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ON PRODUCTS OF SOBOLEV-ORLICZ SPACES

J. APPELL AND G. HARDY

We give conditions under which pointwise multiplication is a continuous bounded
operation on ith order Sobolev-Orlicz spaces. This result is used to derive a
sufficient condition under which the superposition operator is a continuous bounded
operator on these spaces.

The Sobolev-Orlicz spaces WkL\f generalise the classical Sobolev spaces W£ in
rather the same way as the Orlicz spaces LM generalise the classical Lebesgue spaces
Lp. In applications they are useful, roughly speaking, whenever one has to deal with
differential equations involving strong nonlinearities; for a typical application see [7].
To apply the standard principles of nonlinear analysis to such equations, one has to
carry out a systematic study of various properties (like acting conditions, boundedness
conditions, or continuity conditions) of the nonlinear superposition operator

(1) Fu{x) = Hx,u(x))

generated by some real function / on fi X R, with fi being say, a bounded domain in
the Euclidean space Rd.

In the case Jfe = 1, some results of this type for first order Sobolev-Orlicz spaces
have been obtained by Hardy [8-10] which in turn generalise corresponding results
for. first order Sobolev spaces by Marcus and Mizel [14, 15]; see also [16-21]. In the
case k > 1, however, nothing is known about the properties of the operator (1) in the
space WkL\{. On the other hand, [25] and [26] contain (sufficient) conditions under
which the operator (1) acts in a higher order Sobolev space W£ and is continuous and
bounded. These results build essentially on certain algebraic operations with Lebesgue
spaces which were introduced and studied in detail in [28, 29] in the setting of so-called
multiplicator spaces of ideal spaces of measurable functions, covering not only Lebesgue
and Orlicz spaces, but also many classes of spaces arising in the interpolation theory of
linear operators.

The purpose of this paper is to give results for the superposition operator (1) in
higher order Sobolev-Orlicz spaces WkL\f (respectively W^EM ) which are parallel to

Received 12 December 1989

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/90 SA2.00+0.00.

427

https://doi.org/10.1017/S0004972700028598 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028598


428 J. Appell and G. Hardy [2]

those in [25]. The main tools are the general theory of multiplicators of Orlicz spaces,
see [2, 27, 28], imbedding and density theorems for Sobolev-Orlicz spaces, see [6], and
some general facts about superposition operators in function spaces, see [3, 5].

In the first section, we discuss some properties of Sobolev conjugates and anti-

conjugates of Young functions which may be of independent interest for the general
theory of ideal spaces. Afterwards, we give a description of the multiplicator space
of two Sobolev-Orlicz spaces which may be regarded as a generalisation of both [2]
and [25]. Finally, in the last section we apply this to obtain an acting condition for the
operator (1) in the space WkE\f; this condition ensures the boundedness and continuity
of the operator (1) as well.

1. SOBOLEV-ORLICZ SPACES

Let fl C Rd be a bounded domain which has the cone property, see [13], and let
M = M(u) be a real Young function, that is, M is even and convex on R, M(0) = 0,
and M(oo) = oo. The Orlicz space LM = LM{^) consists of all measurable functions
u = u{x) on fi for which the (Luxemburg) norm

(2) | |u| |M = inf{A : A > 0, / M{u(x)/X}dx < 1}
Jn

is finite. Apart from the space LM > we consider the (separable) subspace EM = EM{Q)
of all functions u € LM with absolutely continuous norms; the space EM is just the
closure of L^ — L^il) with respect to the norm (2), and coincides with LM if and
only if the Young function M satisfies a A2 condition (see for example [11]).

Since the Orlicz space X = LM is a symmetric (or rearrangement-invariant) space,

one may define its fundamental function (see [12])

(3) 4>(X;X)=\\XD\\X (mesD = A);

it is easy to see that

(4) ^

Given a Young function M, the function

(5)

will be of fundamental importance in what follows (d is the dimension of fi). We will
always suppose that J M ( 0 , 1) < OO, replacing M, if necessary, by an equivalent Young
function with the same asymptotic growth at infinity.
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W e a s s o c i a t e w i t h M t w o s e q u e n c e s o f Y o u n g f u n c t i o n s M ( X ) , M ( 2 ) , -•- a n d

i ) , M ( _ 2 ) , ••• b y p u t t i n g M ( o ) ( < ) = M ( t ) , ( M w ) ~ \ t ) = J M ( 0 , t ) , ••• ,

) \ , < ) , and

The functions M^) and Af(_^) (k > 1) will be called the fcth Sobolev conjugate
and anticonjugate, respectively, of M. We denote the smallest integer k ^ 0 such that
JM/t)(l> oo) < oo by K = «(M); obviously, K < d. It is clear that M(t)(j) = Ai
for all k, I G Z. Observe that, by (4), the fundamental functions (3) of the space

, and LM,^ are related by the formulae

1

respectively.

