and

(17) R: M < N(k), R: N < M(g)
for some k € N. Then u € W*Ep; and v € W*Ey implies that uv € W*Eg and

(18) Nuvlly, p < Cliully, pe 1ol -

PROOF: We prove the assertion by induction on k. Suppose first that (17) holds
for k=1,and let y € W'Ep and v € W'EN. We set Dju = 9u/dz; (i=1,...,d),
and distinguish four cases.

() JIm(1, 0) = Jn(1, 00) = . Lemma 1 implies in this case that u €
EM(;)’ v E EN(‘), D;u € Epg, and Djv € Ex (i=1,...,d), hence
vD;u € Er and uD;v € Eg, by (17).

(i) Jm(1, 00) = o0, JN(1, 00) < 00. In this case, we conclude from Lemma
1 that u € EM(,): v € C* C Lo, Diu € Ep, and Djv € En
(3=1,...,d)..From (17) and the hypothesis R x M we get again that
vD;u € Ep and uD;v € Ep.
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(iii) Jam(1, 00) < 00, Jn(1, 00) = oo. This is of course analogous to (ii).

(iv) Jm(1, 00) < 00, Jn(1, 00) < 0o. In this case, the relations R x M and
R < N imply directly that vD;u € Eg and uD;v € Eg. Now since the
space C= (1) N WEEp(Q) is dense in W*Ep(R2) (see [6]), we may find
sequences u,, € C® N W Ep and v,, € C® N W!Ey such that

"!‘._{nw flum — "'"1,M = mli_r.nm llom — ”"1,N =0.
An easy calculation shows then that
mh'_x‘nw l(vin Ditem + % Divy) — (vDiu + uDsv)|| 5
< lim_ [um = ully g (lomllz, v + 0l )
+ Jim_{lom =l (lumlly, ae + 1y, a) = 0.

From this it follows that D;(uv) = vD;u + uD;v € Ep (i=1,...,d), hence uv €
W?ER as claimed. The estimate (18) is proved by a straightforward computation.

Assume now that the statement holds for k — 1, and let u € W*Ej; and v €
WEEy, with k satisfying (17). As in the first step, the case when k > x(M) or k >
k(N) is easy; therefore we shall discuss only the case when k < x(M) and k < &(N).
Lemma 1 implies then that u € W"“IEM(”, v € W"‘IEN“), Dju € W*1Ep, and
Div e Wt1EN (i=1,...,d). Now, applying Lemma 2 (b) to (17) and using the
compatibility of R and M and of R and N yields

' (19) R: M(;) - N(k—l): R: N(l) = M(k—l)-

By the induction hypothesis, we get vD;u € W*~1Eg and uD;v € W*~1ER, hence
uv € WEER as above. The estimate (18) is proved as before using a density argu-
ment.

The formula (18) shows that, under the hypothesis (17), the space WEEn, (respec-
tively W*Ey ) is continuously imbedded in the multiplicator space W*Eg : W*Ep (re-
spectively W*Eg : W:Ej;). The special case when M = N = R will be of particular
interest in the next section. Indeed, it follows from Theorem 1 that the space W*Eys
is an algebra if LM“) is absolutely continuously imbedded in L. ; this is possible only
if LM(.,) = {0} or, equivalently, k > x(M).

In the case M(u) = [u|® /p, N(u) = |u|? /q,and R(u) = |u|" /r (1 <r < p, ¢ < ),
condition (17) reads

pr dg qr dp
p—r < d—kq’ qg-r < d—kp’
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From Theorem 1 we conclude that the space W: (respectively W: ) is then continuously
imbedded in the multiplicator space W} : W: (respectively Wk : W: ). This result is
essentially due to Valent [25]. However, it seems that the author of [25] was unaware
of the survey article [22] and the book [23] where a complete characterisation of the
multiplicator space Wk : W: is given in terms of capacities.

3. THE SUPERPOSITION OPERATOR

In this section we shall apply Theorem 1 to give an acting condition for the su-
perposition operator (1) in the space W*E), which also implies the boundedness and
continuity of this operator.

