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We develop a process-based model for the dispersion of a passive scalar in the
turbulent flow around the buildings of a city centre. The street network model is
based on dividing the airspace of the streets and intersections into boxes, within
which the turbulence renders the air well mixed. Mean flow advection through the
network of street and intersection boxes then mediates further lateral dispersion.
At the same time turbulent mixing in the vertical detrains scalar from the streets
and intersections into the turbulent boundary layer above the buildings. When the
geometry is regular, the street network model has an analytical solution that describes
the variation in concentration in a near-field downwind of a single source, where the
majority of scalar lies below roof level. The power of the analytical solution is that
it demonstrates how the concentration is determined by only three parameters. The
plume direction parameter describes the branching of scalar at the street intersections
and hence determines the direction of the plume centreline, which may be very
different from the above-roof wind direction. The transmission parameter determines
the distance travelled before the majority of scalar is detrained into the atmospheric
boundary layer above roof level and conventional atmospheric turbulence takes over
as the dominant mixing process. Finally, a normalised source strength multiplies this
pattern of concentration. This analytical solution converges to a Gaussian plume after
a large number of intersections have been traversed, providing theoretical justification
for previous studies that have developed empirical fits to Gaussian plume models. The
analytical solution is shown to compare well with very high-resolution simulations
and with wind tunnel experiments, although re-entrainment of scalar previously
detrained into the boundary layer above roofs, which is not accounted for in the
analytical solution, is shown to become an important process further downwind from
the source.
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1. Introduction
Threats of malicious or accidental release have motivated recent efforts to

understand dispersion of airborne pollutants within urban areas. The pollutant
can be considered to be emitted from a point source, and the emergency services
need to make rapid decisions about the contaminated area, which requires rapid
quantitative estimates of the dispersion. Interest in this scientific problem is also
motivated by the potential health impacts of poor urban air quality, when the
sources are distributed over a wide area. Dispersion in these problems is mediated by
high-Reynolds-number turbulent flow through a complex array of obstacles (Fernando
et al. 2010). Turbulence itself is of course efficient at dispersion. But so too is the
passage through complex geometries. In such flows the mean streamlines diverge
around the obstacles, separating fluid parcels and thus dispersing passive scalar.
Davidson et al. (1995, 1996) have termed this process topological dispersion. So an
interesting and important question in dispersion in urban areas is the relative roles of
turbulence and topological dispersion.

Here we consider dispersion of steady releases from point sources in flows with
a Reynolds number large enough for the flow to be fully turbulent and with no
buoyancy forces. In these situations it has been found empirically that, beyond
approximately 1 km from the source, conventional Gaussian plume models are
effective in representing dispersion above urban areas (e.g. Briggs 1973; Arya 1999),
presumably because in this far field the majority of the scalar material is above the
buildings, and so the plume disperses in the turbulent atmospheric boundary layer,
with the urban area acting merely as a rough surface. No theory exists to predict the
distance when conventional Gaussian plume models become effective, and indeed the
theory developed here suggests that for some geometries it could be much further
than 1 km. But over shorter length scales, when the bulk of the scalar is below
the roof tops, the building geometry must surely play a role in the dispersion, and
hence setting the distance when a conventional Gaussian plume model is effective.
For example, the detrainment of material from the airspace between buildings into
the boundary layer aloft is an important process that controls the adjustment to the
far-field behaviour and is surely dependent on building geometry.

Within the last decade, several experimental studies have reported that, sufficiently
far from the source, a Gaussian plume model can work well even below the roof
tops (Davidson et al. 1995, 1996; Macdonald, Griffiths & Cheah 1997; Macdonald,
Griffiths & Hall 1998; Yee & Biltoft 2004; Yee et al. 2006), provided that the
plume parameters are suitably modified to account for the presence of buildings.
Philips, Rossi & Iaccarino (2013) derive Gaussian plume parameters for an urban-like
canopy using data from a large-eddy simulation. Models have also been developed for
dispersion very close to the source. They are based on the air flow within individual
streets, e.g. OSPM (Berkowitz 2000) and ADMS (Carruthers et al. 2000). Such
models are typically based on a Gaussian plume that advects and disperses scalar
within a simplified model of the air flow within the street. They do not consider
the dispersion of the plume through intersections, and so are limited to very short
distances from the source. Here our goal is to develop a modelling framework that
bridges these two extremes, and quantifies dispersion from single streets through
to dispersion into the boundary layer above. Such an approach is then applicable
on intermediate scales, the street network scale or neighbourhood scale, which lies
between the street scale and the city scale (Britter & Hanna 2003). We focus on the
process of topological dispersion within the network of streets and the process of
vertical turbulent detrainment of material from the airspace between the buildings into
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Tall building canopy

Street network

Sparse arrays

Streets

FIGURE 1. (Colour online) Regime diagram for dispersion through regular arrays of
cuboid buildings of base l× l, height h and separation w. Note the logarithmic scale of the
axes. The street network regime occupies the region where the buildings are sufficiently
close together (h/w> 1) and are sufficiently shallow (h/l< 3), and the streets sufficiently
long (w/l < 1). Sparse arrays occur when the buildings are widely separated (h/w < 1).
In the tall building regime, when h/l > 3, mixing promoted at the building roofs does
not penetrate down to street level. The ellipses show the range of parameters estimated
for London: city centre (f = 0.9), intermediate zones (f = 0.7) and suburban surroundings
(f = 0.1).

the boundary layer aloft. A quantitative model that accounts for these processes will
be shown to provide a unified description of the near- and far-field behaviour, and in
particular recover Gaussian plume behaviour within the street network sufficiently far
from the source.

1.1. Controlling parameters and regimes
Urban areas are so diverse in their building geometry and density that it seems
unlikely that one single approach to dispersion modelling is appropriate for all.
Hence, the regime diagram shown in figure 1 is proposed here as a step towards
assessing which method is appropriate to modelling dispersion in a particular urban
area and to identify the parameter regime of interest in this paper. For simplicity, the
diagram is formulated for a regular, aligned, array of cuboid buildings (or building
blocks) of base l × l, height h and the gaps between the buildings are of width w.
The streets, defined here to be the area between the buildings (including the road
surface, pavement, etc.) are therefore of width w and length l. The axes on the figure
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are the width of the streets and the height of the buildings, both normalised on the
length of the streets. We divide the diagram according to three criteria.

First, consider the role of the height-to-width ratio, h/w, of the streets. Consider
first the simplified case when the mean wind is perpendicular to very long streets.
Flow visualisation (e.g. Oke 1987) shows that, when the streets are wide so that
h/w< 1/3, the buildings produce wakes that interact only weakly with the downwind
building. Hence, when h/w < 1/3 we have a sparse array: the building wakes
interact weakly and dispersion beyond a very near-source region can be modelled by
modifying Gaussian plume formulae (Hall et al. 2001; see also Belcher et al. 2013).
At the other end of the range, when the streets are narrow so that h/w > 1, the
recirculation region associated with the wake of the upwind building extends to the
downwind building. We then have a dense array.

Second, consider the role of the length of the street. When the flow is at angle θ to
the street axis, there is a component U sin θ across the street driving the recirculation
and tending to mix pollutant uniformly across the street, and a component U cos θ
that advects pollutant along the street (DePaul & Sheih 1986; Dobre et al. 2005). Air
parcels follow helical paths. Provided the helical path has made one circuit, pollutant
is mixed nearly uniformly across the width and height of the streets. For the simple
case when θ ≈ 45◦, when w/l< 1 the streets are probably sufficiently long that the air
parcels make one circuit of their helical path before encountering the next intersection.
Hence, on figure 1 we think of streets when w/l< 1.

Third, when the buildings in the array are much taller than the streets are long, so
that h/l> 3, the air space in the array is not well mixed in the vertical (Cai, Barlow
& Belcher 2008). In this case the array of buildings acts as a tall building canopy.
Canopies of tall buildings are not catered for in operational models; indeed there
is no proven methodology for attempting modelling. The porous canopy approach
(e.g. Belcher, Jerram & Hunt 2003; Coceal & Belcher 2004) looks to be a good
possibility, but measurements are needed in sufficient detail to inform the development
and validation of models. When the buildings are shorter so that h/l<3 the air is well
mixed from building top down to street level (Cai et al. 2008).

There is therefore a regime when the streets are sufficiently narrow that h/w > 1
and the buildings sufficiently short that h/l < 3; then the helical path of air parcels
spans the cavity between buildings. When, in addition, the streets are long enough
that air parcels make a complete circuit of their helical path before reaching the next
intersection, i.e. w/l< 1, then pollutants are largely well mixed across the street (e.g.
Cai et al. 2008). The urban area can then be represented as a connected network of
streets which act as well-mixed boxes. We refer to this part of the parameter space
on figure 1 as the street network regime, the subject of this paper.