The Sobolev-Orlicz space WkLM = WkLM{H) (respectively WkEM = WkEM{Sl))
consists, by definition, of all measurable functions u = u(as) on (I such that all (dis-
tributional) derivatives Dau of it belong to LM (respectively EM) for 0 < \a\ ^ k,
equipped with the norm

(6) N U . M = E P"«IIM-

The following imbedding theorem for Sobolev-Orlicz spaces is fundamental (see [6], and
also Chapter 8 of [1] or Chapter 7 of [13]).

LEMMA 1 . Let M be a Young function. In case JM{1, OO) = oo, t ie space
W1LM is imbedded in the Orlicz space LMM, while in case JM{1, OO) < oo t ie
space W1LM is imbedded in the (generalised) Holder space C = C*(n) generated by
t ie /unction fi(t) = J*f(*~''j oo). Afore generally, for k ^ «(Af) t ie space WkLiA is

imbedded in the Orlicz space LM,U) , while for k > K(M) the space WkLM is imbedded

in the Holder space Ck~K~1'li with fi as above. All statements are true as well with L

replaced by E.

The simplest example of a Young function is of course

(7) M(u) = MJu) = - \u\* (1 < p < oo)
P

or

M < i.
(8) M(«) M o o ( t , ,

oo |u| > 1,
(«) = I
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which gives the Lebesgue spaces Lp amd L^, respectively. In this case, the requirement

J M ( 1 , OO) = oo means that p ^ d, and LM.^ is the Lebesgue space £dp/(d_p) (M as

in (7)); on the other hand, in case JM(1, OO) < oo (that is, p > d) we get for C* the

classical Holder space generated by (i(t) = t1~d/P. More generally, the Young function

(7) generates the sequence M(t)(u) = \u\dp^'i~kp^ (k G Z); this shows that Lemma 1

generalises the classical Sobolev imbedding theorems for the spaces W* (see for example

[1, 13]).

2 . MULTIPLICATOR SPACES

Given two function spaces X and Y over Q, we denote by Y : X the multiplicator
space (see [28, 29]) of all functions v = v(x) on ft such that uv 6 Y for all u £ X,
equipped with the natural norm

(9) \\v\\Y:X = sup{||Hly = H I * < !}•

It is evident that the "size" of the multiplicator space Y : X depends on the relation
between X and Y. If X = LM and Y = LN are Orlicz spaces, this can be made
precise.

We write N =$ M if

10) Urn - ^ < oo
- -— M[u)ti—»OO

for some A > 0, and N -< M if

for all A > 0. In the first case we have LM Q LN (continuous imbedding); in the
second case this imbedding is absolutely continuous (which means that the elements of
the unit ball in LM have uniformly absolutely continuous norms in Lpi). From general
results (see [4]) about the fundamental function (3) of a symmetric space it follows that
(10) is equivalent to

and (11) is equivalent to
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Given two Young functions M and N, we denote by N : M the Young function (8) if
N < M, but N -£ M, and the Young function

(14) (N : M)(u) = sup{JV(u«) - M(v)}

if N -< M. With this terminology, the formula

(15) Lff : LM = Lff-M

holds; see [2, 27, 28]. Observe that the case N £ M is not interesting, since the
multiplicator space Lff : LM then contains only the zero function. In the particular
case Af(u) = \u\p /p and N(u) = |u|* /q (1 < p, q < oo) we have JV ̂  M if and only
if q < p, and N -< M if and only if q < p; in the last case, the Young function (14) is
just (N : M)(u) = \u\r /r with 1/r = 1/q - 1/p.

