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Abstract

We investigate the function dA(n), which gives the size of a least size generating set for An.
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1. Introduction

For a finite algebra A, write dA(n) = g if g is the least size of a generating set for An,
and write hA(g) = n if the largest power of A that is g-generated is An. The functions
dA and hA map natural numbers to natural numbers and are related by

dA(n) ≤ g⇐⇒ An is g-generated⇐⇒ n ≤ hA(g),

which asserts that dA is the lower adjoint of hA and hA is the upper adjoint of dA.
It follows that dA, hA : ω→ ω are increasing functions, which are inverse bijections
between their images:

im(dA)
h
−⇀↽−
d

im(hA);

and, moreover, each determines the other. These functions make sense for partial
algebras and infinite algebras, too.

The study of the functions dA and hA has a long history, which we briefly survey.

1.1. The φ-function of a group. In the 1936 paper [15], Hall generalized the
Euler φ-function from number theory by defining φk(G) to be the number of k-tuples
t = (t1, . . . , tk) for which {t1, . . . , tk} is a generating set of the group G. The classical
Euler φ-function is therefore φ(k) = φ1(Zk). Hall called two generating k-tuples t1 and
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t2 ‘equivalent’ if there is an automorphism α of G which applied coordinatewise to
t1 yields t2. The automorphism group of G acts freely on generating k-tuples and
hence the number of equivalence classes of generating k-tuples is φk(G)/|Aut(G)|. Hall
denoted φk(G)/|Aut(G)| by dk(G), an unfortunate conflict with more recent notation
since φk(G)/|Aut(G)| is closer to the h-function than to the d-function. Indeed, if G is
a finite simple nonabelian group, then hG(k) = φk(G)/|Aut(G)|.

Hall called the function φk(G)/|Aut(G)| ‘intrinsically more interesting’ than φk(G),
and derived a formula for it in the case where G is a finite simple nonabelian group,
namely

hG(k) =
1

|Aut(G)|

∑
H≤G

µ(H)|H|k, (1.1)

where µ is the Möbius function of the subgroup lattice of G. This calculation is the
first result of our topic.

1.2. Non-Hopf kernels. A group is Hopfian if every surjective endomorphism is an
isomorphism, and non-Hopfian otherwise. A group N is a non-Hopf kernel of G if it is
isomorphic to the kernel of a surjective endomorphism of G that is not an isomorphism.
In the 1969 paper [4], Dey investigated the problem of determining which groups are
non-Hopf kernels. Dey noted that every nontrivial group is a non-Hopf kernel, since,
for example, the kernel of the shift

Nω → Nω : (n0, n1, n2, . . .) 7→ (n1, n2, n3 . . .)

is isomorphic to N. Dey restricted attention to non-Hopf kernels of finitely generated
groups, and noted the following: a finite complete group is not a non-Hopf kernel of
a finitely generated group. (The group N is complete if it is centerless and Aut(N) =

Inn(N).) His reasoning goes like this: if N is complete and a non-Hopf kernel of G,
then CG(N) is a normal complement to N. By the non-Hopf property, CG(N) � G, so

G � N ×G � N2 ×G � N3 ×G � · · · .

If G is finitely generated, say by g elements, then so are the quotient groups Nn for
all finite n. But this contradicts the local finiteness of the variety V(N). Specifically,
the g-generated groups in this variety have size at most |N||N|

g
. Thus, Dey’s paper drew

attention to the (easy) fact that if N is finite, then the number of elements required to
generate Nn goes to infinity as n goes to infinity. (In symbols, limn→∞(dN(n)) =∞.)

1.3. Growth rates of groups. In the 1974 paper [31], Wiegold cited Dey’s work
on non-Hopf kernels as the inspiration for his investigation into the question ‘What
are the ways in which . . . [dG(n)] . . . can tend to infinity [when G is a finite group]?’
Wiegold inverted Hall’s formula (1.1) to show that, for n > 0, dG(n) is one of the three
natural numbers nearest

log|G|(n) + log|G|(|Aut(G)|)

when G is a finite simple nonabelian group, so in this case dG(n) is asymptotically
equivalent to log(n). He showed that dG(n) has logarithmic upper and lower bounds
whenever G is a finite perfect group. (The group G is perfect if [G,G] = G.) He showed
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also that dG(n) agrees with a linear function for large n if G is a finite imperfect group.
Thus, he established that dG(n) tends to infinity as a logarithmic or linear function
when G is a finite group.

1.4. Growth rates of groups, semigroups, and group expansions. Wiegold’s
paper initiated a program of research into growth rates of groups including, for
example, [5–11, 23–26, 30, 32–34, 36, 37]. The program expanded to include the
investigation of growth rates of semigroups, in [16, 27, 35], and later to include the
investigation of growth rates of more general algebraic structures, in [14, 29]. Some of
the questions being investigated about growth rates of finite algebras are related to the
following theorems of Wiegold:

(I) a finite perfect group has growth rate that is logarithmic (dA(n) ∈ Θ(log(n))),
while a finite imperfect group has growth rate that is linear (dA(n) ∈ Θ(n));

(II) a finite semigroup with identity has growth rate that is logarithmic or linear,
while a finite semigroup without identity has growth rate that is exponential
(dA(n) ∈ 2Θ(n)) [35].

Riedel partially extended Item (I) to congruence uniform varieties in [29] by proving
that finite algebras in such varieties that are perfect (in the sense of modular
commutator theory) have logarithmic growth rate. The paper [28] by Quick and
Ruškuc extended Item (I) to any variety of rings, modules, k-algebras, or Lie algebras,
but also fell short of extending Item (I) to arbitrary congruence uniform varieties.

1.5. Our work. We got interested in growth rates of finite algebras after reading [28,
Remark 4.15], which states that At present no finite algebraic structure is known for
which the d-sequence does not have one of logarithmic, linear or exponential growth.
We found some of these missing algebras (Theorem 5.10).

Our interest in growth rates was later strengthened upon learning about the paper [3]
by Chen, which linked growth rates with the constraint satisfaction problem by giving
a polynomial time reduction from the quantified constraint satisfaction problem to the
ordinary constraint satisfaction problem for algebras with dA(n) ∈ O(nk) for some k.
Our new algebras are relevant to this investigation.

Our work is currently a three-paper series, of which this is the first.

1.5.1. This paper. The results from [28], about growth rates in varieties of classical
algebraic structures, can be presented in a stronger way. Let Σ be a set of identities.
If A is an algebra in a language K , then we say that A realizes Σ if there is a way
to interpret the function symbols occurring in Σ as K-terms in such a way that each
identity in Σ holds in A. What is really proved in [28] is that if ΣGrp is the set of
identities axiomatizing the variety of groups and A is a finite algebra realizing ΣGrp,
then A has a logarithmic growth rate if it is perfect and has a linear growth rate if it
is imperfect. Although the results of [28] are stated for only a few specific varieties of
group expansions, the results hold for any variety of group expansions.

The main results of this paper are also best expressed in the terminology of algebras
realizing a set of identities. Call a term basic if it contains at most one nonnullary
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function symbol. An identity s ≈ t is basic if the terms on both sides are. This paper
is an investigation into the restrictions imposed on growth rates of finite algebras by
a set Σ of basic identities. A new concept that emerges from this investigation is the
notion of a pointed cube term. If Σ is a set of identities in a languageL, then anL-term
F(x1, . . . , xm) is a p-pointed k-cube term for the variety axiomatized by Σ if there is
a k × m matrix M consisting of variables and p distinct constant symbols, with every
column of M containing a symbol different from x, such that

Σ |= F(M) ≈


x
...
x

 . (1.2)

Equation (1.2) is meant to be a compact representation of a sequence of k row identities
of a special kind. For example,

Σ |= m
(
x y y
y y x

)
≈

(
x
x

)
, (1.3)

which is the assertion that Σ |= m(x, y, y) ≈ x and Σ |= m(y, y, x) ≈ x, witnesses that
m(x1, x2, x3) is a 3-ary, 0-pointed, 2-cube term. The basic identities (1.3) define what
is called a Maltsev term. For another example,

Σ |= B
(
1 x
x 1

)
≈

(
x
x

)
,

which is the assertion that Σ |= B(1, x) ≈ x and Σ |= B(x, 1) ≈ x, witnesses that B(x1, x2)
is a 2-ary, 1-pointed, 2-cube term. As a final example,

Σ |= M

y x x
x y x
x x y

 ≈
x
x
x

 ,
which is the assertion that M is a majority term for the variety axiomatized by Σ,
witnesses that M(x1, x2, x3) is a 3-ary, 0-pointed, 3-cube term.

To state our main results, let Σ be a set of basic identities. We show the following
results.

(1) The growth rate of any partial algebra can be realized as the growth rate of a total
algebra (Corollary 3.3). If the partial algebra is finite, then the total algebra can
be taken to be finite.

(2) A function D : ω→ ω+ arises as the d-function of a countably infinite algebra if
and only if (i) D is increasing and satisfies (ii) D(0) = 0 or 1 and (iii) D(2) > 0
(Theorem 3.4).

(3) If Σ does not entail the existence of a pointed cube term, then Σ imposes no
restriction on growth rates of nontrivial algebras (Theorem 5.3). That is, for
every algebra A of more than one element, there is an algebra B realizing Σ

such that dB(n) = dA(n) for n > 0. The algebra B can be taken to be finite if A is
finite and the set Σ involves only finitely many distinct constants.
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(4) If Σ entails the existence of a p-pointed cube term, p ≥ 1, then any algebra A
realizing Σ such that Ap+k−1 is finitely generated has growth rate that is bounded
above by a polynomial (Theorem 5.5). This is a nontrivial restriction.

(5) There exist finite algebras with pointed cube terms whose growth rate
is asymptotically equivalent to a polynomial of any prescribed degree
(Theorem 5.10).

(6) Any function that arises as the growth rate of an algebra with a pointed cube
term also arises as the growth rate of an algebra without a pointed cube term
(Theorem 5.15).

In addition to these items, we give a new proof of Kelly’s completeness theorem
for basic identities (Theorem 4.1). We give a procedure, based on this theorem, for
deciding if a finite set of basic identities implies the existence of a pointed cube term
(Corollary 5.2).

1.5.2. Our second paper [19]. We investigate growth rates of algebras with a 0-
pointed k-cube term, which we shall just call a ‘k-cube term’. Such terms were first
identified in [1] in connection with investigations into constraint satisfaction problems,
while an equivalent type of term was identified independently in [21] in connection
with investigations into compatible relations of algebras.

We show in [19] that if A has a k-cube term and Ak is finitely generated, then
dA(n) ∈ O(log(n)) if A is perfect, while dA(n) ∈ O(n) if A is imperfect. One can
strengthen ‘Big O’ to ‘Big Theta’ if A is finite. This extends Wiegold’s result (I) for
groups to a setting that includes, as special cases, any finite algebra with a Maltsev
term (in particular, any finite algebra in a congruence uniform variety) or any finite
algebra with a majority term.

1.5.3. Our third paper [20]. We investigate growth rates of finite solvable algebras.
Our original aim was to show that the only growth rates exhibited by such algebras are
linear or exponential functions. We do prove this for finite nilpotent algebras and we
prove it for finite solvable algebras with a pointed cube term, but the general case of a
finite solvable algebra without a pointed cube term remains open.

2. Preliminaries

2.1. Notation. We denote the set {1, . . . , n} by [n]. A tuple in An may be denoted
(a1, . . . ,an) or a, and may be viewed as a function a : [n]→ A. A tuple (a,a, . . . ,a) ∈ An

with all coordinates equal to a may be denoted â. The size of a set A, the length of a
tuple a, and the length of a string σ are denoted |A|, |a|, and |σ|. Structures are denoted
in bold face font, for example A, while the universe of a structure is denoted by the
same character in italic font, for example A. The subuniverse of A generated by a
subset G ⊆ A is denoted 〈G〉.

We will use Big O notation. If f and g are real-valued functions defined on
some subset of the real numbers, then f ∈ O(g) and f = O(g) both mean that there
are positive constants M and N such that | f (x)| ≤ M|g(x)| for all x > N. We write
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f ∈ Ω(g) and f = Ω(g) to mean that there are positive constants M and N such that
| f (x)| ≥ M|g(x)| for all x > N. Finally, f ∈ Θ(g) and f = Θ(g) mean that both f ∈ O(g)
and f ∈ Ω(g) hold.

2.2. Easy estimates.

Theorem 2.1. Let A be an algebra.