What are the typical regimes in cities? The data developed by Bohnenstengel et al.
(2011) for London provide an opportunity to evaluate the dispersion regimes we
expect in different parts of the city. They analysed the Virtual London dataset (Evans,
Hudson-Smith & Batty 2005) to produce maps of two measures of the building layout,
namely the plan area density λp and frontal area density λf , defined respectively as
the plan area and frontal area occupied by buildings divided by the total area of the
land on which they are located. They divided London into a grid of 1 km × 1 km
boxes. Within each grid box the fraction of urban land use, f , was determined as
the ratio of urban land use to the total area. Then the frontal and plan areas of the
buildings within the 1 km× 1 km grid boxes were computed. Values of λp and λf for
each grid box were then computed by dividing the plan area and frontal area by the
area of urban land use within each grid box (see figures 2 and 3 in Bohnenstengel
et al. 2011).
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If we make the rough assumption that buildings in London within each 1 km ×
1 km box are uniform cuboids (as in figure 1), then the values of λp and λf from
Bohnenstengel et al. (2011) can be used to estimate values for w/l and h/l, as follows.
For cuboidal buildings with base l× l, height h and gaps between buildings, the streets,
of width w, the parameters λp and λf can be rearranged to give

h
l
= λf

λp
,

w
l
= λ−1/2

p − 1. (1.1a,b)

Now, Bohnenstengel et al. (2011) show that the fraction of urban land use, f ,
decreases from high values of approximately 0.9 in the city centre to low values of
approximately 0.1 in the suburban fringes. Hence, on figure 1 we show, by ellipses,
the range of values of w/l and h/l computed with this method for the city centre
f = 0.9, for f = 0.7 and for the suburban surroundings f = 0.1. According to this
approximate calculation the suburban surroundings (f = 0.1) act as a sparse array and
the central region (f = 0.9) acts as a street network. This finding motivates further
the need for a rationally based model of dispersion in the street network regime.

1.2. Street network models of dispersion
In the street network regime, we represent the urban area as a connected network
of boxes. Scalar is advected along the streets and dispersed as the network branches
at intersections. Soulhac (2000) and Soulhac et al. (2011, 2012) developed the basic
equations for a family of network models, together with methods for estimating the
model parameters. This led to an operational dispersion model that was first applied
to the city of Lyon in France. Belcher (2005) reviewed our understanding of the
basic processes controlling the mixing and transport through streets and intersections
and further examined the foundations for a network approach. Hamlyn, Hilderman &
Britter (2007) constructed a network model for dispersion through an array of cubes,
and showed impressive agreement with measurements made in a water channel by
Hilderman & Chong (2007).

The present paper has several specific aims that build upon these previous studies.
First, we develop the equations of the street network family of models from the
full scalar transport equations, paying careful attention to the underlying assumptions
and distinguishing the parameterisations that need to be made in this approach. A
simple street network model is developed based on analysis of direct numerical
simulations (DNS) through an array of cubical obstacles. Second, we show that, for
a regular array of buildings, the street network model has an analytical solution that
illustrates how the model parameters group together to control the concentration. The
analytical solution converges onto a Gaussian plume for large distances downwind of
the source, and so shows how the street network forms the initial spread of scalar
through topological dispersion and vertical detrainment into the boundary layer above.
Finally, the analytical solution is compared with the results of a DNS (Branford et al.
2011) and to new wind tunnel measurements. These comparisons then allow us to
gain insight into, and quantify the roles of, topological dispersion and re-entrainment
into the street network downstream of the source.

2. Model formulation and governing equations
2.1. Flux balance equation

When the Péclet number is high so that dispersion by advection is much stronger
than diffusion by molecular processes, the equation governing dispersion of a passive
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scalar is
dc
dt
+ u · ∇c= q, (2.1)

where c is the instantaneous concentration, u is the instantaneous velocity vector and
q is a source emission rate of scalar.

Network models are based around the idea of dividing the urban area into a
series of connected boxes. Within the urban canopy itself, a box can be either the
volume of a street, a street segment or the volume of an intersection. The aim is to
model the concentration averaged over each box. This is justified because, as argued
above, the concentration within individual streets or intersections can be regarded
as approximately well mixed. Each box is referenced using a pair of indices (i, j).
Hence, define the spatially averaged concentration of the (i, j)th box to be

〈c〉ij = 1
Vij

∫
Vij

c(x)d3x (2.2)

where Vij is the volume of the (i, j)th box. On taking the spatial average of the scalar
conservation equation (2.1), we obtain

d〈c〉ij
dt
+ 1

Vij

∫
∂Vij

cu · dS= 〈q〉ij, (2.3)

where 〈q〉ij = (1/Vij)
∫

Vij
q dV is the total source in the (i, j)th box. The total area

bounding the volume Vij is ∂Vij and dS is an area element on ∂Vij. Finally, on taking
an ensemble average (denoted by an overbar, with fluctuations from the average
denoted by a prime) we obtain the budget equation for the ensemble-mean spatially
averaged concentration through the network of boxes:

dCij

dt
+ 1

Vij

K∑
k=1

Φk
ij =Qij. (2.4)

Here the mean concentration within the (i, j)th box is Cij= 〈c〉ij, and the mean source
is Qij= 〈q〉ij. The Φk

ij is the ensemble-averaged flux of scalar through the kth facet of
the (i, j)th box, which has two parts, an advective flux, Fk

ij, and a turbulent flux, f k
ij :

Φk
ij = Fk

ij + f k
ij =

∫
∂Vk

ij

(c u+ c′u′) · dS. (2.5)

If the spatial and ensemble average is taken of the air mass continuity equation then∫
∂Vij

u · dS= 0. (2.6)

Whilst (2.4) and (2.6) express conservation of air mass and scalar, they cannot be used
as a prognostic model until the fluxes are parameterised.

2.2. Parameterisation of scalar fluxes
Different parameterisations of the advective and turbulent fluxes can be formulated,
based on different possible assumptions and approximations. One choice of
parameterisation is discussed here that is appropriate for the application we consider
in this paper.
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First consider the advective flux through the facet ∂Vk
ij into or out of the (i, j)th box.

The advection velocity and the concentration being advected can be decoupled by an
appeal to the mean value theorem

Fk
ij =
∫
∂Vk

ij

c u · dS=Cαβ

∫
∂Vk

ij

u · dS≡Cαβ Uk
ij ∂Vk

ij. (2.7)

Here Cαβ is formally equal to the concentration at some intermediate point on the
facet ∂Vk

ij. The velocity Uk
ij that advects the scalar is the air velocity averaged across

the facet.
The main assumption we make here is that within each box the scalar is well mixed,

so that spatial variations of the time-mean scalar concentration within a box are small
compared with the spatial-mean concentration within that box. In the present notation
this condition can be written

〈(c− 〈c〉)2〉ij
〈c〉2ij

= 〈(c− 〈c〉)
2〉ij

(Cij)2
� 1. (2.8)

With this assumption, the concentration Cαβ in (2.7) is then approximately equal to
the volume-averaged concentration in the box upwind of ∂Vk

ij.
Second, consider the turbulent flux through the facet ∂Vk

ij into or out of the (i, j)th
box. Here we model turbulent exchange so that it tends to equalise the concentrations
in the boxes joined by the facet ∂Vk

ij. Hence, the flux is proportional to the difference
in concentration between the boxes, (Cij −Cαβ), and an exchange velocity Ek

ij, which
characterises the rate toward equal concentrations. Hence,

f k
ij =

∫
∂Vk

ij

c′u′ · dS≡ (Cij −Cαβ)Ek
ij ∂Vk

ij, (2.9)

which is the finite difference equivalent of a gradient diffusion approximation.
We recognise that there are other choices for the parameterisation of the advective

and turbulent fluxes; for example Soulhac (2000) modelled advective fluxes at street
intersections differently (see § 4.2 below). In this sense there is a family of street
network models. The aim here is to develop specific parameterisations to examine the
roles of the processes in some specific situations. The parameterisations will depend
on modelling assumptions and approximations, which may not hold universally. Indeed
different approximations may be appropriate in different contexts. Our focus here is
on point source releases in regular street networks, particularly when the streets are
not too long. To test the appropriateness of the parameterisations (2.7) and (2.9) in
the present context we analyse data from a DNS in a regular array of cubes.