We are now going to study the Sobolev conjugates and anti-conjugates of a Young
function from the viewpoint of multiplicators. To begin with, we remark that, if M is
a Young function satisfying

(16) M~l(at) < axliM~l{t) (t > 0)

for some a < 1, then M -< Af(j). In fact from (16) it follows that

/ Ti+i/d ~

(see [12], Lemma 1.4); consequently,

t

as t —> oo, that is (13) holds. Observe that (16) is satisfied for M(u) = | u | p / p if and

only if p < d.

Another relation of Sobolev conjugates with the orderings (10) and (11) are given

in the following

LEMMA 2 . Let M and N be two Young functions such that N s$ M (respectively

N •< M). Then the following holds.

(a) JV(1) ^ M(1) (respectively JV(1) -< M{1)),

(b) 7V(_!) =̂  M(_!) (respectively N ^ -< M(_!) j .
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PROOF: The proof of (a) is trivial, therefore we drop it. The proof of (b) follows
from the following general fact on real functions: if y, = (i{t) and u — u(t) are increasing
C1 functions such that

from some A £ [0, oo), then lim ., ! < oo.
1 ' t—oo j/[i)

To see this, suppose that lim -jfjr = oo,

and choose T > 0 such that /*(*) ^ (A + l)i/(f) and /i'(-r) ^ (A + 2)I/*(T) for t, T > T.
Given i > I \ we find r £ (2 \ *) such that [/z(t) - |i(T)]i/(T) = [i/(<) - u(T)]ft'(r).
This implies that (A + 2)[v(t) - v(T)) < /x(<) - /i(T) < (A + l)j/(t) - M ( T ) , hence
v{i) ^ (A + 2)i/(T) — / i ( r ) , a contradiction for t large enough.

The assertion with ^ replaced by -< is proved similarly. D

We shall call two Young functions M and N compatible if N s$ M implies that
N : Af(i) ^ (iV: Af)/_jx. Observe that the Young functions M(u) = |« | p /p and
N(u) — \u\q fq are always compatible, as a simple computation shows.

We are now ready to prove our main results on multiplicators of Sobolev-Orlicz
spaces.

THEOREM 1 . Let M, N and R be Young functions such that R=$ M, R^N,
R and M are compatible, R and N are compatible, and

(17) R: M •< Nw, R:N •<

for some k € IM. TAen u £ WkEM and v 6 WhEN implies that uv E WhER and

(is) HwlU,H<CHk|M|H|4iiV.

PROOF: We prove the assertion by induction on k. Suppose first that (17) holds
for k = 1, and let u £ W1EM and v £ WlEN. We set D{u = du/dxi (i = 1, . . . , d),
and distinguish four cases.

(i) ^M(1J OO) = «̂ Af(l> oo) = oo. Lemma 1 implies in this case that u £
EM{1)> v £ EN(l), Di\i £ EM, and Dfv £ EN (i = l,...,d), hence

vDiU £ ER and uDiV £ ER, by (17).

(ii) JM{1, OO) = oo, JN(1, OO) < oo. In this case, we conclude from Lemma
1 that v € £ M ( 1 ) , v £ C* C loo, Dm £ EM, and Dtv £ EN

(t = 1, . . . , d). From (17) and the hypothesis R ^ M we get again that
vDiU £ ER and uD{V £ ER .
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(iii) J M ( 1 | O°) < °°) ^Af(lj °°) = °°- This is of course analogous to (ii).
(iv) JMO-I °°) < °°i /iv(l> °°) < oo. In this case, the relations R ^ M and

R ^ N imply directly that vD<u € ER and uJDjt; € 2?H . Now since the
space (7°°(fi) n WkEM((l) is dense in WhEM{P) (see [6]), we may find
sequences um G C0 0 D W^Af and wro G C°° f) W1EN such that

ttm - « | | 1 M = J m ||wm - « | | l N = 0.

An easy calculation shows then that

lim \\(vmDiUm + u

Prom this it follows that Di(uv) = vD{U + «D,w 6 ER (i = 1, . . . , d), hence uv €
W1ER as claimed. The estimate (18) is proved by a straightforward computation.