(1) dAk (n) = dA(kn).
(2) If B is a homomorphic image of A, then dB(n) ≤ dA(n).
(3) If B is an expansion of A (equivalently, if A is a reduct of B), then dB(n) ≤ dA(n).
(4) (From [28]) If B is the expansion of A obtained by adjoining all constants, then

dA(n) − dA(1) ≤ dB(n) ≤ dA(n).

Proof. For (1), both dAk (n) and dA(kn) represent the number of elements in a smallest
size generating set for (Ak)n � Akn.

For (2), if ϕ : A→ B is surjective and G ⊆ An is a smallest size generating set for
An, then ϕ(G) is a generating set for Bn. Hence, dB(n) ≤ |ϕ(G)| ≤ |G| = dA(n).

For (3), if G ⊆ An is a smallest size generating set for An, then G is also a generating
set for Bn. Hence, dB(n) ≤ |G| = dA(n).

For (4), the right-hand inequality dB(n) ≤ dA(n) follows from (3). Now let G ⊆ An

be a smallest size generating set for Bn and let H ⊆ A be a smallest size generating set
for A. For each a ∈ H, let â = (a, a, . . . , a) ∈ An be the associated constant tuple, and let
Ĥ be the set of these. Every tuple of An is generated from G by polynomial operations
of A acting coordinatewise and hence is generated from G ∪ Ĥ by term operations
of A acting coordinatewise. This proves that dA(n) ≤ |G| + |H| = dB(n) + dA(1), from
which the left-hand inequality follows. �

The next theorem will not be used later in the paper, except that in Section 6 one
should know that the d-function of a finite algebra is bounded below by a logarithmic
function and above by an exponential function.

Theorem 2.2. If A is a finite algebra of more than one element and n > 0, then

dlog|A|(n)e ≤ dA(n) ≤ |A|n

and
blog|A|(n)c ≤ hA(n) ≤ |A|n.

Hence, dA(n), hA(n) ∈ Ω(log(n)) ∩ 2O(n). Moreover:

(1) dA(n) ∈ O(log(n)) if and only if hA(n) ∈ 2Ω(n);
(2) dA(n) ∈ O(n) if and only if hA(n) ∈ Ω(n), and dA(n) ∈ Ω(n) if and only if hA(n) ∈

O(n);
(3) dA(n) ∈ 2Ω(n) if and only if hA(n) ∈ O(log(n)).
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Proof. It follows from Theorem 2.1(3) that, among all algebras with universe A,
the algebra with only projection operations for its term operations has the largest d-
function and the algebra with all finitary operations as term operations has the smallest
d-function. These two algebras are also extremes for the h-function.

If A has no nontrivial term operations, then every element of An is a required
generator, so dA(n) = |A|n. In this case, hA(n) = blog|A|(n)c for n > 0, since h is the
upper adjoint of d.

Now assume that A has all finitary operations as term operations. The n-generated
free algebra in the variety generated by A is isomorphic to A|A|n [12, Theorem 3].
Since the largest n-generated algebra in this variety is a power of A, it is also the
largest n-generated power of A in the variety; we obtain that hA(n) = |A|n. In this case,
dA(n) = dlog|A|(n)e for n > 0, since d is the lower adjoint of h.

The fact that dA is the lower adjoint of hA suggests an asymmetry, in that

dA(n) ≤ k⇐⇒ n ≤ hA(k) (2.1)

relates an upper bound of dA to a lower bound of hA. But the fact that these functions
are defined between totally ordered sets allows us to rewrite (2.1) as

hA(k) < n⇐⇒ k < dA(n),

which almost exactly reverses condition (2.1) on dA and hA. Using this fact and the
following claim, one easily verifies Items (1)–(3). �

Claim 2.3. If f , g : [a,∞)→ R are increasing functions that tend to infinity as x
tends to infinity, then b f (n)c < dA(n) ≤ dg(n)e holds for all large n if and only if
bg−1(n)c ≤ hA(n) < d f −1(n)e holds for all large n.

Proof of Claim. To make the following lines slightly easier to read, allow ‘∀+n’ to
stand for ‘for all large n’, that is, for ‘(∃N)(∀n > N)’. We have

∀+n (dA(n) ≤ dg(n)e) =⇒ ∀+n (n ≤ hA(dg(n)e))
=⇒ ∀+n (bg−1(n)c ≤ hA(dg(bg−1(n)c)e))
=⇒ ∀+n (bg−1(n)c ≤ hA(n)),

because the monotonicity of g guarantees that dg(bg−1(n)c)e ≤ n. The reverse
implication is proved in the same way, as are both implications in b f c < d ⇔ h <
d f −1e. �

Recall that the free spectrum of a varietyV is the function fV(n) := |FV(n)| whose
value at n is the cardinality of the n-generated free algebra inV.

Theorem 2.4. If A is a nontrivial finite algebra and fV is the free spectrum of the
varietyV =V(A), then hA(n) ≤ log|A|( fV(n)) for n > 0. In particular:

(1) if fV(n) ∈ O(nk) for some fixed k ∈ Z+, then dA(n) ∈ 2Θ(n);
(2) if fV(n) ∈ 2O(n), then dA(n) ∈ Ω(n).
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Proof. Assume that n > 0.
The algebra AhA(n) is n-generated and hence a quotient of the n-generated free

algebra FV(n). This proves that |A|hA(n) ≤ fV(n) or hA(n) ≤ log|A|( fV(n)).
If fV(n) ∈ O(nk) for some fixed k ∈ Z+, then log( fV(n)) ∈ O(log(n)) and hence

hA(n) ∈ O(log(n)). Theorem 2.2 proves that dA(n) ∈ 2Ω(n) holds when hA(n) is bounded
like this and that dA(n) ∈ 2O(n) holds just because A is finite, so dA(n) ∈ 2Θ(n).

If fV(n) ∈ 2O(n), then log( fV(n)) ∈ O(n) and hence hA(n) ∈ O(n). It follows from
Theorem 2.2(2) that dA(n) ∈ Ω(n). �

Corollary 2.5. Let A be a nontrivial finite algebra and let B be a nontrivial
homomorphic image of Ak for some k.

(1) If b is strongly abelian (or even just strongly rectangular), then dA(n) ∈ 2Θ(n).
(2) If B is abelian, then dA(n) ∈ Ω(n).

Proof. For the definitions and background about abelian, strongly abelian, and
strongly rectangular algebras, we point the reader to [18, Chs 2 and 3] and to the
paper [17]. This information is not needed to follow this proof. We only require
knowledge about the free spectrum of certain varieties, and we cite the literature for
this knowledge. (Note: the term ‘rectangular’ in [17] means the same thing as the
phrase ‘strongly rectangular’ in [18], and this is the concept referred to in part (1) of
this corollary.)

By Theorem 2.1(1) and (2), we have dB(n) ≤ dA(kn), while by Theorem 2.2 we have
dA(kn) ∈ 2O(n). Thus, to prove this corollary it suffices in (1) to prove that dB(n) ∈ 2Θ(n),
and it suffices in (2) to prove that dB(n) ∈ Ω(n). (That is, it suffices to prove the
conclusions for dB in place of dA.)

The proof really begins now. For (1), [17, Theorem 5.3] proves that a finite
strongly rectangular algebra generates a variety with free spectrum bounded above by
a polynomial. By Theorem 2.4, dB(n) ∈ 2Θ(n) in this case. The strong abelian property
is more restrictive than the strong rectangular property by [17, Lemma 2.2(11)].

For (2), any finite abelian algebra generates a variety V whose free spectrum
satisfies fV(n) ∈ 2O(n), according to [2], so Theorem 2.4(2) completes the argument. �

Recall that an algebra is affine if it is polynomially equivalent to a module. It is
known that A is affine if and only if A is abelian and has a Maltsev term if and only if
A is abelian and has a Maltsev polynomial.

Theorem 2.6. If A2 is a finitely generated affine algebra, then dA(n) ∈ O(n). If,
moreover, A is finite and has more than one element, then dA(n) ∈ Θ(n).

Proof. The theorem is true under the weaker assumption that A (rather than A2) is
finitely generated, provided A is a module rather than an arbitrary affine algebra. To
see this, suppose that M is a module generated by a finite subset G. The set of tuples
in Mn with exactly one nonzero entry, which is taken from G, is a generating set for
Mn of size ≤ |G| · n. Hence, dM(n) ∈ O(n). If, moreover, M is finite and has more than
one element, then Corollary 2.5(2) proves that dM(n) ∈ Ω(n), so dM(n) ∈ Θ(n).
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It now follows from Theorem 2.1(4) that if A is an algebra that is polynomially
equivalent to a finitely generated module, then dA(n) ∈ O(n), and dA(n) ∈ Θ(n) if A
is finite and nontrivial. Unfortunately, not every finitely generated affine algebra is
polynomially equivalent to a finitely generated module. But if A is affine and A2 is
finitely generated, then the linearization A2/∆ (see [13, page 114]) is also finitely
generated and term equivalent to a reduct of the underlying module of A. Hence,
when A2 is finitely generated, then A is polynomially equivalent to a finitely generated
module, and the conclusions of the theorem hold. �

3. General growth rates

3.1. Growth rates of partial algebras. A partial algebra is a set equipped with a
set of partial operations. A total algebra is considered to be a partial algebra, but, of
course, some partial algebras are not total.

The definitions of functions dA and hA make sense when A is a partial algebra,
as does the problem of determining growth rates of partial algebras. Theorem 2.1(3),
which relates the growth rate of an algebra to that of a reduct, holds in exactly the same
form if a ‘reduct of B’ is interpreted to mean an algebra A with the same universe as
B whose basic partial operations are obtained from some of the term partial operations
of B by possibly restricting their domains.

We will learn in this subsection that a function arises as the growth rate of a partial
algebra if and only if it arises as the growth rate of a total algebra.

Definition 3.1. Let A = 〈A; P〉 be a partial algebra with universe A and a set P of
partial operations on A. The one-point completion of A is the total algebra whose
universe is A0 := A ∪ {0}, where 0 is some element not in A, and whose operations
P0 = {p0 | p ∈ P} ∪ {∧} are defined as follows.

(1) If p ∈ P is a partial m-ary operation on A with domain D ⊆ Am, then the total
operation p0 : (A0)m → A0 is defined by

p0(a) =

p(a) if a ∈ D,
0 otherwise.

(2) A meet operation ∧ on A0 is defined by

a ∧ b =

a if a = b,
0 otherwise.

Theorem 3.2. Let A be a partial algebra of more than one element, and let A0 be its
one-point completion.

(1) Any generating set for An is a generating set for An
0, and

(2) any generating set for An
0 contains a generating set for An.

In particular, least size generating sets for An and An
0 have the same size, and if An or

An
0 have any minimal generating sets, then they are the same.
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Proof. In this paragraph we prove (1). If G ⊆ An is a generating set for An, then as a
subset of An

0 it will generate (in exactly the same manner) all tuples in An
0 which have

no 0’s. If z ∈ An
0 is an arbitrary tuple and a, b ∈ A are distinct, let za and zb be the tuples

obtained from z by replacing all 0’s with a and b, respectively. Then za, zb ∈ An, so they
are generated by G, and z = za ∧ zb, so z is also generated by G. Hence, G generates
all of An

0.
Now we prove (2). Assume that H ⊆ An

0 is a generating set for An
0. If a ∈ An

0, let
Z(a) ⊆ [n] be the zero set of a, by which we mean the set of coordinates where a is 0.
It is easy to see that for any basic operation F of A0, it is the case that

Z(a1) ∪ · · · ∪ Z(am) ⊆ Z(F(a1, . . . , am)),

since 0 is absorbing for every basic operation. If the right-hand side is empty, then the
left-hand side is empty as well; that is, tuples with empty zero sets can be generated
only by tuples with empty zero sets. Said in a different way, if H ⊆ An

0 generates An
0,

then H ∩ An suffices to generate all tuples in An. If you consider how H generates
elements of An in the algebra An

0, it is clear that H generates those elements in the
algebra An in exactly the same way, so H is a generating set for An. �

Corollary 3.3. If A is a partial algebra and A0 is its one-point completion, then
dA0 (n) = dA(n) for all n ∈ ω.

3.2. Growth rates of countably infinite algebras. In this section, we characterize
the d-functions of countably infinite algebras. We will see that there are a few obvious
properties that these functions have, and that any function D : ω→ ω+ that has these
properties may be realized as a d-function.