3. Evaluation of the model assumptions using DNS data
The DNS simulated a turbulent flow and passive scalar dispersion within a regular

array of cubes. Details of the computational methods used are given in Coceal
et al. (2006, 2007) and Branford et al. (2011). Figure 2 shows a plan view of the
computational domain. For the flow, periodic boundary conditions were imposed in
the horizontal directions. A free-slip boundary condition was applied at the top of
the domain, and no-slip and impermeability conditions were applied on all solid
surfaces. The flow was driven by a body force at an angle of 45◦ to the cubes. The
roughness Reynolds number of the flow was Reτ ≡ uτh/ν = 500, where uτ is the wall
friction velocity, h is the cube height and ν is the kinematic viscosity. Due to the
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FIGURE 2. Plan view of the computational domain in the DNS of Branford et al. (2011).
The arrow denotes the mean wind direction (45◦ to the cube faces) and crosses show the
source locations; the height of the sources is at z= 0.0625h, where h is the cube height.

imposition of periodic boundary conditions the time-mean flow, when averaged over a
sufficiently long duration, was the same within each repeating unit of the array. This
implies that the advection and detrainment velocities of the street network model (2.7)
and (2.9) are equal in each repeating unit of the array. The Schmidt number in the
DNS was 1. A passive scalar was released from a point source near the ground (at
a height of z= 0.0625h) within the array at locations denoted by crosses in figure 2.
The concentration field from the DNS was averaged over a sufficiently long time
to give stable statistics then ensemble-averaged over the set of sources. It was then
volume-averaged over the volumes of the streets and intersections within the array to
give an output analogous to that of the network model.

Figure 3 shows a plot of the spatial root mean square (r.m.s.) fluctuation of
concentration as a fraction of the spatial mean within each box downstream of the
source, 〈(c − 〈c〉)2〉1/2ij /〈c〉ij; the ratio is required to be small for the well-mixed
approximation to hold, as in (2.8). The source is located at (3.5h, 3.5h). The plot
shows that this ratio is generally under 0.3 in the middle of the plume, although
it can be larger (of order 0.5) in the very near field and on plume edges. Higher
values that occur further out along the edges are probably due to the very small
values of mean concentration 〈c〉ij in those locations. The only box where there
is a substantially higher value (approximately 3.8) is the one in which the source
is located, not surprisingly. This demonstrates that the well-mixed assumption is a
reasonable approximation for this geometry and wind direction. That this is so is
an important simplifying assumption; however, it may not necessarily hold in other
cases. Hence, the appropriateness of this assumption should be examined critically
before it is applied in different contexts.

Wood et al. (2009) reported scalar being dispersed upwind of the mean wind
direction in the DAPPLE project measurements of dispersion in Central London.
To diagnose the extent of ‘upwind’ dispersion here, the DNS data was used to
compute the mean concentration in the four streets around the intersection where the
release occurs. The mean concentration in the streets just upwind of the release is
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FIGURE 3. (Colour online) Ensemble-averaged spatial r.m.s. of concentration as a fraction
of spatially averaged concentration in each box 〈(c− 〈c〉)2〉1/2ij /〈c〉ij. The source is located
at (3.5h, 3.5h). The value in the source box is 3.8.

20 times smaller than the concentration in the streets just downwind of the release.
We conclude that, at least in this geometry, most of the upwind dispersion takes
place within the box where the source is located, and upwind transport of material
into boxes upstream of the release can be neglected.

It is instructive to compare the contributions to the scalar flux from the advective
and turbulent components. Figure 4 shows the fraction of the horizontal components
of the advective, 〈c ui〉, and turbulent, 〈c′u′i〉, fluxes in intersections and streets in
the centre of the plume. It is evident that the turbulent flux represents only a small
fraction of the total horizontal flux (〈cui〉) within the array. Averaged over the whole
domain, the mean horizontal advective flux is 99 % of the total flux. Wind tunnel
measurements by Carpentieri, Hayden & Robins (2012) on a scale model of the
DAPPLE site in Central London (Wood et al. 2009) confirm the above conclusions.
Five intersections around Marylebone Road were examined in a wind from an angle
of approximately 51◦ to Marylebone Road. Contributions from turbulent fluxes were
typically less than 3 % of the total, with a maximum of 8 %. The one extreme case
of 28 % was found to be at a location with very high turbulence levels.

Here we therefore make the simplification that the horizontal fluxes in the street
network can be modelled by a purely advective component, and that the turbulent
component can be neglected. The results shown here are for an oblique flow direction
of 45◦ to the streets. This approximation will be expected to break down when the
wind is closely aligned to the streets (just how closely is difficult to quantify in the
absence of relevant data). In the DAPPLE tracer experiments the wind direction was
less than 10◦ in only 10 % of the 60 tracer experiments.

In contrast to the horizontal fluxes, the vertical flux through the top of the array
is dominated by the turbulent component 〈c′w′〉, with the advective component 〈c w〉
comprising around 10 % of the total vertical flux 〈cw〉 in the near field (not shown
here). Further away from the source the comparison is more ambiguous because there
is little net vertical exchange across the top of the array. Hence, the vertical flux
through the top can be modelled as a purely turbulent process, at least in this regular
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FIGURE 4. Mean (filled symbols) and turbulent (empty symbols) horizontal fluxes as a
fraction of the total flux: circles, intersections; squares and triangles, streets.

network composed of buildings of uniform height. This approximation would be
expected to be less appropriate if the array comprises buildings of unequal heights.

Equipped with these simplifying approximations, we are now ready to proceed with
the development of the street network model.

4. Specification of the model for a regular street network
The processes captured in the network model described in (2.4), (2.7) and (2.9)

are now illustrated for dispersion through a regular, aligned and extensive array of
cuboidal buildings (or building blocks) from a single steady source at an intersection
(the results can be readily extended to arbitrary source distributions by linear
superposition). This simplified geometry illustrates many of the important processes,
whilst allowing the following simplifications.

(a) Since the geometry is regular, the geometric term ∂Vk
ij/Vij, which appears when

the flux parameterisations (2.7) and (2.9) are inserted into (2.4), is independent
of i and j. The streets are taken to be of width wx and wy and of length lx and
ly in the x and y directions, and the buildings are of height h.

(b) With the periodic horizontal boundary conditions, the time-mean velocity field
within the building array is regular in the sense that the time-mean velocity
field is identical in each repeating unit of the array (although the instantaneous
velocity field is not). This means that the Uk

ij and Ek
ij, which appear in the

flux parameterisations (2.7) and (2.9), are independent of i and j. Hence, so
are the advection velocities UI and US and the exchange velocities EI and ES
in the intersections and streets respectively (see figures 5 and 6). There is no
requirement for the velocities UI and US to be the same, nor for EI and ES to
be the same.

As a further simplification, we compute the steady-state concentration produced by
steady sources, so that dCij/dt in (2.4) can be ignored, and Cij can be interpreted as a
time average. The incorporation of unsteady sources presents no fundamental problem,
when Cij should be interpreted as an ensemble average.

With these simplifications, we shall first derive the governing equations for the
steady state concentration in the street network, then show that analytical solutions
exist.
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y

x

FIGURE 5. Flux balance at a street oriented in the x direction. The street gains scalar
flux ΦI from the intersection upstream, loses flux ΦS by advection into the intersection
downstream, and loses flux ΦV by detrainment into the air above. The advection velocities
into and out of the street are UI and US respectively; WS and ES are the vertical advection
and turbulence exchange velocities out of the street, respectively.

y

x

FIGURE 6. Flux balance at a street intersection. The intersection gains scalar fluxes Φ1
ij

and Φ2
ij by advection from the streets upstream, loses fluxes Φ3

ij and Φ4
ij by advection

into the streets downstream, and loses flux Φ5
ij by detrainment into the air above. The

advection velocities into the intersection are US and VS and the advection velocities out
of the intersection are UI and VI; WI and EI are the vertical advection and turbulence
exchange velocities out of the intersection, respectively.