Assume now that the statement holds for k — 1, and let u £ WkE\f and v €
W*2JJV, with k satisfying (17). As in the first step, the case when k > K(M) or k >
K(N) is easy; therefore we shall discuss only the case when k < K(M) and k <

Lemma 1 implies then that w G W * " 1 ^ ! ) , » € Wk-1EN(l), Z?,u G W * " 1 ^ , and

Div G W * " 1 ^ (* = 1, . . . , d). Now, applying Lemma 2 (b) to (17) and using the
compatibility of R and M and of R and iV yields

(19) R: Mw -< JV(4_1)f iZ : 7V(1) x Af(t_1}.

By the induction hypothesis, we get vDiV G Wk-1 ER and «£)<« G M^*"1^, hence
uw G W*i?fl as above. The estimate (18) is proved as before using a density argu-
ment. D

The formula (18) shows that, under the hypothesis (17), the space WkEM (respec-
tively WkEff) is continuously imbedded in the multiplicator space WkER : WkEn (re-
spectively WkER : WkEM )• The special case when M = N = R will be of particular
interest in the next section. Indeed, it follows from Theorem 1 that the space WkE\i
is an algebra if LM.k) is absolutely continuously imbedded in L^; this is possible only
if LM. = {0} or, equivalently, k > K(M).

In the case M(u) = \xi\p / p , N(u) = \u\9 /q, and R(u) = |u|r /r (1 ^ r < p, q < oo),
condition (17) reads

pr < dq _gr_ < _dp_
p — r d—kq' q — r d—kp'
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From Theorem 1 we conclude that the space W£ (respectively Wk) is then continuously
imbedded in the multiplicator space Wf : Wk (respectively Wk : Wk ). This result is
essentially due to Valent [25]. However, it seems that the author of [25] was unaware
of the survey article [22] and the book [23] where a complete characterisation of the
multiplicator space W* : W* is given in terms of capacities.

3. T H E SUPERPOSITION OPERATOR

In this section we shall apply Theorem 1 to give an acting condition for the su-
perposition operator (1) in the space W*EM which also implies the boundedness and
continuity of this operator.

THEOREM 2 . Let il C Rrf be a bounded domain which has the cone property, let
M be a real Young function on R, and let f be a real Ck function on il x R such that
k > K(M) + 1. TJien the superposition operator (1) generated by f maps the space

k into itself and is bounded and continuous.

PROOF: We prove the assertion again by induction on k. Suppose first that / is
C1 on ?T x R. Since JM(1, OO) < oo, W1EM is imbedded in the Holder space C with
fi(t) = JM{t~di oo) (see Lemma 1). Let

(20) / „ ( * , u) = ^ - / ( s , u), fi(x,u) = £ - f ( x , u ) (i = l , . . . , d ) ,

and denote the superposition operator generated by the function fc by
Fi (i = 0, 1, . . . , d). By assumption, the functions (20) are continuous, and hence
the operators F,- (i = 0, 1, . . . , d) act in the space £«, = L^Cl) and are contin-
uous and bounded (see for example [30]). Given u € W1EM, choose a sequence
um G C°° n W1EM such that ||«m - « | | 1 M - • 0; hence \\DiUm - Diu\\M -> 0 and
||i*m — ulloo ~* 0 ( m ~* °°)- Putting v = Fu, vm — F u m , and passing in the equality

Divm(x) = Fium{x) + Foum{x)DiUm(x)

to the (distributional) limit as m —» oo, we get

(21) Div(x) = Fiu{x) + Fou(x)Diu(x),

and thus v G W1E\t as claimed. The proof shows also that the operator F is bounded

and continuous in W1E\f.

Assume now that the statement holds for k — 1, suppose that / is of class C* with

k > K(M) + 1, and let u G WkEM. From Lemma 1 it follows that u G C*~"~1>M with

K = n(M) and /i(t) = JM{t~d> oo). Moreover, all the operators Fi (t = 0, 1, . . . , d)
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are continuous and bounded in WIC~1EM, by the induction hypothesis. Since DiU G

Wk~1EM, (21) shows that £><» € Wk~1EM, because Wk~1EM is an algebra for

k — 1 > K(M). This proves the assertion for Jfe. U

Theorem 2 shows that a sufficient condition for the operator F to act in WkE\i

is that the corresponding function / is of class Ck. This requirement may probably

be considerably weakened; some results of this type for the Sobolev space Wk may be

found, for example, in [24].
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