One obvious property of d-functions is that they are increasing: m ≤ n implies
dA(m) ≤ dA(n). The d-function of a countably infinite algebra is an increasing function
from the ordered set of natural numbers, ω, to the ordered set ω+ = ω ∪ {ω} =

{0, 1, . . . , ω}, where dA(n) = ω means that An is not finitely generated. The d-functions
also have special initial values. The algebra A0 is a one-element algebra, so A0 is 0-
generated if A has a nullary term and is 1-generated if A has no nullary term. Thus,
dA(0) = 0 or 1, with the cases distinguished according to whether A has a nullary
term. Finally, if A has more than one element, then dA(2) > 0, since any 0-generated
subalgebra of A2 is contained in the diagonal and the diagonal is a proper subalgebra
of A2 when |A| > 1. We now prove the following theorem.

Theorem 3.4. If D : ω→ ω+:

(i) is increasing;
(ii) satisfies D(0) = 0 or 1; and
(iii) satisfies D(2) > 0,

then there is a countably infinite total algebra A such that dA(n) = D(n) for all n ∈ ω.
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Proof. We construct a partial algebra A such that dA(n) = D(n) for all n ∈ ω. By
Corollary 3.3, the one-point completion of A (Definition 3.1) will be a total algebra
with the same growth rate.

First we describe the universe of our partial algebra. Start with a countably infinite
set X. This set will be a subset of the universe of A, and its main function is to ensure
that the constructed algebra is infinite. Next, for any algebra B, dB(0) = 0 happens
exactly when B has a nullary term. Hence, if D(0) = 0 and we wish to represent D as
dA for some A, then we must ensure that A has a nullary term. So, let Y = {y} be a
singleton set. If we need our algebra to have a nullary term, we will introduce a term
with value y. Finally, for each nonzero n ∈ ω, where D(n) is finite, let M(n) = [z(n)

i, j ] be
an n × D(n) matrix of elements such that all entries of all the M(n) are different from
each other and are different from the elements of X ∪ Y . Let Z = {z(n)

i, j } be the set of
all entries appearing in these matrices, and take A := X ∪ Y ∪ Z to be the universe of
the partial algebra.

If D(0) = 0, then we introduce a nullary operation whose value is y. We may
introduce more nullary operations later in the case D(0) = 0, but, if D(0) = 1, then
we do not introduce any nullary operations throughout the construction.

For each nonzero n ∈ ω, where D(n) is finite, and for each tuple b ∈ An, introduce a
D(n)-ary partial operation Fb for which Fb(M(n)) = b. This means that Fb has domain
of size n, consisting of the n rows of M(n), and that Fb(z(n)

i,1 , . . . , z
(n)
i,D(n)) = bi for each

i = 1, . . . , n.
It is worth mentioning how to interpret the instructions of the previous paragraph in

the case where n = 1 and D(n) = 0. Here M(n) is defined to be a 1 × 0 matrix and, for
each b ∈ A1 = A, we are instructed to add a partial operation Fb with the property that
Fb(M) = b. One should view Fb as a nullary partial operation with range b. Hence,
in the case (n,D(n)) = (1, 0), we are to add nullary operations naming each element of
A. (Consider how one might interpret the instructions of the previous paragraph in the
case where n = 2 and D(n) = 0, if such were permitted by the assumptions on D. We
would be instructed to add nullary partial operations to A with range b for each b ∈ A2.
Such nullary operations do not exist for those b ∈ A2 off of the diagonal, so we would
be unable to adhere to the instructions if we allowed D(2) = 0. This is the place in our
construction where we make use of the assumption that D(2) > 0.)

Our partial algebra is A equipped with all partial operations of the type described in
the previous three paragraphs.

Observe that dA(0) = 0 if and only if A has a nullary term if and only if D(0) = 0,
so dA(0) = D(0).

Observe that if D(n) = ω for some n > 0, then none of the partial operations has n
distinct elements of A in its image. Hence, every tuple b ∈ An with distinct coordinates
must appear in any generating set for An. This proves that dA(n) = ω whenever
D(n) = ω.

Observe that if D(1) = 0, then we have added nullary operations to A naming each
element of A, so dA(1) = 0, too.
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Now we consider generating sets for An when n > 0 and D(n) is finite and positive.
In this case, Fb(M(n)) = b whenever b ∈ An, so the columns of M(n) form a generating
set of size D(n) for An. The following claim will help us to prove that there is no
smaller generating set for An.

Claim 3.5. If n > 0 and a subset G ⊆ An has fewer than D(n) tuples whose coordinates
are distinct, then the same is true for 〈G〉.

Proof of Claim. If the claim is not true, then it must be possible to generate in one
step a tuple c ∈ An whose coordinates are all distinct using other tuples, where fewer
than D(n) of these other tuples have the property that their coordinates are all distinct.
If the partial operation used is some Fb, b ∈ Am for some m, and the tuples used to
generate are x1, . . . , xD(m), then the following row equations must be satisfied

Fb(x1, . . . , xD(m)) = Fb



x1,1
...

xn,1

 , . . . ,

x1,D(m)
...

xn,D(m)


 =


c1
...

cn

 = c.

Considering the definition of Fb, it is clear that the (distinct) entries of c are among the
entries of b, so m = |b| ≥ |c| = n. Moreover, the row equations Fb(xi,1, . . . , xi,D(m)) = ci

can be solved in only one way, namely by using the appropriate row of M(m). This
forces all entries of [xi, j] to be distinct. But this means there are D(m) columns,
x j, whose coordinates are distinct, and we assumed that there were fewer than D(n)
such columns. Altogether this yields that m ≥ n and D(m) < D(n), contradicting the
monotonicity of D(n). The claim is proved. �

The claim shows that dA(n) = D(n) when n > 0 and D(n) is finite and positive,
since a subset G ⊆ An of size less than D(n) must have fewer than D(n) tuples whose
coordinates are distinct. Such a set cannot generate An, since the generated subuniverse
〈G〉 contains fewer than D(n) tuples whose coordinates are distinct while An contains
infinitely many such tuples. �

The construction in this proof may be modified to give some information about d-
functions of finite algebras. Namely, suppose that D : {0, 1, . . . , k} → ω is (i) increasing
and satisfies (ii) D(0) = 0 or 1 and (iii) D(2) > 0. If one modifies the construction
in the proof by omitting the inclusion of the set X in the universe of A and then
adding only the partial operations that are nullary or of the form Fb(M(n)) = b, where
n ∈ {0, 1, 2, . . . , k}, then the proof shows that there is an algebra of size |Y ∪ Z| =
1 +

∑k
j=0 j · D( j) (finite) such that dA(n) = D(n) for n ∈ {0, 1, 2, . . . , k}. Thus, there

is no special behavior of d-functions of finite algebras on initial segments of ω.

4. Kelly’s completeness theorem

In Section 4.1, we give a new proof of Kelly’s completeness theorem for basic
identities. The proof involves the construction of a model of a set of basic identities.
In Section 4.2, we construct a simpler model by modifying the construction from
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the completeness theorem. The simpler model is not adequate for proving the
completeness theorem, but it is exactly what we need for our investigation of
growth rates.

4.1. The completeness theorem for basic identities. Let L be an algebraic
language. Recall that an L-term is basic if it contains at most one nonnullary function
symbol. An L-identity s ≈ t is basic if both s and t are basic terms. If Σ ∪ {ϕ} is a set
of basic identities, then ϕ is a consequence of Σ, written Σ |= ϕ, if every model of Σ is
a model of ϕ.

Let C be the set of constant symbols of L and let X be a set of variables. The weak
closure of Σ in the variables X is the smallest set Σ of basic identities containing Σ for
which:

(i) (t ≈ t) ∈ Σ for all basic L-terms t with variables from X;
(ii) if (s ≈ t) ∈ Σ, then (t ≈ s) ∈ Σ;
(iii) if (r ≈ s) ∈ Σ and (s ≈ t) ∈ Σ, then (r ≈ t) ∈ Σ;
(iv) if (s ≈ t) ∈ Σ and γ : X → X ∪C is a function, then (s[γ] ≈ t[γ]) ∈ Σ, where s[γ]

denotes the basic term obtained from s by replacing each variable x ∈ X with
γ(x) ∈ X ∪C;

(v) if t is a basic L-term and (c ≈ d) ∈ Σ for c, d ∈ C, then (t ≈ t′) ∈ Σ, where t′ is the
basic term obtained from t by replacing one occurrence of c with d.

These closure conditions may be interpreted as the inference rules of a proof
calculus for basic identities. Therefore, write Σ `X ϕ if ϕ belongs to the weak closure
of Σ in the variables X. If the set X is large enough, the relation `X captures |= for basic
identities, as we will prove in Theorem 4.1. We define X to be large enough if:

(a) X contains at least two variables;
(b) |X| ≥ arity(F) for any function symbol F occurring in Σ; and
(c) |X| is at least as large as the number of distinct variables occurring in any identity

in Σ ∪ {ϕ}.

Call Σ inconsistent relative to X if Σ `X x ≈ y for distinct x, y ∈ X and large enough X.
Otherwise Σ is consistent relative to X.

Theorem 4.1 [22]. Let Σ ∪ {ϕ} be a set of basic identities and X be a set of variables
that is large enough. If Σ is consistent relative to X, then Σ `X ϕ if and only if Σ |= ϕ.

Kelly’s theorem is a natural restriction of Birkhoff’s completeness theorem for
equational logic to the special case of basic identities. However, it is in general
undecidable for finite Σ ∪ {ϕ} whether Σ ` ϕ using Birkhoff’s inference rules, while
it is decidable for basic identities using Kelly’s restricted rules1.

1The reason that Σ `X ϕ is decidable with Kelly’s inference rules when Σ ∪ {ϕ} is finite is that deciding
Σ `X ϕ amounts to generating Σ. If L is the language whose function and constant symbols are those
occurring in Σ ∪ {ϕ}, X is a minimal (finite) set of variables that is large enough, and T is defined to
be the set of basic L-terms in the variables X, then generating Σ amounts to generating an equivalence
relation on the finite set T using Kelly’s inference rules.
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In the proof we use a variation of Kelly’s Rule (iv): rather than use functions
γ : X → X ∪ C for substitutions we will use functions Γ : X ∪ C → X ∪ C whose
restriction to C is the identity. (That is, we replace γ with Γ := γ ∪ id|C .)

Lemma 4.2. If Σ `X x ≈ h for some basic term h in which x does not occur, then Σ is
inconsistent relative to any set X containing a variable other than x.

Proof. Append to a Σ-proof of x ≈ h the formulas (y ≈ h) for some y ∈ X\{x} (Rule
(iv)); (h ≈ y) (Rule (ii)); and (x ≈ y) (Rule (iii)). �

Proof of Theorem 4.1. Kelly’s inference rules are sound, since they are instances of
Birkhoff’s inference rules for equational logic. Hence, Σ `X ϕ implies Σ |= ϕ for any X.

Now assume that Σ6`Xϕ, where X is large enough and Σ is consistent relative to X.
We construct a model of Σ ∪ {¬ϕ} to show that Σ6|=ϕ. Let T be the set of basic L-
terms in the variables X, and let ≡ be the equivalence relation on T defined by Kelly
provability: that is, s ≡ t if and only if Σ `X s ≈ t. Write [t] for the ≡-class of t. Now
extend T to a set T0 = T ∪ {0}, where 0 is a new symbol, and extend ≡ to this set by
taking the equivalence class of 0 to be {0}.

The universe of the model will be the set M := T0/≡ of equivalence classes of T0
under ≡. We interpret a constant symbol c as the element cM := [c] ∈ M. Now let F
be an m-ary function symbol for some m > 0. The natural idea for interpreting F as an
m-ary operation on this set is to define FM([a1], . . . , [am]) = [F(a1, . . . , am)]. However,
this does not work, since F(a1, . . . , am) will not be a basic term unless all the ai belong
to X ∪ C. Nevertheless, we shall follow this idea as far as it takes us, and when we
cannot apply it to assign a value to FM([a1], . . . , [am]) we shall assign the value [0].

Choose and fix a well-order < of the set C of constant symbols of L. Let I be the
set of injective partial functions ı : M → X ∪C that satisfy the following conditions:

(1) if a class [t] ∈ M in the domain of ı contains a constant symbol, c ∈ C, then
ı[t] = d, where d ∈ C is the least element in [t] ∩C under <;

(2) if a class [t] in the domain of ı contains a variable, x ∈ X, then ı[t] = x;
(3) if a class [t] in the domain of ı fails to contain a variable or constant symbol, then

ı[t] ∈ X.

According to Lemma 4.2, the consistency of Σ implies that any class [t] contains at
most one variable and, if [t] contains a constant symbol, then [t] contains no variable.
Hence, there is no ambiguity in conditions (1) and (2).