4.1. Flux balance for a street
Consider first the flux balance in a street. The street geometry and fluxes are sketched
in figure 5 for a street oriented in the x direction (similar equations apply for a street
oriented in the y direction). Since the velocities UI and US could be different we need
to accommodate vertical advection even in this simple geometry. Hence, consider first
the conservation of air mass (2.6) within a street of length l and width w, which is
given by

hwUI = hwUS + lwWS, (4.1)

where UI is the advection speed out of the intersection into the entrance of the street,
US is the advection speed out of the end of the street and WS is the average vertical
wind speed out of the top of the street. Consider now the flux of concentration (2.4),
which under the present conditions reduces to a balance between the flux into and the
fluxes out of the street (assuming no sources are present in the street), namely

ΦI +ΦS +ΦV = 0. (4.2)
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On using the definitions of the fluxes (2.5), (2.7) and (2.9), and recalling that we
assume that horizontal advective fluxes within the building canopy dominate over the
turbulent fluxes, these terms become: ΦI =−hw UICI , which is the flux into the street
coming from the upstream intersection (CI is the concentration coming into the street
out of the intersection); and ΦS = hwUSCS, which is the flux out of the end of the
street, where CS is the average concentration within the street. The vertical flux out
of the streets is driven by both advective and turbulent fluxes, and is given by ΦV =
wl{ES(CS − DS) + WSCS}, where DS is the concentration above the street, ES is the
turbulence exchange velocity and WS is the vertical advection speed out of the top of
the street determined by (4.1). Here we have assumed that WS is positive, so that the
mean vertical flux results in a net transfer of material from the street into the layer
above; if WS is negative, the last term in ΦV should be replaced by a term involving
WSDS instead. On substituting these expressions into (4.2) and rearranging yields

CS = hUI

hUS + l(ES +WS)
CI + lES

hUS + l(ES +WS)
DS ≡ rCI + eDS, (4.3)

which defines the dimensionless coefficients r and e. The last result shows that, if the
concentration above the street DS is negligible, the mean vertical advection WS can be
absorbed into an effective vertical exchange velocity ES.

If the street is long, then it is no longer appropriate to assume that the concentration
is well mixed along its whole length, because scalar is detrained into the boundary
layer leading to a systematic reduction in concentration along the street length. In this
case the street can be separated into shorter segments that account for the detrainment.
A model for this process is proposed in appendix A, but is not pursued further here.

4.2. Flux balance for an intersection
Consider now the four-way intersection that occurs in this simplified geometry, see
figure 6. Equation (2.6) for conservation of air evaluated for the intersection gives

hwyUS + hwxVS = hwyUI + hwxVI +wxwyWI, (4.4)

where the U and V characterise advection in the x and y directions, wx and wy are the
width of streets and h is the height of the buildings. Finally WI is the mean vertical
velocity across the top of the intersection.

The flux balance for concentration (2.4), including the possibility of a source within
the intersection, yields

1
hwxwy

(
Φ1

ij +Φ2
ij +Φ3

ij +Φ4
ij +Φ5

ij

)=Qij, (4.5)

where the factor in front of the left-hand side is just the reciprocal of the volume of
the intersection.

The fluxes at the intersections have been parameterised differently in different
network models (Soulhac 2000; Belcher 2005; Hamlyn et al. 2007). As discussed in
§ 2.2, we assume here that the concentration within the intersection is well mixed.
Hence, air with concentrations equal to the concentration at the end of each of the
incoming streets is advected into the intersection, it then becomes well mixed in the
intersection, and well-mixed concentration is both detrained into the boundary layer
above and advected along the outgoing streets. Hamlyn et al. (2007) also make this
approximation, albeit implicitly. Finally, note a small refinement to the notation: the
intersections are indexed using (i, j) and the streets between them with half indices,
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such that i+ 1/2 is the street between the ith and (i+ 1)th intersections. Accounting
for these two points, the four fluxes Φ1 to Φ4, which are sketched in figure 6, are
advective fluxes, whereas the vertical flux Φ5 is a combination of advective and
turbulent fluxes:

Φ1
ij =−hwyUSCi−1/2,j =−hwyUS{rCi−1,j + eDi−(1/2),j}, (4.6)

Φ2
ij =−hwxVSCi,j−1/2 =−hwxVS{sCi,j−1 + fDi,j−(1/2)}, (4.7)

Φ3
ij = hwyUICi,j, (4.8)

Φ4
ij = hwxVICi,j, (4.9)

Φ5
ij =wxwy{EI(Ci,j −Di,j)+WICi,j}. (4.10)

(Note the use of commas henceforth to separate the indices on the concentration
variables, e.g. Ci−1,j.) The second step in the expressions for Φ1

ij and Φ2
ij is made

using the result (4.3) for the street; s and f are defined in accordance with (4.3) as
the counterparts of r and e for streets in the y direction. As remarked in relation
for the vertical flux over streets, the last term in Φ5

ij assumes the mean flux over
an intersection to be upward. Treating a downward mean flux (when WI is negative)
involves a straightforward modification that amounts to the introduction of modified
effective vertical transfer velocities in the final equations presented below. For an
array composed of buildings of uniform height, as in the examples considered in this
paper (see § 6), it is reasonable to assume that WS and WI are small compared with
ES and EI and can therefore be neglected. Hence, we do not explicitly consider the
case when WS and WI are negative here.

On substituting these flux relations into the flux balance at the (i, j)th intersection
(4.5), and re-arranging, we obtain an expression for the concentration:

Ci,j = α{ pCi−1,j + (1− p)Ci,j−1} + βDi,j + γDi−1/2,j + δDi,j−1/2 + Si,j. (4.11)

The concentration within the (i, j)th intersection, Ci,j, is thus directly coupled to the
concentration in the upwind intersections, Ci−1,j and Ci,j−1, and to the concentration
above, Di,j, Di−1/2,j and Di,j−1/2. The D terms arise due to re-entrainment of material
into streets and intersections. In (4.11) the dimensionless factors p, α, β, γ and δ are
given by

p= rhwyUS

rhwyUS + shwxVS
, (4.12)

which is the plume direction parameter, the fraction of scalar advected out of an
intersection along the x direction, so that (1− p) is the fraction advected along the y
direction;

α = rhwyUS + shwxVS

hwyUI + hwxVI +wxwy(EI +WI)
, (4.13)

which is the transmission parameter, the fraction of scalar transmitted through a street
and intersection, so that (1− α) is the fraction of scalar detrained into the boundary
layer above as it passes through a street and intersection unit;

β = wxwyEI

hwyUI + hwxVI +wxwy(EI +WI)
, (4.14)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

66
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.661


64 S. E. Belcher, O. Coceal, E. V. Goulart, A. C. Rudd and A. G. Robins

which is the turbulent flux of mass exchanged with the boundary layer above as a
fraction of the total exchange of mass out of the intersection; and

γ = ehwyUS

hwyUI + hwxVI +wxwy(EI +WI)
, (4.15)

δ = fhwxVS

hwyUI + hwxVI +wxwy(EI +WI)
, (4.16)

which are the products of the turbulent mass flux out of an incoming street as a
fraction of the total mass flux out of the street (the e and f factors) and the advective
flux from the street into the intersection normalised on the total flux out of the
intersection.

The last term Si,j in (4.11), which has dimensions of concentration, is given by

Si,j = hwxwyQi,j

hwyUI + hwxVI +wxwy(EI +WI)
, (4.17)

which is the source strength integrated over the volume of the intersection and
normalised on the total exchange of mass out of the intersection.

Soulhac (2000) and Soulhac et al. (2009) have treated the flux balance at
intersections differently. Rather than assuming that the intersection causes the
concentration to become a well-mixed combination of the incoming concentrations, he
assumes that the flux in the outgoing streets is a linear combination of the fluxes in
the incoming streets. For example, the flux Φ3

i,j leaving the intersection is computed
as a linear combination of the two incoming streets. In addition, a vertical flux
from the intersection into the boundary layer aloft is computed in the same ratio as
the horizontal fluxes. This model requires more parameters, representing the linear
weights, to be specified, and at the present time has not been shown to be superior.
Hence, we use the simpler well-mixed approximation here. It must be emphasised,
however, that the specific model that results from this assumption is just one of a
family of network models.

5. Solution in the neighbourhood of a single source in a regular street network
Near to the source, the majority of the scalar is below roof level, within the street

network, and the concentration in the boundary layer above the buildings is much
smaller, i.e. Ci,j�Di,j. With this condition (4.11) simplifies to

Ci,j = α{pCi−1,j + (1− p)Ci,j−1} + Si,j. (5.1)

When furthermore there is a single source S at (i, j)= (0, 0), the solution is

Ci,j = αi+j

(
i+ j

j

)
pi (1− p)j S. (5.2)

This solution applies only in the near field of the source, when the mass of scalar
below roof level is much larger than the mass above roof level. The derivation of the
solution and its properties are examined next.