THEOREM 2. Let  C R? be a bounded domain which has the cone property, let
M be a real Young function on R, and let f be a real C* function on 0 x R such that
k > x(M) + 1. Then the superposition operator (1) generated by f maps the space
WEEp(Q) into itself and is bounded and continuous.

ProoF: We prove the assertion again by induction on k. Suppose first that f is
C? on 1 xR. Since Jp(1l, 00) < 00, W!E), isimbedded in the Hdlder space C* with
p(t) = Jpm(t™4, o0) (see Lemma 1). Let

(20) fo(z, u) = %f(z, u), fi(z,u)= %f(z’ u) (i=1,...,4d),

and denote the superposition operator generated by the function f; by
F; (i=0,1,...,d). By assumption, the functions (20) are continuous, and hence
the operators F; (1 =0,1,...,d) act in the space Lo, = Loo(f2) and are contin-
uous and bounded (see for example {30]). Given u € W1Ejs, choose a sequence
Um € C®° N W!Ep such that |lum —ul|, p — 0; hence || Diusm — Diullpy — 0 and
[[#m — u|loo — 0 (m — ). Putting v = Fu, v, = Funy, and passing in the equality

Divm(z) = Fium(z) + Foum(z)Dium(z)
to the (distributional) limit as m — oo, we get
(21) D;v(z) = Fiu(z) + Fou(z)D;u(z),

and thus v € W1 E); as claimed. The proof shows also that the operator F is bounded
and continuousin W'E,,. ‘

Assume now that the statement holds for k—1, suppose that f is of class C* with
k> k(M)+1,and let u € W*Ep . From Lemma 1 it follows that u € C*~*~1# with
x = k(M) and p(t) = Jam(t~9, 00). Moreover, all the operators F; (i =0, 1, ..., d)
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are continuous and bounded in W*~!Ejs, by the induction hypothesis. Since D;u €
W*-1Ep, (21) shows that D;v € W*1Ep, because W*"1E)y is an algebra for
k —1 > x(M). This proves the assertion for k. 1]

Theorem 2 shows that a sufficient condition for the operator F to act in W*E)y,
is that the corresponding function f is of class C*. This requirement may probably
be considerably weakened; some results of this type for the Sobolev space W: may be
found, for example, in [24].

REFERENCES

[1] R.A. Adams, Sobolev spaces (Academic Press, New York, 1976).
[2) T. Andd, ‘On products of Orlicz spaces’, Math. Ann. 140 (1960), 174-186.

(3] J. Appell, Untersuchungen zur Theorie nichtlinearer Operatoren und Operatorgleichungen
(Habilitationsschrift, Univ. Augsburg, 1985).

{4] J. Appell and P.P. Zabrejko, ‘On the degeneration of the class of differentiable superpo-
sition operators in function spaces’, Analysis 7 (1987), 305-312.

[5] J. Appell and P.P. Zabrejko, Nonlinear superposition operators (Cambridge University
Press, Cambridge, 1989).

[6] T.K.Donaldson and N.S. Trudinger, ‘Orlicz-Sobolev spaces and imbedding theorems’, J.
Funct. Anal. 8 (1971), 52-75.

(7] J-P. Gossez, ‘Nonlinear elliptic boundary value problems for equations with rapidly (or
slowly) increasing coefficients’, Trans. Amer. Math. Soc. 190 (1974), 163-205.

[8] G. Hardy, ‘Extensions of theorems of Gagliardo and Marcus and Mizel to Orlicz spaces’,
Bull. Austral Math. Soc. 23 (1981), 121-138.

[9] G. Hardy, ‘Nemitsky operators between Qrlicz-Sobolev spaces’, Bull. Austral. Math. Soc.
30 (1984), 251-269.

(10] G. Hardy, ‘Demicontinuity of Nemitsky operators on Orlicz-Sobolev spaces’, Bull. Austral.
Math. Soc. 37 (1988), 29-42.

[11] M.A. Krasnosel’skii and Ya.B. Rutickii, Convez functions and Orlicz spaces, (Russian)
(Fizmatgiz, Moscow, 1958). English translation (Noordhoff, Gronigen, 1961).