If S ⊆ M has size at most |X|, then S is the domain of some ı ∈ I.
If S ⊆ M and a class [t] ∈ S contains a variable x, then call x a fixed variable of S .

Any other variable is an unfixed variable of S .
Now we define how to interpret an m-ary function symbol F as an m-ary operation

on the set M. Choose any ([a1], . . . , [am]) ∈ Mm and then choose ı ∈ I that is defined
on S := {[a1], . . . , [am]}. Note that f := F(ı[a1], . . . , ı[am]) is a basic term, since it is
a function symbol applied to elements of X ∪ C. We refer to this term f to define
FM([a1], . . . , [am]).
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Case 1. (The class [ f ] contains a term h whose only variables are among the fixed
variables of S .) Define FM([a1], . . . , [am]) = [ f ].

Case 2. ([ f ] contains a variable.) If x is a variable in [ f ], then Σ `X f ≈ x. Since Σ

is consistent, Lemma 4.2 proves that x must occur in f , that is, x = ı[ak] for some k.
Hence,

Σ `X F(ı[a1], . . . , ı[am]) ≈ ı[ak]

for some k. In this case, we define FM([a1], . . . , [am]) = [ak] (= ı−1(x).)

Case 3. (The remaining cases.) Define FM([a1], . . . , [am]) = [0].

Before proceeding, we point out that there is overlap in Cases 1 and 2, but no
conflict in the definition of FM([a1], . . . , [am]). If [ f ] contains a term h whose variables
are fixed variables of S and [ f ] also contains a variable x, then Σ `X f ≈ x and
Σ `X h ≈ x. The consistency of Σ forces x to be a common variable of f and h
and (since only fixed variables of S occur in h) to be a fixed variable of S . In
this situation, Case 1 defines FM([a1], . . . , [am]) = [ f ] = [x] while Case 2 defines
FM([a1], . . . , [am]) = ı−1(x) = [x].

Claim 4.3. The function FM : Mm → M is a well-defined function.

Proof of Claim. Choose ([a1], . . . , [am]) ∈ Mm and define S = {[a1], . . . , [am]}. There
exist elements of I defined on S , because this set has size ≤ arity(F) ≤ |X|. Suppose
that ı,  ∈ I are both defined on this set. Let f = F(ı[a1], . . . , ı[am]) and g =

F( [a1], . . . , [am]). To show that FM([a1], . . . , [am]) is uniquely defined, it suffices
to show that the same value is assigned whether we refer to the term f or the term g.

In all cases of the definition of FM([a1], . . . , [am]), the assigned value depends
only on the term f = F(ı[a1], . . . , ı[am]) = F(ı|S [a1], . . . , ı|S [am]). Thus, to complete
the proof of Claim 4.3, we may replace both ı and  by ı|S and |S and assume that
ı and  have domain S . Now ı and  are injective functions from S into X ∪ C, and
ı[t] = [t] whenever [t] ∈ S and [t] contains a constant symbol or a fixed variable of
S . When ı[t] , [t], then both are unfixed variables of S . In this situation, there is a
function Γ : X ∪ C → X ∪ C that is the identity on C and on the fixed variables of S
for which  = Γ ◦ ı. Hence, f [Γ] = g and, if h is a term whose only variables are fixed
variables of S , then h[Γ] = h.

Case 1. ([ f ] contains a term h whose only variables are among the fixed variables of
S .) Here Σ `X f = F(ı[a1], . . . , ı[am]) ≈ h. Append to a Σ-proof of f ≈ h the formula
f [Γ] ≈ h[Γ] (Rule (iv)). Since f [Γ] = g and h[Γ] = h, this is a proof of g ≈ h. Next
append h ≈ g (Rule (ii)) and f ≈ g (Rule (iii)). We conclude that [ f ] = [g], so the value
[ f ] assigned to FM([a1], . . . , [am]) using ı is the same as the value [g] assigned using .

Case 2. ([ f ] contains a variable.) If x ∈ X is a variable in [ f ], then x = ı[ak] for
some k and Σ `X F(ı[a1], . . . , ı[am]) ≈ ı[ak] for this k. Append to a Σ-proof of f ≈ x
the formula f [Γ] ≈ x[Γ] (Rule (iv)). Since f [Γ] = g and x[Γ] = [ak], we conclude

https://doi.org/10.1017/S144678871500052X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871500052X


[16] Growth rates of algebras, I 71

that Σ `X F( [a1], . . . , [am]) ≈ [ak] for the same k. Whether we use ı or , we get
FM([a1], . . . , [am]) = [ak].

Case 3. (The remaining cases.) In Case 1 we showed that [ f ] = [g] while in Case 2
we showed that if x is a variable in [ f ], then x[Γ] is a variable in [g]; together these
show that if [g] does not contain a variable nor a term whose only variables are among
the fixed variables of S , then the same is true of [ f ]. This argument works with f and
g interchanged, so the remaining cases are those where both [ f ] and [g] contain no
variables nor terms whose only variables are among the fixed variables of S . Whether
we use ı or , we get FM([a1], . . . , [am]) = [0]. �

M is defined. We now argue that M is a model of Σ. Choose an identity (s ≈ t) ∈ Σ.
If s is an n-ary function symbol F followed by a sequence α : [n]→ X ∪C of length n
consisting of variables and constant symbols, then let F[α] be an abbreviation for s. If s
is a variable or constant symbol, then s determines a function α : [1]→ X ∪C : 1 7→ s,
so abbreviate s by ♦[α]. We will, in fact, write s as F[α] in either case, but will
remember that F may equal the artificially introduced symbol ♦. The identity s ≈ t
takes the form F[α] ≈ G[β].

A valuation in M is a function v : X ∪ C → M satisfying v(c) = cM = [c] for each
c ∈ C. To show that M satisfies F[α] ≈G[β], we must show that FM[v ◦ α] = GM[v ◦ β]
for any valuation v. Choose ı ∈ I that is defined on the set im(v ◦ α) ∪ im(v ◦ β). This is
possible, since we assume that |X| is at least as large as the number of distinct variables
in the identity F[α] ≈ G[β] ∈ Σ. The values of FM[v ◦ α] and GM[v ◦ β] are defined in
reference to the terms f := F[ı ◦ v ◦ α] and g := G[ı ◦ v ◦ β], respectively.

Claim 4.4. [ f ] = [g].

Proof of Claim. Observe that (ı ◦ v)(c) = ı[c] = d, where d ∈ C is the <-least constant
symbol in the class [c]. If Γ : X ∪C→ X ∪C is a function that agrees with (ı ◦ v) on the
variables in im(α) ∪ im(β), but is the identity on C, then applications of Rule (v) show
that Σ `X F[ı ◦ v ◦ α] ≈ F[Γ ◦ α] and Σ `X G[ı ◦ v ◦ β] ≈ G[Γ ◦ β]. From Rule (iv), the
fact that (F[α] ≈ G[β]) ∈ Σ implies that Σ `X F[Γ ◦ α] ≈ G[Γ ◦ β]. Hence,

Σ `X f = F[ı ◦ v ◦ α] ≈ F[Γ ◦ α] ≈ G[Γ ◦ β] ≈ G[ı ◦ v ◦ β] = g,

from which we get [ f ] = [g]. �

We conclude the argument that M satisfies F[α] ≈ G[β] as follows.

Case 1. ([ f ] = [g] contains a term h whose only variables are among the fixed
variables of S .) In this case, FM[v ◦ α] = [ f ] = [g] = GM[v ◦ β].

Case 2. ([ f ] = [g] contains a variable.) If [ f ] = [x] = [g], then FM[v ◦ α] = ı−1(x) =

GM[v ◦ β].

Case 3. (The remaining cases with [ f ] = [g].) FM[v ◦ α] = [0] = GM[v ◦ β].
Hence, M is a model of Σ.
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To complete the proof of the theorem, we must show that M does not satisfy ϕ.
Suppose that ϕ has the form F[α] ≈ G[β]. Let v be the canonical valuation

X ∪C → M : x 7→ [x], c 7→ [c].

Choose ı ∈ I that is defined on im(v ◦ α) ∪ im(v ◦ β). It follows from the definitions
that ı ◦ v : X ∪C → X ∪C fixes every variable in im(α) ∪ im(β), while (ı ◦ v)(c) = d is
the <-least constant symbol in the class of c. If Γ is the identity function on X ∪C, then,
just as in the proof of Claim 4.4, we obtain Σ `X f = F[ı ◦ v ◦ α] ≈ F[Γ ◦ α] = F[α]
and Σ `X g = G[ı ◦ v ◦ β] ≈G[Γ ◦ β] = G[β]. Now [ f ] contains a term h := F[α] whose
only variables are among the fixed variables of S = im(α), so we are in Case 1 of the
definition of FM. Hence, FM(v ◦ α) = [F[α]] and similarly GM(v ◦ β) = [G[β]]. Part
of our assumption about ϕ = (F[α] ≈ G[β]) is that Σ 0X ϕ, so [F[α]] and [G[β]] are
distinct elements of M. Therefore, v witnesses that M does not satisfy ϕ. �

Theorem 4.1 establishes that if X and Y are two sets of variables that are large
enough, then Σ `X ϕ holds if and only if Σ `Y ϕ and hence Σ is consistent relative to X
if and only if it is consistent relative to Y . Now that the theorem is proved, we drop the
subscript in `X and the phrase ‘relative to X’ when writing about provability.

4.2. The model V. Later in the paper we prove theorems about finite algebras
realizing a set Σ of basic identities. For this, we need to be able to construct finite
models of Σ. The model constructed in Theorem 4.1 may be infinite, so we explain
how to produce finite models.

Definition 4.5. Let Σ be a set of basic identities in a language L whose set of constant
symbols is C. Let Y be a set of variables, z a variable not in Y , and X a large enough
set of variables containing Y ∪ {z}. Let V be the subset of the model M constructed in
the proof of Theorem 4.1 consisting of

{[y] | y ∈ Y} ∪ {[c] | c ∈ C} ∪ {[0]}.

Write [Y] for {[y] | y ∈ Y} and [C] for {[c] | c ∈ C}.
As in the proof of Theorem 4.1, let < be a well-ordering of C. If F is an m-ary

function symbol of L and ([a1], . . . , [am]) ∈ Vm, then let:

(1) ı[ak] = d if [ak] ∈ [C] and d is the <-least element of [ak] ∩C;
(2) ı[ak] = y if [ak] = [y] ∈ [Y]; and
(3) ı[ak] = z if [ak] = [0].

Define FV([a1], . . . , [am]) = [t] if there exists t ∈ Y ∪C such that

Σ ` F(ı[a1], . . . , ı[am]) ≈ t, (4.1)

and define FV([a1], . . . , [am]) = [0] if there is no such t.
The algebra V is the algebra with universe V equipped with all operations of the

form FV.

Theorem 4.6. The algebra V is a model of Σ.
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Proof. Let F[α] ≈ G[β] be an identity in Σ and let v : X ∪ C → V be a valuation. We
must show that FV(v ◦ α) = GV(v ◦ β).

The function v is also a valuation in M, because V ⊆ M. Since M is a model of Σ,
we get FM[v ◦ α] = GM[v ◦ β]. Choose ı ∈ I defined on the set im(v ◦ α) ∪ im(v ◦ β)
such that ı[0] = z, if [0] is in this set. Let f = F[ı ◦ v ◦ α] and g = G[ı ◦ v ◦ β]. As in
the proof of Claim 4.4, if Γ : X ∪C → X ∪C is the identity on C and agrees with ı ◦ v
on the variables in im(α) ∪ im(β), then Σ ` f ≈ F[Γ ◦ α] ≈ G[Γ ◦ β] ≈ g.

The term F(ı[a1], . . . , ı[am]) from line (4.1) is none other than f . FV[v ◦ α] = [t] for
some t ∈ Y ∪ C if and only if Σ ` f = F(ı[a1], . . . , ı[am]) ≈ t. But, since Σ ` f ≈ g, we
also get GV[v ◦ β] = [t]. This shows that FV[v ◦ α] and GV[v ◦ β] are equal when at
least one of them is not [0]. Of course, they are also equal when both of them equal
[0], so FV(v ◦ α) = GV(v ◦ β). �

Corollary 4.7. If Σ is a consistent set of basic identities in a language whose set of
constant symbols is C, then Σ has models of every cardinality strictly exceeding |C|.

Proof. Vary the size of Y in the definition of V, and use Theorem 4.6. �

Corollary 4.7 is close to the best possible result about sizes of models of a set of
basic identities, as the next example shows.