5.1. Interpretation of the solution
The solution (5.2) can be obtained using the method of generating functions (Wilf
1994), see appendix B, which can be generalised to more complex street networks; it
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k i j

n

FIGURE 7. (Colour online) Schematic of dispersion through a street network. The nodes
represent intersections and the connecting branches represent streets. The indices i and j
locate the nodes in orthogonal directions. Alternatively, indices n= i+ j and k= j can be
defined such that at the (n, k) node an air parcel has traversed n intersections and made
k left turns and n− k right turns. At each node the probability of making a left turn is
p and of making a right turn is 1− p.

is also straightforward to develop a proof by induction. For the simple case considered
here, however, the solution can be motivated heuristically.

Consider figure 7, which shows a schematic of the dispersion through this network
of streets. The solution can be seen more easily if the network is relabelled in terms
of n, the number of intersections traversed, and k numbered from the far most position
reachable in the array, as shown in figure 7. Then (n, k) and (i, j) are related by

n= i+ j, k= j. (5.3a,b)

Ignore for the moment the loss due to detrainment into the boundary layer above.
Then it is clear from figure 7 that at the (n, k) intersection an air parcel must have
traversed n intersections and made k turns to the left at intersections and n− k turns
to the right. It does not matter in which order the turns are made, and so the total
number of routes to position (n, k) is the binomial coefficient n choose k, written here(n

k

)
. The concentration is diluted by a factor 1− p for a left turn and a factor p for a

right turn. The concentration after n intersections then varies along the k direction as
a binomial distribution of power n. As mentioned following (4.13), passage through
one street and intersection leads to a fraction α of the concentration being lost to
detrainment. Hence, after n intersections a fraction αn has been lost. Since detrainment
into the above air and branching through the network are independent processes, the
concentration at (n, k) is then the product of the loss to the boundary layer above, the
lateral spread and the original source:

Cn,k = αn ×
(

n
k

)
pn−k(1− p)k × S, (5.4)

which is identical to (5.2).
The form (5.4) of the solution demonstrates the separate roles of lateral spread

through topological dispersion as the plume splits at intersections, and the detrainment
of air into the boundary layer above. The solution emphasises the central importance
of the variable n, the number of intersections traversed in controlling the evolution of
the concentration (rather than per se the distance traversed). Lateral spread, including
the mean direction of travel of the plume and its width, is controlled by topological
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dispersion, via the plume direction parameter p which is determined by the wind
direction and the geometry of the street network. The detrainment is controlled by
the transmission parameter α, with 1 − α being the fraction of material lost in a
passage along one street and through one intersection. The magnitude of α thus exerts
a strong control on the evolution of concentration at ground level. It is remarkable that
the concentration is then determined by only three parameters: the normalised source
strength S, the transmission parameter α and the direction parameter p.

5.2. The far-field Gaussian limit
By the central limit theorem, the binomial distribution approaches a Gaussian
distribution after a sufficiently large number of intersections n. Hence, when both np
and n(1− p) are large (greater than say six) the concentration approaches

Cn,k = αn

(2πσ 2)1/2
exp

{
−(k−µ)

2

2σ 2

}
S, (5.5)

where
µ= n(1− p), σ 2 = np(1− p). (5.6a,b)

The convergence of the binomial to the Gaussian happens relatively rapidly, within
a few intersections of the release, although significant departures from the Gaussian
occur at the edges of the plume. This far-field Gaussian limit is a robust result that
applies for all wind directions. Moreover, the model captures the fact that the fetch
needed to converge to a Gaussian increases as the value of p deviates from 0.5
and the dispersion becomes more skewed. The prediction of a Gaussian profile in
this ‘far field’, starting from a discrete network-based model, is a significant result
in the light of findings from several experimental studies on dispersion in urban
areas reported previously. In those studies a Gaussian plume model, with suitably
modified parameters to account for the presence of buildings, was found to work
well sufficiently far from the source (Davidson et al. 1995, 1996; Macdonald et al.
1997, 1998; Yee & Biltoft 2004; Yee et al. 2006). But these modified parameters
were determined by fitting Gaussian profiles to the measured data, with no theoretical
justification. Theurer, Plate & Hoeschele (1996) introduced the concept of ‘radius
of homogenization’ to denote the distance within which local building effects are
important; outside of the radius of homogenization the influence of individual
obstacles is negligible, the urban area can be treated as homogeneous roughness
and a Gaussian plume model (with modified parameters) works well. However,
Theurer et al.’s conceptual model could not predict the radius of homogenization, nor
compute the modified Gaussian parameters.

Equations (5.5) and (5.6) show that the Gaussian plume characteristics such as the
plume width σ and the maximum centreline concentration, as predicted by the network
model, depend explicitly on the geometry and the flow through the parameters n,p and
α. This is in contrast to standard formulations of the Gaussian plume model based on
empirical parameterizations such as that of Briggs, which has no explicit dependence
on geometrical parameters (other than an assumed dependence on roughness length;
e.g. Griffiths 1994). It also provides a theoretical basis for the empirically determined
modified parameters used in the aforementioned experimental studies.

Another key implication of (5.5) and (5.6) is that the plume centreline within the
array experiences a lateral deflection determined by the plume direction parameter
p, which in turn depends on the array geometry. Hence, the direction of the plume
within the array may in general be different from the direction of the plume above
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the array. Application of a Gaussian plume model should therefore take into account
this additional lateral plume deflection.

6. Application of the street network model
As a first check, comparisons of the analytical street network solution (5.4) were

made with the numerical model of Hamlyn et al. (2007), as applied to the water
channel experiment of Hilderman & Chong (2007) for a regular array of cubes; the
agreement of the present model with the Hamlyn et al. (2007) model without re-
entrainment was very close, thus replicating the high level of agreement with the water
channel data (not shown).

In this section, we explore the application of the street network model to two, more
recent, datasets. The first is a comprehensive dataset generated by DNS described
in § 3. The high spatial resolution of the DNS dataset enables volume averages to
be computed accurately, so that an unambiguous comparison can be made with the
network model output. Moreover, all parameters needed in the model can be calculated
explicitly. Comparison with the DNS data then provides a robust evaluation of the
assumptions of the model and a means of diagnosing the importance of detrainment
(which is represented in the network model and in the simplified analytical solution,
(5.4)) and re-entrainment (which is not represented in the simplified analytical solution,
(5.4)). The second dataset is from an original wind tunnel experiment and is outlined
in § 6.2. While the wind tunnel data was obviously not as comprehensive as the DNS
data, sufficiently detailed flow and concentration measurements were made to enable
comparison with the network model.

6.1. Comparison with data from a DNS
The DNS was described in § 3. The network model, namely (4.11) and its analytical
solution when re-entrainment is neglected (5.2), is configured by determining the
values of the parameters α, p and the normalised source emission rate S. We can
simplify the comparison by normalising the concentration by that in the source cell,
C0,0= S. This leaves only two parameters α and p. In the DNS run, the flow direction
is 45◦ and the array is a regular square arrangement of cubes (see figure 2). Hence,
by symmetry, p= 0.5. Therefore, α is the only parameter that needs to be determined.
Comprehensive scalar flux data were also available from the DNS. It was therefore
possible to evaluate the advection and detrainment velocities explicitly, yielding the
values of UI = VI = 1.13, US = VS = 1.18, EI = 0.5, ES = 0.3. These values are
non-dimensionalised by the friction velocity in the DNS. In the DNS the vertical
turbulent flux dominates over the mean flux; as a result the mean transfer velocities
WS and WI are small compared with ES and EI , and are therefore neglected here.
Using the equations in § 4, one can then deduce that α = 0.653.

Figure 8 shows a comparison of the centreline concentration computed by the
analytical solution (5.2) with the DNS data. Figure 9 shows comparisons of the
lateral profiles of concentration at different distances from the source. The decrease
in the concentration with distance from the source is captured well by the analytical
solution to the network model, despite the simplicity of the solution. These plots
indicate that both the magnitude and the width of the plume are reproduced by the
model in the near field. Further from the source, beyond a distance of say 6

√
2h, the

analytical solution underpredicts the concentration in the street network. The reason
for this discrepancy is that a fraction of the material that escapes into the air above
the array is re-entrained within the array further downstream. The analytical solution
(5.2) does not take re-entrainment into account since it neglects the effect of the
concentration above the network (the D terms in (4.11)). Nevertheless, as shown in
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FIGURE 8. (a) Plan view of the computational domain in the DNS of Branford et al.
(2011). The arrow denotes the mean wind direction (45◦ to the cube faces) and the
cross shows the source location; the height of the source is at z= 0.0625h. The symbols
represent the sampling locations considered here. (b) Centreline concentration normalised
by the concentration in the source cell. Network model parameters: UI = VI = 1.13, US =
VS = 1.18, EI = 0.5, ES = 0.3, h= 1. All quantities are in non-dimensional units. Circles:
DNS data. Asterisks: network model without re-entrainment. Crosses: network model with
re-entrainment, with c= d= 0.018.

figure 9 the width of plume remains well predicted by the analytical solution. This is
an important finding as it demonstrates the important role of topological dispersion
in the controlling the lateral spread of the plume within the street network.