[12] S.G. Krein, Ju.l. Petunin and E.M. Semenov, Interpolation of linear operators, (Rus-
sian) (Nauka, Moscow, 1978). English translation, Math. Monogr. Amer. Math. Soc.
54. Providence, 1982 . ’

[13] A. Kufner, O. John and S. Fuéik, Function spaces (Noordhoff Leyden, 1977).

(14] M. Marcus and V.J. Mizel, ‘Absolute continuity on tracks and mappings of Sobolev
spaces’, Arch. Rational Mech. Anal. 45 (1972), 294-320.

{18] M. Marcus and V.J. Mizel, ‘Nemitsky operators on Sobolev spaces’, Arch. Rational Mech.
Anal 51 (1973), 347-370.

{16] M. Marcus and V.J. Mizel, ‘Continuity of certain Nemitsky operators on Sobolev spaces
and the chain rule’, J. Analyse Math 28 (1975), 303-334.

(17) M. Marcus and V.J. Mizel, ‘Representation theorems for nonlinear disjointly additive

https://doi.org/10.1017/50004972700028598 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700028598

436 J. Appell and G. Hardy [10]
functionals and operators on Sobolev spaces’, Trans. Amer. Math. Soc. 228 (1977), 1-45.

[18] M. Marcus and V.J. Mizel, ‘Superposition mappings which operate on Sobolev spaces’,
Nonlinear Anal. TMA 2 (1978), 257-258.

[t9] M. Marcus and V.J. Mizel, ‘Every superposition operator mapping one Sobolev space into
another is continuous’, J. Funct. Anal. 33 (1979), 217-229.

[20] M. Marcus and V.J. Mizel, ‘Complete characterization of functions which act, via super-
position, on Sobolev spaces’, Trans. Amer. Math. Soc. 251 (1979), 187-218.

{21] M. Marcus and V.J. Mizel, ‘A characterization of first order non-linear partial differential
operators on Sobolev spaces’, J. Funct. Anal. 38 (1980), 118-138.

[22] V.G. Maz’ya and T.O. Shaposhnikova, ‘Multipliers of S.L. Sobolev spaces in a domain’,
(Russian), Math. Nachr. 99 (1980), 165-183.

[23] V.G. Maz’ya and T.O. Shaposhnikova, Theory of multipliers in spaces of differentiable
functions (Pitman, London, 1985).

[24] V.B. Moseenkov, ‘Composition of functions in Sobolev spaces’, (Russian), Ukrain. Mat.
Zh. 34 (1982), 384-388.

(25] T. Valent, ‘A property of multiplication in Sobolev spaces: some applications’, Rend.
Sem. Mat. Univ. Padova T4 (1985), 63-73.

{26] T. Valent, Boundary value problems of finite elasticily - local theorems on ezistence,
uniqueness and analytic dependence on data (Springer-Verlag, Berlin, Heidelberg, New
York, 1987).

[27] S.W. Wang, ‘On the products of Orlicz spaces’, Bull. Acad. Polon. Sci. 11 (1963), 19-22.

(28] P.P. Zabrejko, ‘Nonlinear integral operators’, (Russian), Voron. Gos. Univ. Trudy Sem.
Funk. Anal 8 (1966), 1-148.

[20] P.P. Zabrejko, On the theory of integral operators in ideal function spaces, (Russian)
(Doct. Dissertation, Univ. Voronezh, 1968).

(30] P.P. Zabrejko, A.I. Koshelev, M.A. Krasnosel'skii, S.G. Mikhlin, L.S. Rakovshchik and
V.Ya Stetsenko, Integral equations, (Russian) (Nauka, Moscow, 1968). English transla-
tion (Noordhoff, Leyden, 1975).

Mathematisches Institut School of External Studies and
Universitat Wiirsburg Continuing Education
Am Hubland The University of Queensland
D-8700 W airsburg Germany Queensland 4072

Australia

https://doi.org/10.1017/50004972700028598 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700028598