Example 4.8. Let C be a set of constant symbols and let B = {Bc,d | c, d ∈ C, c , d} be
a set of binary function symbols. Let

Σ = {Bc,d(c, x) ≈ x, Bc,d(d, x) ≈ d | c, d ∈ C, c , d}.

The set Σ is a consistent set of basic identities, since if A is any set containing C we
can interpret each c ∈ C in A as itself and each Bc,d on A by letting BA

c,d(c, y) = y and
BA

c,d(x, y) = x if x , c.
If M is any model of Σ and cM = dM for some c, d ∈ C, then the identity function

BM
c,d(cM, x) equals the constant function BM

c,d(dM, x), so |M| = 1. Thus, elements of C
must have distinct interpretations in any nontrivial model of Σ, implying that nontrivial
models have size at least |C|.

5. Restrictive Σ

Call a set Σ of basic identities nonrestrictive if, whenever A is an algebra of more
than one element, there is an algebra B realizing Σ such that dB(n) = dA(n) for all n > 0.
Otherwise Σ is restrictive.

Call Σ nonrestrictive for finite algebras if, whenever A is a finite algebra of more
than one element, there is a finite algebra B realizing Σ such that dB(n) = dA(n) for all
n > 0. Otherwise Σ is restrictive for finite algebras.

It is possible for Σ to be nonrestrictive, yet restrictive for finite algebras. The
set Σ from Example 4.8 has this property when the set of constants is infinite (cf.
Remark 5.4). But the concepts defined in the two preceding paragraphs are close
enough that the arguments of this section apply equally well to both of them. We
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will see that if only finitely many constant symbols appear in Σ, then Σ is restrictive if
and only if it is restrictive for finite algebras. Both are equivalent to the property that
Σ entails the existence of a pointed cube term.

Recall from the introduction that an m-ary p-pointed k-cube term for the variety
axiomatized by Σ is an m-ary term F(x1, . . . , xm) for which there is a k × m matrix
M = [yi, j] of variables and constant symbols, where every column contains a symbol
different from x, such that Σ proves the identities

F(y1, . . . , ym) = F



y1,1
...

yk,1

 , . . . ,

y1,m
...

yk,m


 ≈


x
...
x

 .
If Σ is consistent, the parameters are constrained by m, k ≥ 2 and p ≥ 0.

In Section 5.1, we prove that if Σ is restrictive, then it entails the existence of a
pointed cube term. The converse is proved in Section 5.2, by showing that an algebra
with a pointed cube term whose d-function assumes only finite values has growth rate
that is bounded above by a polynomial. In particular, it is shown that a finite algebra
A with a 1-pointed k-cube term satisfies dA(n) ∈ O(nk−1). In Section 5.3, we give an
example of a three-element algebra with a 1-pointed k-cube term whose growth rate
satisfies dA(n) ∈ Θ(nk−1), showing that the preceding estimate is sharp. In Section 5.4,
we show that any function D : Z+ → Z≥0 that occurs as the d-function of an algebra
with a pointed cube term also occurs as the d-function of an algebra that does not
have a pointed cube term. In Subsection 5.5, we describe one way of showing that an
algebra has an exponential growth rate, and we use it to exhibit a variety containing
a chain of finite algebras A1 ≤ A2 ≤ · · · , each one a subalgebra of the next, where Ai

has logarithmic growth when i is odd and exponential growth when i is even.

5.1. Restrictive Σ forces a pointed cube term. Let Σ be a consistent set of basic
identities in a language L whose set C of constant symbols is finite. Given an algebra
A in a language disjoint from Σ, we construct another algebra AΣ which realizes Σ,
where AΣ is finite if A is.

For the first step, let [C] = {[c1], . . . , [cp]} be the same set of equivalence classes
denoted by [C] in Definition 4.5. These classes represent the different Σ-provability
classes of constant symbols. If there are p such classes, then apply the one-point
completion construction of Section 3.1 p + 1 times to A to produce a sequence A,
Az1 , Az1,z2 , . . . , ending at Az1,...,zp,0. This is an algebra whose universe is the disjoint
union of A and {z1, . . . , zp, 0}.

AΣ will be an expansion of Az1,...,zp,0 obtained by merging the latter algebra with the
model V introduced in Definition 4.5. Let Y be a set of variables satisfying |Y | = |A|,
and let [Y] = {[y] | y ∈ Y} be the set of equivalence classes also denoted by [Y] in
Definition 4.5. The consistency of Σ guarantees that each equivalence class [y] is a
singleton. The universe of V is the disjoint union V = [Y] ∪ [C] ∪ {[0]}.

Let ϕ : [Y]→ A be a bijection. Extend this to a bijection from V = [Y] ∪ [C] ∪ {[0]}
to A ∪ {z1, . . . , zp} ∪ {0} by defining ϕ([ci]) = zi and ϕ([0]) = 0. Now ϕ is a bijection
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from the universe of V to the universe of Az1,...,zp,0. Use this bijection to transfer the
operations of V over to Az1,...,zp,0 to create AΣ. Specifically, the interpretation of the
constant symbol ci in AΣ will be zi and, if F is an m-ary function symbol of L, then

FAΣ(x1, . . . , xm) := ϕ(FV(ϕ−1(x1), . . . , ϕ−1(xm))) (5.1)

will be the interpretation of the symbol F in AΣ. AΣ is the expansion of Az1,...,zp,0 by all
constant operations cAΣ

i and all operations of the form (5.1). Under this definition, the
function ϕ is an isomorphism from V to the L-reduct of AΣ.

Lemma 5.1. Let A be an algebra with more than one element and let Σ be a consistent
set of basic identities involving finitely many constant symbols. Let V be the variety
axiomatized by Σ. The following statements about an integer k ≥ 2 are equivalent.

(1) V has a pointed k-cube term.
(2) Ak

Σ
\Ak generates Ak

Σ
.

(3) There is a generating set G(k) of Ak
Σ

such that G(k) ∩ Ak does not generate Ak.
(4) V has a pointed k-cube term of the form F(x1, . . . , xm), where m ≥ 2, F is a

function symbol occurring in Σ, and the variables x1, . . . , xm are distinct.

Proof. [(1) ⇒ (2)] Let F(x1, . . . , xm) be a pointed k-cube term of the variety
axiomatized by Σ. There is a k × m matrix M = [yi, j] of variables and L-constant
symbols, where every column contains a symbol different from x, such that Σ proves
the identities

F(y1, . . . , ym) = F



y1,1
...

yk,1

 , . . . ,

y1,m
...

yk,m


 ≈


x
...
x

 . (5.2)

Choose any tuple a ∈ Ak
Σ
. Using the row identities of (5.2), solve the equation

F(b1, . . . , bm) = a for the bi, row by row, according to the following rules. In the
ith row:

(a) if yi, j = x, then let bi, j = ai;
(b) if yi, j = cr is a constant symbol, then let bi, j = zr be its interpretation in AΣ;
(c) if yi, j is a variable different from x, then let bi, j = 0.

Under these choices, bi ∈ Ak
Σ

for all i and F(b1, . . . , bm) = a. Moreover, since each
column yi in (5.2) has a symbol different from x, it follows from (a)–(c) that each
bi has a coordinate value that is in the set {z1, . . . , zp, 0}. Hence, bi ∈ An

Σ
\Ak for all i.

This shows that the arbitrarily chosen tuple a ∈ Ak
Σ

lies in the subalgebra Ak
Σ

that is
generated by Ak

Σ
\Ak.

[(2)⇒ (3)] Let G(n) = Ak
Σ
\Ak.

[(3)⇒ (4)] Let G(k) be the generating set for Ak
Σ

that is guaranteed by Item (3).
Since G(k) ∩ Ak does not generate An, it follows from Theorem 3.2 that (Ak

Σ
\Ak) ∪G(k)

is not a generating set for Ak
z1,...,zp,0

. Let S be the proper subuniverse of Ak
z1,...,zp,0

that is
generated by (Ak

Σ
\Ak) ∪G(n).
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Since S contains G(k), which generates Ak
Σ
, and contains the interpretations of the

L-constants, it cannot be closed under the interpretations of the function symbols
of L. Hence, there are a tuple a < S , an m-ary function symbol F, and m tuples
b1, . . . ,bm ∈ S such that FAΣ(b1, . . . ,bm) = a. Necessarily a ∈ Ak.

Using the isomorphism ϕ from V to the L-reduct of AΣ, we obtain that
there are a tuple y = ϕ−1(a) ∈ ϕ−1(Ak) = [Y]k and tuples vi = ϕ−1(bi) , y such that
FV(v1, . . . , vm) = y. Since v1 , y, there is a coordinate ` where these tuples differ. In
the `th coordinate, we have FV([v`,1], . . . , [v`,m]) = [y`] for some variable y` ∈ Y and
some elements v`, j ∈ Y ∪C ∪ {0} with [v`,1] , [y`]. By the definition of V,

Σ ` F(ı[v`,1], . . . , ı[v`,m]) ≈ y`, (5.3)

where ı[v`, j] = v`, j when v`, j ∈ Y , ı[v`, j] is a constant Σ-provably equivalent to v`, j when
v`, j ∈ C, and ı[v`, j] = z is a variable not in Y when v`, j = 0. Since [v`,1] , [y`], we have
v`,1 , y`. After renaming variables, (5.3) can be rewritten as

Σ ` F(w`,1, . . . ,w`,m) ≈ x,

where each w`, j is a variable or constant and w`,1 , x.
Similarly, for each j ≤ m, the fact that v j , y produces an identity

Σ ` F(wi,1, . . . ,wi,m) ≈ x,

where each wp,q is a variable or constant and wi, j , x. Each of these identities may be
read off of one of the rows of FAΣ(b1, . . . ,bm) = a, leading to a k × m matrix identity

F(w1, . . . ,wm) = F



w1,1
...

wk,1

 , . . . ,

w1,m
...

wk,m


 ≈


x
...
x

 ,
where each wp,q is a variable or constant, and each w j contains a symbol different from
x. These identities make F a pointed k-cube term forV.

[(4)⇒ (1)] This is a tautology. �

If Item (1) of Lemma 5.1 holds for some k, then it holds for each k′ ≥ k, since a
pointed k-cube term is also a pointed k′-cube term. (If M is a k ×m matrix of variables
and constants with each column containing a symbol different from x, and F is such
that Σ ` F(M) ≈ [x, . . . , x]T , then one can construct a similar k′ × m matrix M′ for F
by duplicating some rows in M.) It follows that if any of the items of Lemma 5.1 holds
for some k, then all hold for al k′ ≥ k.

One consequence of Lemma 5.1 is a procedure to decide if a strong Maltsev
condition involving only basic identities implies the existence of a pointed cube term.

Corollary 5.2. A strong Maltsev condition defined by a set Σ of basic identities entails
the existence of a pointed k-cube term if and only if it is possible to prove from Σ that
some term of the form F(x1, . . . , xm) is a pointed k-cube term, where m ≥ 2, F is a
function symbol occurring in Σ, and the variables x1, . . . , xm are distinct.
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Proof. A strong Maltsev condition defined by a set Σ of identities entails the existence
of a pointed k-cube term if and only if the variety axiomatized by Σ has a pointed
k-cube term, so the corollary follows from Lemma 5.1(1)⇔ (4). �

That the property in the statement of the corollary can be decided follows from
Theorem 4.1.

The next result is the main one of the subsection.

Theorem 5.3. Let Σ be a consistent set of basic identities involving finitely many
constant symbols. If Σ does not entail the existence of a pointed cube term, then Σ

is nonrestrictive (and also nonrestrictive for finite algebras).

Proof. Recall that ‘Σ is nonrestrictive’ means that for every algebra A of more than
one element, there is an algebra B realizing Σ such that dB(n) = dA(n) for n > 0. The
phrase ‘Σ is restrictive’ means the opposite.

Assume that Σ fails to entail the existence of a pointed cube term. Choose any A of
more than one element and let B = AΣ. B realizes Σ because V is a reduct of B and a
model of Σ. We argue that dB(n) = dA(n) for n > 0.

First assume that n ≥ 2. Choose a generating set G for Bn such that |G| = dB(n).
By Lemma 5.1(3) ⇒ (4), we get that G ∩ An is a generating set for An, so dA(n) ≤
|G ∩ An| ≤ dB(n).