6.1.1. Interpreting the DNS data using a simple model of re-entrainment
To shed light on the importance of the re-entrainment terms, we formulate and solve

a toy model applicable to this simple geometry. For the special case considered here of
oblique flow over the array shown in figure 2, a very simple model of re-entrainment
can be formulated by assuming that the flux of material re-entrained into a particular
intersection at node (i, j) comes mainly from the flux that escapes from previous
neighbouring intersections. This assumption allows us to parameterise the unknown
combination of the terms in (4.11) including the concentration in the air aloft in terms
of the known concentrations further upwind in the street network:

βDi,j + γDi−1/2,j + δDi,j−1/2 ≈ (1− α)
∑

k<i,l<j

Λk,lCk,l, (6.1)
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FIGURE 9. Lateral profiles of concentration normalised by the concentration in the source
cell at a distance from the source of (a) 2

√
2h, (b) 3

√
2h, (c) 6

√
2h and (d) 8

√
2h.

Network model parameters: UI = VI = 1.13, US = VS = 1.18, EI = 0.5, ES = 0.3, h = 1.
All quantities are in non-dimensional units. Circles: DNS data. Asterisks: network model
without re-entrainment. Crosses: network model with re-entrainment, with c= 0.03.

where the Λk,l are unknown coefficients that must be determined empirically. In the
case when the flow is approximately 45◦ to the regular array, it is reasonable to
assume that the significant contributions to that sum come from the intersections
located at (i− l, j− l), where l= 1, 2, . . . . The recurrence relation (4.11) can then be
generalised to the following form

Ci,j = a Ci−1,j + b Ci,j−1 + c Ci−1,j−1 + d Ci−2,j−2 + · · · + Si,j, (6.2)

where a ≡ αp, b ≡ α(1 − p) are less than, but of the order of, one and the new
parameters c ≡ (1 − α)Λi−1,j−1, d ≡ (1 − α)Λi−2,j−2 and so on are generally much
smaller than one. Unlike the parameters a and b, it is not possible to relate the re-
entrainment parameters c, d, etc. to the geometrical and flow variables using simple
arguments. They must therefore be treated as empirical constants. It is reasonable to
suppose that contributions from upstream intersections beyond (i− 2, j− 2) would be
negligible. It is shown in appendix C that if only the contribution from the (i − 1,
j− 1) intersection is retained, then the following solution holds for a single source at
(0, 0):

Ci,j =
i∑

m>0

H( j−m)
(

i
m

)(
i+ j−m

i

)
ai−m bj−m cm S0,0, (6.3)

where H is the Heaviside step function. As noted in appendix C, the first term
of the series in (6.3) with m = 0 gives the solution without re-entrainment (5.4).
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FIGURE 10. Lateral profiles of concentration normalised by the concentration in the
source cell at a distance from the source of (a) 2

√
2h, (b) 3

√
2h, (c) 6

√
2h and (d) 8

√
2h.

Network model parameters: UI = VI = 1.13, US = VS = 1.18, EI = 0.5, ES = 0.3, h = 1.
All quantities are in non-dimensional units. Circles: DNS data. Asterisks: network model
without re-entrainment. Crosses: network model with re-entrainment, with c= d= 0.018.

The re-entrainment terms form a power series in the ratio c/(ab), which can then be
used to characterise the importance of the re-entrainment.

Figure 9 shows how the lateral profiles in the DNS case study are modified
with the introduction of the re-entrainment term with the values of (a = 0.33,
b= 0.33, c= 0.03, d = 0). As expected, the additional term results in an increase in
the concentrations further from the source, leading to values that are closer to those
of the DNS. The addition of a second re-entrainment term from the (i − 2, j − 2)
intersection, with the parameter values of (a = 0.33, b = 0.33, c = 0.018, d = 0.018),
gives an even better improvement, especially from the third intersection from the
source onwards (figure 10).

This very simple representation demonstrates that re-entrainment is a significant
process in the dispersion: it keeps the overall levels of scalar concentration within the
streets higher, whilst not changing the overall width of the plume. Clearly a general
model for dispersion in street networks needs to represent re-entrainment.

6.2. Comparison with a wind tunnel experiment
A set of wind tunnel experiments was performed at the EnFlo wind tunnel at the
University of Surrey, one of which involved an array of cubes identical in set-up to
that in the DNS of Branford et al. (2011). The array comprised a 7× 7 square grid,
with the array and cube dimensions given by wx=wy= lx= ly= h= 11.0 cm, and was
located in a turbulent boundary layer 1 m deep. Tracer gas was released continuously
from a source at ground level in the second intersection from the leading corner of
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FIGURE 11. (a) Plan view of the computational domain in the wind tunnel experiment.
The arrow denotes the mean wind direction (45◦ to the cube faces) and the cross shows
the source location; the height of the source is at z= 10 mm. (b) Centreline concentration
normalised by the concentration in the source cell. Network model parameters: UI =US=
VI =VS= 1.0, EI = 0.5, ES= 0.3 m s−1, h= 11.0 cm. Squares: wind-tunnel data. Asterisks:
network model without re-entrainment. Crosses: network model with re-entrainment, with
c= d= 0.03.

the array, see figure 11(a). The array was oriented such that the flow was at 45◦ to
the cubes.

Concentration measurements could only be made at limited locations within the
streets and intersections, so that volume averages could not be evaluated explicitly. We
use point values measured within the intersections and assume that the concentration
is well-mixed so that this represents the volume average: analysis of data from the
DNS described in the last section supports this approach (Goulart 2012).

In the wind tunnel experiment velocity measurements were made at different
locations within the streets and intersections using laser Doppler anemometry (LDA).
From these measurements the average U and V components of velocity within each
street and intersection were deduced. The input advection velocities for the network
model were then calculated by assuming the same ratio between each of them and
the corresponding average velocity within the respective cell as in the DNS. This
is justified because of the identical set-up. This procedure could not be applied to
the detrainment velocities because equivalent vertical velocities were not measured
in the wind tunnel. The values of EI and ES were then chosen to be in the same
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ratio to each other as in the DNS, again on the basis that the wind tunnel and DNS
had an identical set-up. For the specific geometry we are considering (cubes, so that
lx= ly= h and with wx=wy= h) and for a flow direction of 45◦ (so that Us=Vs etc.),
equation (4.13) simplifies to α = 2/{(1 + ES/US)(2 + EI/UI)}. Now, both the DNS
and the wind tunnel data imply that US and UI are nearly equal. Therefore, α in this
particular case depends on a single independent dimensionless parameter (say ES/US,
the ratio of the detrainment velocity to the advection velocity in the street). Since the
detrainment velocity was not measured in the wind tunnel, we therefore performed
a one-parameter fit of the near-field network model solution (5.4) to the wind-tunnel
data, to determine the value of α, and hence of ES and EI such that the predicted
concentration matched the measured values in the near field. The values we use here
are then UI =US=VI =VS= 1.0, EI = 0.5, ES= 0.3 m s−1. As in the comparison with
the DNS, WS and WI are assumed to be zero. From these values, it can be deduced
that α = 0.615, and hence a = b = 0.31. This value of α represents slightly more
efficient detrainment than in the DNS, for which α was 0.653. This slightly higher
detrainment might be due to the fact that the source in the wind tunnel experiment
was located only two rows from the edge of the array: the initial flow deceleration at
the upstream edge of the array would lead to an additional mean vertical component
of velocity out of the array top.

The analytical solution (5.2) developed here allows us to explore the sensitivity
of the solution to the values of the parameters, in particular the transmission
parameter, α. In the absence of re-entrainment, (5.2) predicts that ∂Ci,j/∂α = n Ci,j/α.
Hence, when α changes, the concentration changes in proportion to the number of
intersections n from the source. However, re-entrainment has a strong compensating
effect. This can be readily seen from the solution (6.3), which implies that
∂Ci,j/∂α = n Ci,j/α − 2

∑i
m>0 Pm

i,j/α, where the Pm
i,j are positive-definite functions

of α, p and c. These remarks extend to the sensitivity of Ci,j to changes in the
advection and detrainment velocities, which determine the value of α. For example,
in the absence of re-entrainment, equation (5.2) implies that a fractional change
in the detrainment velocity in the street of δES/ES leads to a fractional change
in concentration for both the DNS and wind tunnel experiment of δCi,j/Ci,j =
−(n/{1 + US/ES})δES/ES ≈ −0.2 n δES/ES. Hence, in the near field the dependence
on ES is less than linear, while in the far field it is reduced by re-entrainment.

Figures 11(b) and 12 compare the centreline and lateral profiles of concentration
obtained from the network model with the wind tunnel data. As in the comparisons
with the DNS, further from the source the concentration is under-predicted, but better
agreement is obtained by including re-entrainment terms as described in the last
section, with values of c = d = 0.03. The value of the corresponding re-entrainment
factor c/(ab)≈ 0.32, around twice that for the DNS case, which was c/(ab)≈ 0.17.

6.2.1. Comparing the DNS and wind tunnel data: the role of re-entrainment
The results in the last section indicate that, while the transmission parameter

α is slightly larger in the wind tunnel experiment compared with the DNS run, the
enhanced initial detrainment is compensated by higher subsequent re-entrainment. This
can be seen by directly comparing the centreline concentration profiles in the DNS
and the wind tunnel experiment, shown in figure 13(a). The normalised concentration
in the wind tunnel is sightly lower than in the DNS at the first intersection from
the source, but by the second intersection it is of equal magnitude, and by the third
intersection it is slightly higher. In figure 13(b) corresponding results from the network
model runs are shown using parameters determined from the DNS (circles) and wind
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FIGURE 12. Lateral profiles of concentration normalised by the concentration in the
source cell at a distance from the source of (a) 2

√
2h, (b) 3

√
2h, (c) 6

√
2h and (d)

8
√

2h. Network model parameters: UI = US = VI = VS = 1.0, EI = 0.5, ES = 0.3 m s−1,
h= 11.0 cm. Squares: wind-tunnel data. Asterisks: network model without re-entrainment.
Crosses: network model with re-entrainment, with c= d= 0.03.

tunnel (squares): it can be seen that the network model qualitatively replicates the
behaviour observed in the data in figure 13(a). Hence, not only does the network
model capture the first-order effect that the values of α are nearly equal in the DNS
and wind tunnel studies, but the simple re-entrainment model also captures the small,
second-order, effect related to the compensating influence of re-entrainment versus
detrainment. For comparison, network model results are also shown for the same
amount of detrainment as in the DNS (pluses) and the wind tunnel (diamonds) but
without any re-entrainment.

7. Conclusions
We have developed a street network approach to modelling short-range dispersion

in city centres, with a view to provide physical insight into the quantitative role of
the important dispersion processes. We explore the regime where the buildings are
packed relatively closely together (satisfying the requirements summarised in figure 1).
The method is based on dividing the air space of the streets and intersections into
well-mixed boxes that then form a connected network. Within this street network
regime, atmospheric turbulence mixes the scalar within the street or intersection boxes,
rendering them well mixed. Topological dispersion further spreads the scalar in the
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FIGURE 13. (a) Centreline concentration normalised by the concentration in the source
cell. Circles: DNS data. Squares: wind-tunnel data. (b) Centreline concentration normalised
by the concentration in the source cell for network model runs with different choices of
parameters. Circles: a= b= 0.33, c= d= 0.018 (DNS). Squares: a= b= 0.31, c= d= 0.03
(wind tunnel). Pluses: a= b= 0.33, c= d= 0. Diamonds: a= b= 0.31, c= d= 0.

horizontal via advection through the network of streets. At the same time turbulence
exchanges scalar between the street and intersection boxes and the atmospheric
boundary layer aloft. Hence, the street network approach captures the complementing
roles of turbulent mixing and topological dispersion.

We have shown that, when the geometry is regular, the street network model
developed here has an analytical solution that describes the variation in concentration
in a near field downwind of a single source, when the majority of scalar lies
below roof level. In this near field, re-entrainment of scalar previously lofted into
the boundary layer above the building roofs can be neglected. The power of the
analytical solution is that it demonstrates how the concentration is determined by
three parameters. The plume direction parameter, p, describes the fraction of scalar
advected out of an intersection along the x direction, so that (1 − p) is the fraction
advected along the y direction. This parameter therefore determines the direction
of the plume centreline, which may be very different from the above roof wind
direction. The transmission parameter, α, is the fraction of scalar transmitted through
a street and intersection, so that (1 − α) is the fraction of scalar detrained into the
boundary layer above as it passes through a street and intersection unit. This parameter
therefore determines the distance travelled before the majority of scalar is detrained
into the atmospheric boundary layer above roof level and conventional atmospheric
turbulence takes over as the dominant mixing process. Finally, a normalised source
strength multiplies this pattern of concentration. This analytical solution converges
to a Gaussian plume after a large number of intersections have been traversed,
providing theoretical justification for previous studies that have developed empirical
fits of measured data to a Gaussian plume. The analytical solution shows how the
mean plume direction and plume width are determined by the geometry of the street
network.
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The analytical solution to the network model has been compared here with DNS
and with wind tunnel experiments. Despite the simplifications and approximations
made in formulating the model, the comparisons are encouraging, especially in the
near field, and indicate that the model approach and assumptions are essentially sound.
Further from the source the analytical solution under-predicts the concentrations in
the street network, which demonstrates the importance of re-entrainment of scalar
previously detrained into the boundary layer above roof level. This process comes into
play within a few intersections of the source for ‘open’ networks where a substantial
fraction of scalar is detrained into the boundary layer aloft at each passage through
an intersection. Here a simple toy model of this process was developed. Soulhac
(2000) and Hamlyn et al. (2007) treat dispersion of material above the roof level
and its subsequent re-entrainment by representing the flux of material detrained out
of the network as a series of point sources giving rise to individual Gaussian plumes
that are then superimposed. Hamlyn et al. (2007) found that this method tended to
overestimate the magnitude of the re-entrainment fluxes. A clear priority for future
work is to develop a more complete representation of this process.

The model presented here has been compared against DNS and wind tunnel data
for a regular array of cubes and a wind direction of 45◦. No sufficiently detailed data
were available for other wind directions to enable either the computation of the model
parameters or the evaluation of the solution in these cases. It will be interesting to
evaluate the model for other angles and building geometries when such data become
available. We note also that the model assumptions fail when the wind direction
is closely aligned with one set of streets, so that the network model (as currently
formulated) would not be expected to perform well under these conditions. This can
be partially remedied by relaxing the assumption that the lateral diffusive flux is
small compared with the lateral advective flux, which breaks down when the mean
wind is closely aligned with the streets. Hamlyn et al. (2007) implement diffusive as
well as advective lateral fluxes in their numerical model. We have not done so here
to simplify the algebra, and on the expectation that closely aligned wind directions
are likely to comprise only a small subset of flow conditions in real urban areas.
This expectation was reflected in the conditions during the DAPPLE experiments in
central London, when the wind direction with the streets was observed to be within
10◦ in only around 10 % of cases.

The street network model generalises in a straightforward way to more general
geometries. The practical difficulty becomes estimating the parameters of the model,
particularly the advection velocities and the exchange velocities, and Soulhac (2000)
has made impressive progress on this problem. Inverse modelling offers a promising
method of combining observations and modelling to estimate these values for sites
with high sensitivity: for a specific release an experiment or high-resolution simulation
provides concentration data, which is combined into the street network model in order
to estimate the model parameters (see Rudd et al. 2012). The analytical solution might
provide a good way of initiating the search for the optimal parameters.

Finally, we note that this approach of dividing complex geometries into a network
of well-mixed boxes might be useful in other dispersion problems, such as in other
examples of roughness sublayers of the atmospheric boundary layer.
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Appendix A. Flux balance in a long street
A refinement is required for the case when the streets in the network are longer. It

is then important to take into account the detrainment of material along their length.
The well-mixed assumption within the street would then be a poor approximation, as
the concentration can decrease considerably along the street’s length. In this case the
variable concentration along the street can be modelled by dividing it into shorter
segments and considering the flux from one segment to another. We note that this
method could also be used for streets with varying cross-sections. Figure 14 shows a
long street divided up into segments of length ds. The flux balance through the middle
segment can be written as Φ1 +Φ2 +Φ3 = 0, where Φ1 is the flux gained from the
previous segment, Φ2 is the flux lost to the next segment and Φ3 is the flux lost by
detrainment directly from the street segment into the boundary layer aloft. Denoting
the concentration along the street as a continuous function C(s) of the distance s
along the street and the external concentration just above the street as a corresponding
function D(s), this flux balance can be written

d(whUSC(s))=−ESw{C(s)−D(s)} ds−WSwC(s) ds, (A 1)

where w and h are the width and height of the street, US is the advection velocity
along the street, ES is the turbulent exchange velocity and WS is the advection velocity
out of the street top. When the street is uniform in width and height, this gives

dC(s)
ds
=−{C(s)− λD(s)}

ld
, (A 2)

where λ= ES/(ES +WS) and ld = hUS/(ES +WS), so that exchange of scalar between
the street and the air above occurs over the detrainment length scale ld. A long street
can then be defined as one whose length lS� ld. The street then needs to be broken
into nS street boxes each with length less than ld in order for the concentration within
each street box to be regarded as constant. For the DNS case in this paper, ld ≈ 4h
while lS = h, so that the streets can be regarded as short. We note that, when the
concentration in the air aloft D(s) � C(s), the concentration decays exponentially
along the street: C(s)=C(0) e−s/ld .