The argument just given also works when n = 1. To see this, re-examine the proof
of Lemma 5.1(3) ⇒ (4) in the case n = k = 1. We get that if Lemma 5.1(3) holds
in this case, then V has a basic term involving a nonnullary operation symbol F
from Σ, which is a ‘1-cube term’. We take the quoted phrase to mean a term where
Σ ` F(w1, . . . ,wm) ≈ x, where each wi is a constant or a variable not equal to x. This
can only happen if Σ is inconsistent. Thus, we can use our assumption that Σ is
consistent to derive the nonexistence of ‘1-cube terms’, and thereby derive the failure
of Lemma 5.1(3) in the case n = k = 1. Hence, if G is a generating set for B, then G ∩ A
is also a generating set for A. Now the proof that dA(n) ≤ dB(n) in the case n = 1 is the
same as the one above for the cases n ≥ 2.

For the reverse inequality, choose a generating set H for An such that |H| = dA(n).
Repeated use of Theorem 3.2(1) shows that H generates An

z1,...,zp,0
and hence also

generates An
Σ

= B. This shows that dB(n) ≤ |H| = dA(n). �

Remark 5.4. In the third paragraph of this section, we stated that the set Σ from
Example 4.8 is nonrestrictive, yet restrictive for finite algebras when Σ involves
infinitely many constants. Here we explain why this remark is true, and also explain to
what degree we may remove the assumption of finitely many constants in Theorem 5.3.

Let Σ be as in Example 4.8 with C an infinite set of constants. Let A be any finite
algebra. There is no finite B that realizes Σ and hence none that realizes Σ and satisfies
dB(n) = dA(n) for n > 0, since any nontrivial model of Σ has cardinality at least |C|.

On the other hand, Σ does not entail the existence of a pointed cube term. Without
attempting to give the full argument for this, we indicate only that if Σ entailed the
existence of a pointed cube term, then (i) one would have the form Bc,d(x1, x2), by the
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appropriate generalization of Lemma 5.1, (ii) it could not be a projection, so we would
have to have Σ ` Bc,d(e, x) ≈ x and Σ ` Bc,d(x, f ) ≈ x for some constants e and f , and
(iii) {Bc,d(x, f )} is a singleton class of the weak closure of Σ; hence, we do not have
Σ ` Bc,d(x, f ) ≈ x after all.

Finally, we sketch how to modify the proof of Theorem 5.3 to eliminate the
restriction to finitely many constants in the case where the algebras may be infinite.

Recall that we started with an algebra A, enlarged it to Az1,...,zp,0 by iterating the one-
point completion construction, and then merged it with the model V of Σ to create AΣ,
which realized Σ and had the same growth rate as A. In this construction, we used the
one-point completion construction p times, where p was the number of equivalence
classes of constant symbols under Σ-provable equivalence. The only thing different
here is that we may not have finitely many equivalence classes of constant symbols.
However, we may well-order the equivalence classes of constants (say, by stipulating
that [c] < [d] if the least constant in class [c] is smaller than the least constant in [d]
under the well-order from the proof of Kelly’s theorem). Now, rather than using the
one-point completion construction p times, we use the idea of the construction exactly
once to adjoin a well-ordered set {0} ∪ Z to A to create AZ,0. Here the well-order is
0 < z1 < z2 < · · · , with 0 the least element, and 〈Z;<〉 is a well-ordered set for which
there is a bijection ϕ : [C]→ Z from the set of equivalence classes of constants. The
algebra has universe AZ,0 equal to the disjoint union of A, Z, and 0. If F is a function
symbol in the language of A, then it is defined on AZ,0 by

FAZ,0 (a) =

FA(a) if a ∈ An,

min{{a1, . . . , an} ∩ ({0} ∪ Z)} else.

We also define binary operations corresponding to the operation x ∧ y of the one-point
completion, namely x ∧z y for z ∈ Z ∪ {0}. Here

x ∧z y =


x if x = y,
z if x , y and x, y ∈ A ∪ [z),
min{{x, y} ∩ ({0} ∪ Z)} else.

(Here [z) is the principal filter in 〈Z;<〉 that is generated by z.) Arguments similar to
those in Theorem 3.2 show that a generating set for An also generates An

Z,0 and any
generating set for An

Z,0 contains a generating set for An. We can merge AZ,0 with a
model V of Σ from Definition 4.5 to obtain a model AΣ, as we did for the proof of
Theorem 5.3. Using the same arguments as before, it can be shown that AΣ has the
same growth rate as A unless Σ entails the existence of a pointed cube term.

5.2. Pointed cube terms enforce polynomially bounded growth. In the preceding
subsection, we proved that if Σ is restrictive, then Σ entails the existence of a pointed
cube term. We now prove the converse by showing that if A is an algebra with a pointed
cube term and sufficiently many of the small powers of A are finitely generated, then all
finite powers of A are finitely generated and dA(n) is bounded above by a polynomial.
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Theorem 5.5. Let A be an algebra with an m-ary p-pointed k-cube term, with at least
one constant symbol appearing in the cube identities (so p ≥ 1). If Ap+k−1 is finitely
generated, then all finite powers of A are finitely generated and dA(n) is bounded
above by a polynomial of degree at most logw(m), where w = 2k/(2k − 1).

The proof rests on the fact that a cube term, like

F
(
1 x 2
x 2 3

)
≈

(
x
x

)
, (5.4)

may be used to ‘factor’ a typical tuple a ∈ An into simpler tuples:

F
([

1
a2

]
,

[
a1
2

]
,

[
2
3

])
=

[
a1
a2

]
.

Here the n-tuple a has been split into two blocks of coordinates of roughly equal size,
a =

[ a1
a2

]
, and then factored into

[ 1
a2

]
,
[ a1

2
]
,
[ 2

3
]
,which are simpler than a in the sense that

some of the coordinates have been replaced by constants. This factorization process
can be iterated until the final factors have at most k − 1 coordinate entries that have
not been replaced by elements from the set of constants. The proof of the theorem
develops such a factorization scheme under which there are only polynomially many
different types of final factors, and the collection of all final factors of a given type lie
in a subalgebra of An isomorphic to A j for some j ≤ p + k − 1. The set consisting of
the generators of all of these subalgebras is a polynomial-size generating set for An.

Proof. Suppose that the fact that F(x1, . . . , xm) is a p-pointed k-cube term (with p ≥ 1)
is witnessed by identities F(M) ≈ [x, . . . , x]T, where M is a k × m matrix of variables
and constant symbols, with at least one constant symbol, where each column of M
contains a symbol that is not x. Choose a constant symbol c appearing in M and replace
all instances of variables in M that are not x by c. This produces another matrix R with
no variables other than x which also witnesses that F is a p-pointed k-cube term. The
order of the k row identities, F(R) ≈ [x, . . . , x]T, is fixed once and for all.

We will refer to the function λ : [m]→ [k] from the column indices to the row
indices defined by the property that λ( j) = i exactly when i is the least index such that
R has a constant symbol in its (i, j)th position. Such λ exists because every column of R
contains at least one constant symbol. (For the cube term in the example immediately
following the theorem statement, λ : [3]→ [2] is the function λ(1) = λ(3) = 1, λ(2) =

2.)
The factoring, or ‘processing’, of tuples in An will make use of an m-ary tree, which

we refer to as the (processing) template. We refer to nodes of the template by their
addresses, which are finite strings in the alphabet [m] = {1, . . . ,m}. The root node has
empty address, and is denoted n∅. If nσ is the node at address σ, then its children are
the nodes nσ1, . . . ,nσm.

Each node n of the template is labeled by a subset `(n) ⊆ [n]. (Recall that n is
the number appearing in the exponent of An.) To define the labeling function `, we
first specify a fixed method for partitioning some subsets U ⊆ [n]. Given a subset
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U = {u1, . . . , ur} ⊆ [n], consider it to be a linearly ordered set u1 < · · · < ur under the
order inherited from [n]. Define π(U) = (U1, . . . ,Uk) to be the ordered partition of U
into k consecutive nonempty intervals that are as equal in size as possible. In more
detail, let

π(U) = (U1, . . . ,Uk) = ({u1, . . . , ui1}, {ui1+1, . . . , ui2}, . . . , {uik−1+1, . . . , uik = ur}),

where
u1 < · · · < ui1 < ui1+1 < · · · < ui2 < uik−1+1 < · · · < uik = ur

(that is, the cells of the partition are consecutive nonempty intervals) and

|U1| ≥ · · · ≥ |Uk| ≥ |U1| − 1

(that is, the cells are as equal sized as possible). The k appearing here as the number
of cells of the partition is the same k as the one in the assumption that F is a k-cube
term. In order for π(U) to be defined, it is necessary that |U | ≥ k.

As mentioned earlier, the label on node nσ will be some subset `(nσ) ⊆ [n].
Recursively define the labels as follows:

(1) `(n∅) = ∅;
(2) if all nodes between nσ and n∅ are labeled, V is the union of labels occurring

between nσ and the root n∅, and π([n]\V) = (U1, . . . ,Uk), then `(nσi) = Uλ(i).

In (2), if [n]\V has fewer than k elements, then it is impossible to partition it into
k nonempty intervals, in which case there do not exist sufficiently many labels for
potential children. In this case, we do not include any descendants of nσ in the
template.

Let us illustrate our progress with the example started back at line (5.4). The
following picture depicts the processing template in the case [n] = [5] = {1, 2, 3, 4, 5}.
(Recall that λ(1) = λ(3) = 1, λ(2) = 2.)

∅

n∅
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Now we define precisely what is meant by processing. Let P = {c1, . . . , cp} be the
constant symbols appearing in the cube identities for F. A tuple a ∈ An is processed
for node nσ if there is a constant symbol c ∈ P such that the ith coordinate of a is cA

for all i ∈ `(nσ). A tuple a is fully processed if there is a path through the template
from the root to a leaf such that a is processed for each node in the path.

The processing template describes, in reverse order, a particular way to generate
tuples in An. Given a tuple a ∈ An, we assign it to the root n∅ and denote it a∅. This
tuple a = a∅ is already processed for n∅, since this is an empty requirement. Now, for
each address σ of a node in the template, we will construct aσ1, . . . , aσm from aσ so
that (i) FA(aσ1, . . . , aσm) = aσ and (ii) each aσi is processed at all nodes between nσi

and n∅. Assign aσi to nσi. The original tuple a can be generated via FA by the fully
processed tuples derived from a in this way. The following claim is the heart of this
argument.

Claim 5.6. Suppose that nσ is an internal node of the processing template. Given an
arbitrary tuple a ∈ An, there exist tuples b1, . . . ,bm such that:

(1) FA(b1, . . . ,bm) = a;
(2) bi is processed for node nσi for i = 1, . . . ,m;
(3) if n is a node between nσ and n∅, and a is processed for n, then each bi is also

processed for n for i = 1, . . . ,m.

Proof of Claim. Let V be the union of labels on nodes between nσ and n∅. If
π([n]\V) = (U1, . . . ,Uk), then {V,U1, . . . ,Uk} is a partition of [n] (with V possibly
empty). For simplicity of expression, re-order coordinates so that a and bi can be
written [aV , aU1 , . . . , aUk ]

T and [bi,V , bi,U1 , . . . , bi,Uk ]
T, with coordinates from V or Uj

grouped together. Given a, we need to solve for bi,V and bi,Uj in

FA(b1, . . . ,bm) = FA




b1,V

b1,U1

...

b1,Uk

 , . . . ,


bm,V

bm,U1

...

bm,Uk


 =


aV

aU1

...

aUk

 = a

in order to satisfy Item (1) of the claim. We shall do so using the first cube identity
in the V-coordinates and the U1-coordinates, and the ith cube identity in the Ui-
coordinates.

Whether W = V or W = Ui, to solve FA(b1,W , . . . , bm,W) = aW for the bi,W using a
particular cube identity, take bi,W = aW if there is an x in the ith place of F in the cube
identity, and take bi,W = [cA, . . . , cA]T if there is a c in the ith place of the cube identity.
It is not hard to see that this works, and so (1) holds.

The label on node nσi is Uλ(i). The element λ(i) ∈ [k] is the number of the first
cube identity that has some constant symbol c ∈ P in the ith place of F. Hence,
bi,Uλ(i) = [cA, . . . , cA]T. Thus, bi is processed for node nσi, establishing (2).

If, in the first cube identity, there is an x in the ith place of F, then bi,V = aV . If
there is a constant symbol c ∈ P in the ith place of F, then bi,V = [cA, . . . , cA]T. In the
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latter case, b is processed at all coordinates in V and hence at all nodes between nσ
and n∅. In the former case, bi is processed at any node between nσ and n∅ where a is
processed, since bi,V = aV . In either case, (3) holds. The claim is proved. �

The claim shows that we can attach any tuple a ∈ An to the root node and then
process it down the tree using the cube identities until we have attached to the leaves
the fully processed tuples associated to a. Here we indicate the processing of a tuple
a ∈ A5 using the example template given earlier.

∅

a =

a1
a2
a3
a4
a5



{1, 2, 3}

 1
1
1

a4
a5

 a1
a2
a3
2
2


{4, 5}

2
2
2
3
3


{1, 2, 3}

 1
1
1
1

a5


{4}

 1
1
1

a4
2


{5}

2
2
2
2
3


{4}

 1
1

a3
1
1

 {1, 2}

a1
a2
2
2
2

 {3}

2
2
3
2
2

{1, 2} 1
1
1
1
3


{4}

2
2
2
3
2


{5}

2
2
2
2
3


{4}

 1
a2
1
1
1


{1}

a1
2
2
2
2


{2}

2
3
2
2
2


{1}
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r r r

r r r r r r r r r
r r r

Each leaf of the template determines a type of fully processed tuples. Two fully
processed tuples u and v of the same type have the same processed coordinates, and the
same constant entries in the processed coordinates. They differ only in the unprocessed
coordinates. For any given type, there is a partition of the n coordinates into at most
p + k − 1 cells where each unprocessed coordinate is a singleton cell (there are at
most k − 1 of these cells) and all processed coordinates with a given constant entry
form a cell (there are at most p of these cells). The collection of all tuples of this
type lie in the subalgebra of all tuples constant on these cells, and this subalgebra
is isomorphic to A j for some j ≤ p + k − 1. The assumption of the theorem is that
Ap+k−1 is finitely generated, say by g elements. This paragraph explains why An has a
subalgebra generated by ≤ g elements (and isomorphic to A j for some j ≤ p + k − 1)
which contains all fully processed tuples of a given type.

For example, the fully processed tuple


1
1
1
a4
2

 from the preceding figure lies in the
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subalgebra of all tuples of the form

x
x
x
y
z

, which is isomorphic to A3. Here 3 ≤ p + k −

1 = 3 + 2 − 1 = 4.
Now let us count the number of types. Since the template is an m-ary tree, and the

types are determined by the leaves, the number of types is at most mr, where r is an
upper bound on the length of the longest branch in the processing template. We must
estimate r.

Let V0 = `(n∅) = ∅. This represents the set of coordinate positions that have been
processed before the processing begins, that is, no coordinate positions. As we
progress down a branch in the template, n∅, ni, ni j, . . . , nσ, we may construct sets
Vσi = Vσ ∪ `(nσi), where Vσ represents the set of coordinate positions that have been
processed along this branch from n∅ to nσ. The unprocessed coordinate positions,
[n]\Vσ, are then divided evenly, π([n]\Vσ) = (U1, . . . ,Uk), to appear as labels of the
children of nσ. Thus, |V∅| = 0 and

|Vσi| = |Vσ ∪ `(nσi)| = |Vσ| + |`(nσi)|. (5.5)

The useful parameter is the number uσ := |[n]\Vσ| = n − |Vσ| of nodes that remain
unprocessed after reaching nσ. This parameter satisfies u∅ = |[n]\V∅| = n and, from
(5.5),

uσi = (n − |Vσi|) = (n − |Vσ|) − |`(nσi)| = uσ − |`(nσi)|. (5.6)

Since π([n]\Vσ) = (U1, . . . ,Uk) is an even division of [n]\Vσ into k sets, and `(nσi) =

Uλ(i),
|`(nσi)| = |Uλ(i)| ≥ b(n − |Vσ|)/kc = buσ/kc. (5.7)

Combining (5.6) and (5.7),

uσi ≤ uσ − buσ/kc =

⌈(
k − 1

k

)
uσ

⌉
.

In order to avoid considering truncation error, we use the following fact, whose proof
we leave to the reader.

Claim 5.7. If u ≥ k ≥ 1, then d((k − 1)/k)ue ≤ ((2k − 1)/2k)u. �

Hence,

uσi ≤

(
2k − 1

2k

)
uσ

for each σ and therefore

uσ ≤
(
2k − 1

2k

)|σ|
u∅ =

(
2k − 1

2k

)|σ|
n

for each σ. If, for some r, it happens that ((2k − 1)/2k)rn < k, then there are fewer than
k unprocessed nodes at address σ for any σ satisfying |σ| ≥ r. Such an r is an upper
bound on the length of paths through the template.
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Solving ((2k − 1)/2k)rn < k for r, we obtain that any r > logw(n/k), w = 2k/(2k − 1),
is an upper bound on the length of paths in the template; hence, r = logw(n/k) + 1 is
such a bound. Hence, the number of types of fully processed tuples is no more than

mr = mlogw(n/k)+1 = mlogw(n/k)m = (n/k)logw(m)m ∈ O(nlogw(m)).

Recall that for each type, the set of fully processed tuples lies in a g-generated
subalgebra of An. Collecting these generators yields a set of size O(nlogw(m)) which
generates all fully processed tuples and hence generates An. �

This theorem deals only with the case p ≥ 1. We describe next how to refine the
estimate in the case p = 1 and how to derive the result for p = 0 from the p = 1 case.

Corollary 5.8. If Ak is a finitely generated algebra with a 0-pointed or 1-pointed
k-cube term, then dA(n) ∈ O(nk−1).

Proof. Suppose that A has a 1-pointed k-cube term, and that c is the one constant
that appears among the cube identities. Then a fully processed tuple a has c in every
processed coordinate position, and has at most k − 1 unprocessed coordinate positions.
Hence, the set of tuples with a c in all but at most k − 1 positions contains all the fully
processed tuples and therefore is a generating set for An.

Suppose that Ak is g-generated. If U ⊆ [n] has size k − 1, then the subalgebra A[U]
of tuples in An that are constant off of U is isomorphic to Ak and so is also g-generated.
This subalgebra contains all tuples that have entry c off of U. If we collect the g
generators for A[U] for each (k − 1)-element subset U ⊆ [n], we obtain a set of size(

n
k−1

)
g which generates An. Therefore, dA(n) ≤

(
n

k−1

)
g ∈ O(n).

Now suppose that F(x1, . . . , xm) is a 0-pointed k-cube term of A and that the cube
identities are

F(M) ≈


x
...
x

 . (5.8)

Expand A to an algebra B by adjoining a single constant, say c. Replace all variables
other than x in (5.8) with c to obtain identities witnessing that F(x1, . . . , xm) is a 1-
pointed k-cube term for B. Hence, dB(n) ∈ O(nk−1) by the earlier part of the argument.
Now dA(n) ∈ O(nk−1) by Theorem 2.1(4). �

In [19], we improve this result by showing that finite algebras with a 0-pointed
k-cube term have logarithmic or linear growth.

Let us combine the results of this subsection with the results of the previous
subsection.

Theorem 5.9. The following are equivalent for a consistent set Σ of basic identities in
which only finitely many constant symbols occur.

(1) Σ is restrictive. (That is, the class of d-functions of nontrivial algebras is not
equal to the class of d-functions of algebras that realize Σ.)
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(2) Σ is restrictive for nontrivial finite algebras. (The class of d-functions of finite
algebras is not equal to the class of d-functions of finite algebras that realize Σ.)

(3) The variety axiomatized by Σ has a pointed cube term.
(4) The variety axiomatized by Σ has a pointed cube term of the form F(x1, . . . , xm),

where m ≥ 2, F is a function symbol occurring in Σ, and the variables x1, . . . , xm
are distinct.

(5) If A is an algebra realizing Σ and dA(n) is finite for all n, then dA(n) is bounded
above by a polynomial.

(6) There is no (finite) algebra A realizing Σ such that dA(n) = 2n for all n.

Proof. [(1)⇒ (3) and (2)⇒ (3)] Theorem 5.3.
[(3)⇔ (4)] Lemma 5.1.
[(3)⇒ (5)] Theorem 5.5 and Corollary 5.8.
[(5)⇒ (6)] dA(n) = 2n is not bounded above by a polynomial.
[(6)⇒ (1) and (6)⇒ (2)] If (1) or (2) fails, then Σ is nonrestrictive (for finite

algebras). Thus, there exists a (finite) algebra A realizing Σ with the same growth
rate dA(n) = 2n as the two-element set equipped with no operations. Hence, (6) fails. �

5.3. Finite algebras with polynomial growth. In this subsection, we prove that the
bound on growth rates for finite algebras with 1-pointed k-cube terms, established in
Corollary 5.8, is sharp.

Theorem 5.10. For each k ≥ 2, there is a finite algebra with a 1-pointed k-cube term
whose growth rate satisfies dA(n) ∈ Θ(nk−1).

Proof. We shall first construct a partial algebra with the desired growth rate and then
modify it slightly to obtain a total algebra satisfying the hypotheses of the theorem.

The universe of the partial algebra will be A = {a1, . . . , aq, 1}. We equip this set with
a partial k-ary operation F which satisfies

FA(1, x, . . . , x, x) = FA(x, 1, . . . , x, x) = · · · = FA(x, x, . . . , x, 1) = x

for each x ∈ A, and which is undefined otherwise. Thus, FA is a partial near-unanimity
operation that is defined only on the nearly unanimous tuples, where the lone dissenter
is 1, and on the tuple whose entries are unanimously 1. Set A = 〈A; F〉.

We shall prove the exact formula

dA(n) =

(
n
0

)
+ q

(
n
1

)
+ q2

(
n
2

)
+ · · · + qk−1

(
n

k − 1

)
(5.9)

for this partial algebra, which is a polynomial in n of degree k − 1, since k = arity(F)
and q = |A| − 1 are fixed. This will show that A is a (q + 1)-element partial algebra
with dA(n) ∈ Θ(nk−1).

Choose and fix n. Define the support of a tuple a ∈ An to be the subset supp(a) ⊆ [n]
consisting of indices s, where as , 1. The proof involves showing that the set of all
tuples whose support has size at most k − 1 is the unique minimal generating set for
An. To set up language for the argument, call a tuple b ∈ An an essential generator if
it is contained in any generating set for An.
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Claim 5.11. If S ⊆ [n] and G ⊆ An, then let GS denote the set of tuples in G that have
support contained in S . If a ∈ 〈G〉 has support in S , then a ∈ 〈GS 〉.

Proof of Claim. In A,

FA(x1, . . . , xk) = 1⇐⇒ x1 = x2 = · · · = xk = 1.

Hence, in An, if FAn
(g1, . . . , gk) is defined and equal to b, then i < supp(b) if and only

if i < supp(gi) for any gi. Equivalently,

supp(FAn
(g1, . . . , gk)) =

k⋃
i=1

supp(gi) (5.10)

whenever FAn
(g1, . . . ,gk) is defined. Now let G(0) = G, GS (0) = GS , G( j + 1) = G( j) ∪

FAn
(G( j), . . . ,G( j)), and GS ( j + 1) = GS ( j) ∪ FAn

(GS ( j), . . . ,GS ( j)). By induction on
j, using (5.10), it can be shown that any tuple in G( j) that has support in S lies in
GS ( j). Since 〈G〉 =

⋃
j G( j) and 〈GS 〉 =

⋃
j GS ( j), any tuple in 〈G〉 with support in S

lies in 〈GS 〉. �

Claim 5.12. The tuple 1̂ = [1, 1, . . . , 1]T of empty support is an essential generator.

Proof of Claim. This follows immediately from Claim 5.11. �

Claim 5.13. Any tuple whose support has size at most k − 1 is an essential generator
of An.

Proof of Claim. Let b ∈ An be a tuple of support S , where 1 ≤ |S | ≤ k − 1. Without
loss of generality, S = [`] = {1, . . . , `} for some 1 ≤ ` ≤ k − 1. In order to obtain a
contradiction to the claim, assume that b is not an essential generator. Then b can be
generated by elements different from b, so the equation FAn

(x1, . . . , xk) = b can be
solved for the xi in such a way that b < {x1, . . . , xk}. Moreover, by (5.10), the xi must
be taken from the tuples whose support is contained in S . The equation to be solved is
therefore

FAn
(x1, . . . , xk) = FAn





x1,1
...

x`,1
1
...
1


, . . . ,



x1,k
...

x`,k
1
...
1




=



b1
...

b`
1
...
1


= b.

We have introduced horizontal segments as dividers separating the coordinates in
S = [`] from the remaining coordinates in order to make the argument clearer. Since
FAn

(x1, . . . , xk) is defined, every row above the dividers is a nearly unanimous row
with exactly one 1. Hence, there are exactly ` 1’s above the dividers. This means that
there are at most ` columns which contain a 1 above the dividers. Since there are k
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such columns, and k > `, there is a column x j that contains no 1 above the dividers.
Since the ith row above the dividers is nearly unanimous with majority value bi, the
column x j which contains no 1’s above the dividers is exactly b. This contradicts the
assumption that b < {x1, . . . , xk}, showing that b is indeed an essential generator. �

Claim 5.14. An is generated by the tuples whose support has size at most k − 1.