Appendix B. Derivation of solution without re-entrainment
This appendix gives the derivation of the network model solution (5.2) for a regular

array in the absence of re-entrainment.
Close to the source, where the D terms in (4.11) are small, the equation can be

approximated as
Ci,j = a Ci−1,j + b Ci,j−1 + Si,j, (B 1)

for i, j > 0 and where, for mathematical simplicity, we have introduced coefficients a
and b related to α and p by α = a+ b and p= a/(a+ b).
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FIGURE 14. Flux balance in a long street. The street width is w and US is a characteristic
advection velocity along the street. Dividing up the street into segments of length ds, the
middle street segment receives scalar flux Φ1 from the previous segment, loses Φ2 to the
next segment and loses Φ3 by detrainment into the above air.

We first solve equation (B 1) for a single source at node (0, 0), i.e. the normalised
source emission rate Si,j is zero except for i= j= 0. This is a linear inhomogeneous
two-dimensional recurrence relation (it is homogeneous for all but i = j = 0). The
objective is to obtain a closed-form solution of (B 1) in terms of the source S0,0.

To achieve this, we use the method of generating functions (Wilf 1994). The
solution method consists of first introducing a generating function of the form

Bi(x)=
∑
j>0

Ci,j xj, (B 2)

i.e. the concentrations Ci,j are given by the coefficients in the power series expansion
of the generating function Bi(x). The rest of the method consists of finding an explicit
expression for the expansion (B 2), and hence for the coefficients Ci,j.

Multiplying both sides of (B 1) by xj and performing the sum over
∑

j>1, one can
show that

Bi(x)= 1
1− bx

[a Bi−1(x)+ b Ci,−1], (B 3)

for i > 1, whilst from (B 2), B0(x)=
∑

j>0 C0,j xj.
To proceed, one needs to find, or specify, the values of Ci,−1 as well as the

concentrations on the array edge C0,j for all j > 0.
A reasonable choice is to set Ci,−1 = 0 for all i and C−1,j = 0 for all j. This

corresponds to the assumption that there is negligible backward dispersion, and is
consistent with the approach of considering only horizontal fluxes along the mean
wind components that led to (B 1). We note that other choices (not explored here)
would give different solutions.

The first condition Ci,−1 = 0 gives

Bi(x)= a
1− bx

Bi−1(x), (B 4)

for i > 1, from which one can immediately infer

Bi(x)= ai(1− bx)−i B0(x), (B 5)

for i > 1. The conditions Ci,−1 = 0 and C−1,j = 0 also give, via (B 1), Ci,0 = a Ci−1,0
and C0,j = b C0,j−1, which imply that

Ci,0 = ai C0,0, (B 6)
C0,j = bj C0,0, (B 7)
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for i, j > 0. These equations show that, for a single source, the concentration along
the two street directions should decrease as a geometric progression with the number
of intersections from the source location. This simple consequence of the model can
be readily verified with available data.

Using this solution in the expression for B0(x) then gives

B0(x)=
∑
j>0

C0,0 bj xj = C0,0

1− bx
. (B 8)

This gives

Bi(x) = ai(1− bx)−i−1 C0,0 (B 9)

=
∑
j>0

(i+ j)!
i!j! ai bj C0,0 xj. (B 10)

Comparing with (B 2), this gives

Ci,j =
(

i+ j
j

)
ai bj C0,0. (B 11)

This relates the concentration in the (i, j)th intersection to that in the (0, 0)
intersection, where the source is. But from (B 1), together with the assumptions
Ci,−1 = 0 and C−1,j = 0, one has C0,0 = S0,0. Hence,

Ci,j =
(

i+ j
j

)
ai bj S0,0. (B 12)

Since a = αp and b = α(1 − p), equation (B 12) is identical to equation (5.2).
This solution is for a single source, but can be readily generalized for an arbitrary
distribution of point sources. The solution is then a superposition of the single-source
solution (B 12):

Ci,j =
∑
m>0

∑
n>0

H(i−m)H( j− n)
(

i+ j−m− n
j− n

)
ai−m bj−n Sm,n, (B 13)

where H(k) is the Heaviside step function, defined by H(k)= 1 for k> 0 and H(k)= 0
for k< 0.

Appendix C. A simple toy model for re-entrainment
In this appendix we formulate and solve a toy model for re-entrainment for the

special case of oblique flow through the array discussed in § 6, using the methods
developed in appendix B.

We assume that the material entrained into a particular intersection at node (i, j)
comes mainly from that which escapes from the previous intersection (i − 1, j − 1).
In other words, re-entrainment provides an alternative pathway for material to reach
a node from the next nearest neighbour.

With this assumption, the recurrence relation (B 1) generalises to

Ci,j = a Ci−1,j + b Ci,j−1 + c Ci−1,j−1 + Si,j, (C 1)

where the additional constant c is typically much smaller than 1.
We solve (C 1) for a single source located at node (0, 0), i.e. with Si,j= S0,0 δi,0 δj,0.

Using the same generating function (B 2), multiplying both sides of (C 1) by xj and
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performing the sum over
∑

j>1, one can show that

Bi(x)= (a+ cx)Bi−1(x)+Ci,0 − a Ci−1,0

(1− bx)
. (C 2)

Using (C 1), one finds

Ci,0 − a Ci−1,0 = b Ci,−1 + c Ci−1,−1, (C 3)

so that, assuming as before that Ci,−1= 0 for all i gives Ci,0− a Ci−1,0= 0, and hence

Bi(x)= (a+ cx)(1− bx)−1Bi−1(x) for i > 1, (C 4)

which has solution
Bi(x)= (a+ cx)i(1− bx)−iB0(x). (C 5)

With the same assumptions Ci,−1=C−1,j= 0, equations (B 6)–(B 8) remain true, so that
now

Bi(x)= (a+ cx)i(1− bx)−i−1C0,0. (C 6)

This is similar to (B 10), except for an additional term cx in the first factor, which
therefore now has a power series expansion too. Using the binomial theorem gives

Bi(x) = C0,0

i∑
m>0

(
i
m

)
ai−m cm xm

∑
n>0

(
i+ n

i

)
bn xn (C 7)

=
i∑

m>0

∑
n>0

(
i
m

)(
i+ n

i

)
ai−m bn cm C0,0 xm+n (C 8)

=
i∑

m>0

∑
j>m

(
i
m

)(
i+ j−m

i

)
ai−m bj−m cm C0,0 xj, (C 9)

where the last step follows by defining j=m+ n and replacing n by j−m.
The sum

∑
j>m (. . .) can be replaced by

∑
j>0 (. . .)H(j − m), where H is

the Heaviside step function, so that

Bi(x)=
∑
j>0

i∑
m>0

H(j−m)
(

i
m

)(
i+ j−m

i

)
ai−m bj−m cm C0,0 xj, (C 10)

and comparing with (B 2) and replacing C0,0 = S0,0 finally gives the solution with re-
entrainment as

Ci,j =
i∑

m>0

H(j−m)
(

i
m

)(
i+ j−m

i

)
ai−m bj−m cm S0,0. (C 11)

Note that the m = 0 term in (C 11) is identical with (B 12) and that the remaining
terms vanish if c = 0, so that (C 11) reduces to the solution without re-entrainment
(B 12) for c= 0. The solution (C 11) exists as a sum over m because each intersection
gains material by re-entrainment from the previous intersection, and then passes on
some of that material to the next one; hence, the effect is cumulative. In effect,
this gives a series in powers of c/(ab), which is therefore a relevant parameter for
characterising the re-entrainment.
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For multiple sources, equation (C 11) generalises to

Ci,j =
i∑

m=0

j∑
n=0

i−m∑
s=0

H( j− n− s)
(

i−m
s

)(
i+ j−m− n− s

i−m

)
ai−m−s bj−n−s cs Sm,n.

(C 12)
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