Proof of Claim. It is enough to show that if b has support S of size ` ≥ k, then b can
be generated from tuples whose support is properly contained in S . It is enough to
prove this in the case where S = [`]. For this, we must explain how to solve

FAn
(x1, . . . , xk) = FAn





x1,1
...

x`,1
1
...
1


, . . . ,



x1,k
...

x`,k
1
...
1




=



b1
...

b`
1
...
1


= b

when ` ≥ k in such a way that every column contains at least one 1 above the dividers
and the ith row above the dividers is nearly unanimously equal to bi. This is easy to
do. Set x1,1 = · · · = xk,k = 1, then put exactly one 1 arbitrarily in each of rows k + 1 to
`, and then fill in the remaining entries above the dividers so that the ith row above the
dividers is nearly unanimously equal to bi. �

We have established up to this point that the set of tuples of support of size at most
k − 1 is the unique minimal generating set for An. To complete the proof that the partial
algebra A has the specified growth rate, observe that the number of tuples with support
S is (|A| − 1)|S | = q|S |, so the number of tuples whose support has size i is qi

(
n
i

)
. This

yields the formula dA(n) =
∑k−1

i=0 qi
(

n
i

)
.

The one-point completion, A0, is a total algebra with the same growth rate as A.
Let B be the expansion of A0 by one constant symbol 1 whose interpretation is 1B = 1.
The operation FB still satisfies

FB(1, x, . . . , x, x) = FB(x, 1, . . . , x, x) = · · · = FB(x, x, . . . , x, 1) = x

for each x ∈ A0, so it is a 1-pointed k-cube term for B.
By Theorem 3.2 An and An

0 have the same unique minimal generating set, G, which
is the set of all tuples with support at most k − 1; this set contains 1̂. The algebra B
must also have a unique minimal generating set, namely the set obtained from G by
deleting 1̂ = 1Bn

. Thus, dB(n) = dA(n) − 1 =
∑k−1

i=1 qi
(

n
i

)
∈ O(nk−1). �

5.4. Pointed cube polynomials can be avoided. We have established that if A is
an algebra whose d-function assumes only finite values, and A has a pointed cube
term (or pointed cube polynomial for that matter), then dA(n) is bounded above by a
polynomial function of n. The same growth rate can be obtained without a pointed
cube term (or polynomial), as we show next.
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Theorem 5.15. Let A be an algebra with |A| > 1 whose d-function assumes only finite
values. There is an algebra B such that dB(n) = dA(n) for all n and:

(1) the universe of B is B := A ∪ {0, z}, where 0 , z and 0, z < A;
(2) B has a meet semilattice term operation, ∧, with respect to which B has height

one and least element 0; and
(3) if p(x, y) is an m-ary polynomial of B in which x actually appears and p(z,b) = z

for some b ∈ Bm−1, then either p(x, y) ≈ x or else p(x, y) ≈ x ∧ q(y) for some
polynomial q in which x does not appear.

In particular, B does not have a pointed cube polynomial.

Proof. Let G(n) := {gn,1, . . . , gn,d(n)} be a least size generating set for An. Let Az be the
one-point completion of A with the element z (< A) taken to be the new point added.
According to Theorem 3.2, the set G(n) is also a least size generating set for Az. Next,
copying the idea of the construction in Theorem 3.4, for each a ∈ (Az)n introduce a
partial operation Fa(x1, . . . , xd(n)) on Az with the properties that (i) the vector equation

Fa(gn,1, . . . , gn,d(n)) = a (5.11)

holds coordinatewise and (ii) Fa is defined only on those tuples required to make this
equation hold. Let Az be the set Az equipped with these partial operations. The partial
algebra Az is a reduct of Az, so in passing from Az to Az we may have lost but not
gained some generating subsets of powers. On the other hand, our choice of the partial
operations guarantees that G(n) still generates the nth power of Az. This implies that
G(n) is a least size generating set for A

n
z for each n and hence that the d-functions

of Az and Az are the same. Finally, let B = (Az)0 be the one-point completion of Az

with the element 0 (< A ∪ {z}) taken to be the new point added. With this choice, the
universe of B is B = A ∪ {0, z}. Again citing Theorem 3.2, we see that G(n) is a least
size generating set for Bn.

At this point we have that dB(n) = dA(n) for all n and also, by construction, that
Items (1) and (2) hold. (Here the meet operation referred to in Item (3) is the one
introduced in the second one-point completion, the one used to construct B from Az.)

Let us prove that Item (3) holds. Our argument depends on a key fact: z does not
appear in any coordinate of any tuple in G(n) for any n and hence z does not appear in
any tuple in the domain of any partial operation of the form Fa. This implies that any
basic operation of B of the form (Fa)0 (Definition 3.1) assigns the value 0 to any tuple
containing a z (or a 0).

We first prove that if p(x, y) is an m-ary polynomial of B in which x appears and
b ∈ Bm−1, then p(z, b) ∈ {0, z}. Arguing by induction on the complexity of p, we need
to consider the cases where p is a constant, a variable, or of the form

p(x, y) = F(p1(x, y), . . . , p`(x, y)), (5.12)

where F = (Fa)0 or F = ∧. The polynomial p cannot be a constant, since x appears in
p. If p is a variable, it must be x, since x appears in p. In this case, p(z,b) = z ∈ {0, z}, as
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claimed. If (5.12) holds in the case where F = (Fa)0, then by the induction hypothesis
we have pi(z,b) ∈ {0, z} for at least one i; hence, by the key fact,

p(z,b) = (Fa)0(p1(z,b), . . . , p`(z,b)) = 0 ∈ {0, z},

as claimed. If (5.12) holds in the case where F = ∧, then by the induction hypothesis
we have pi(z, b) ∈ {0, z} for at least one i; hence, pi(z, b) ≤ z. It follows that p(z, b) =

p1(z,b) ∧ p2(z,b) ≤ z, so, since 〈B;∧〉 has height one, we get that p(z,b) ∈ {0, z}.
Now we prove Item (3) by induction on the complexity of p. Under the assumptions

of Item (3), the polynomial p cannot be a constant, since x appears in p. If p is a
variable, it must be x, since x appears in p, in which case p(x, y) = x for all x and y,
and Item (3) holds. Now assume that (5.12) holds in the case where F = (Fa)0, and fix a
tuple b ∈ Bm−1 satisfying p(z,b) = z (the existence of such a b is assumed in Item (3)).
Since x appears in p, it also appears in some pi(x, y). By the preceding paragraph, we
get that pi(z, b) ∈ {0, z}. But, as noted two paragraphs ago, any basic operation of B of
the form (Fa)0 assigns the value 0 to any tuple containing a 0 or a z, so we obtain the
right-hand equality (the only nontrivial equality) in

z = p(z,b) = (Fa)0(p1(z,b), . . . , p`(z,b)) = 0.

This contradiction shows that this case cannot occur. Finally, if p(x, y) = p1(x, y) ∧
p2(x, y) and b ∈ Bm−1 is such that p(z, b) = z, then pi(z, b) = z for i = 1, 2, since z is
meet irreducible in 〈B;∧〉. If x appears in both p1(x, y) and p2(x, y), then by induction
both have the form x or x ∧ qi(y). Hence, p(x, y) has the form

x ∧ x, x ∧ (x ∧ q2(y)), (x ∧ q1(y)) ∧ x, or (x ∧ q1(y)) ∧ (x ∧ q2(y)),

each of which has the form x or x ∧ q(y) for some polynomial q. A similar conclusion
is reached if x appears in one of the polynomials pi(x, y) but not the other. Hence, Item
(3) holds.

To complete the proof of the theorem, we argue that B does not have a pointed cube
polynomial. By way of contradiction, assume that p(x1, . . . , xm) is such a polynomial
and that M is a k × m matrix of variables and constants such that p(M) ≈ [x, . . . , x]T

and every column of M contains at least one entry that is not x. In fact, as we have seen
before, by substituting constants for the variables different from x we may assume that
the entries of M are constants or x and that each column contains at least one constant.
We may also assume that p depends on all of its variables and hence that each of
x1, . . . , xm appears in p.

Here are some elementary consequences of our assumptions.

(a) Each row of M must contain at least one x, since otherwise we may derive from
the associated cube identity that x ≈ y holds in B. By permuting columns of M
(hence re-ordering the variables of p), we assume that the first entry of the first
row is x.

(b) The first column of M contains a constant, which cannot be in the first row. By
permuting the later rows of M (hence re-ordering the cube identities), we assume
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that the first entry of the second row of M is a constant. There is an x somewhere
on the second row, by (a), and permuting the later columns we may assume that
it is in the second position of the second row.

These consequences mean that the first two cube identities look like p(x, b2, b) ≈ x
and p(c1, x, c) ≈ x, where all bi, c j ∈ B ∪ {x} and c1 is constant. If we substitute z for
each x in these equations, we get p(z, b′2, b

′) = z and p(c′1, z, c
′) = z, where the primes

on elements and tuples indicate that the x in the string have been replaced by z and
constants remain the same. Applying Item (3) of this theorem to these equalities,

p(x1, x2, y) = x1 ∧ q1(x2, y) = x2 ∧ q2(x1, y),

where xi does not appear in qi. By meeting p with itself,

p(x1, x2, y) = (x1 ∧ q1(x2, y)) ∧ (x2 ∧ q2(x1, y)).

Now the second cube identity may be written

x = p(c1, x, c) = (c1 ∧ q1(x, c)) ∧ (x ∧ q2(c1, c)) ≤ c1.

This implies x ≤ c1 for all x ∈ B and therefore that the element c1 ∈ B is the largest
element of 〈B;∧〉. But this semilattice has no largest element, since it has at least four
elements and has height one. This contradiction proves that B has no pointed cube
polynomial. �

5.5. Exponential growth. If A has exponential growth and B has arbitrary growth,
then A × B has exponential growth according to Theorem 2.1(2). Hence, it is probably
unrealistic to expect any meaningful classification of algebras with exponential
growth. This subsection will therefore be limited to identifying one property that forces
exponential growth. We will use the property to show that the variety generated by
the two-element implication algebra, 〈{0, 1};→〉, contains a chain of finite algebras
A1 ≤ A2 ≤ · · · , each one a subalgebra of the next, where Ai has logarithmic growth
when i is odd and exponential growth when i is even.

We explore a simple idea: suppose that A is finite and u and v are distinct elements
of A. If every element of {u, v}n is an essential generator of An for each n, then the
growth rate of A must be at least 2n. A way to force some tuple t ∈ {u, v}n to be an
essential generator of An is to arrange that An\{t} is a subuniverse of An. This can
be accomplished by imposing an irreducibility condition on each coordinate t of t,
or equivalently by requiring that the complementary set A\{t} behaves like an ideal.
For this to work, it is enough that A\{t} behaves like a one-sided semigroup-theoretic
ideal, so we introduce a definition that captures this notion for an arbitrary algebraic
signature.

Definition 5.16. Let σ = (F, α) be an algebraic signature. That is, let F be a set (of
operation symbols) and let α : F → ω be a function (assigning arity). Let F0 ⊆ F be
the set consisting of those f ∈ F such that α( f ) > 0. (The set F0 is the set of nonnullary
symbols.) A selector for σ is a function φ : F0 → ω such that 1 ≤ φ( f ) ≤ α( f ) for each
f ∈ F0. (The function φ selects one of the places of the function symbol f .)
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If φ is a selector for σ and A is an algebra of signature σ, then a φ-irreducible subset
of A is a subset U ⊆ A such that whenever α( f ) = n and φ( f ) = i,

f A(a1, . . . , an) ∈ U ⇒ ai ∈ U.

The complement of a φ-irreducible subset is called a φ-ideal. Explicitly, I ⊆ A is a
φ-ideal if whenever α( f ) = n, φ( f ) = i, and ai ∈ I, then f A(a1, . . . , an) ∈ I.

In this terminology, a left ideal of a semigroup with multiplication represented by
the symbol m would be a φ-ideal for the function φ : {m} → {1, 2} : m 7→ 2, while a
right ideal would be a φ-ideal for the function φ : {m} → {1, 2} : m 7→ 1.

Theorem 5.17. Let A be an algebra of signature σ and let φ be a selector for σ. If A
is the union of finitely many proper φ-ideals, then dA(n) ≥ 2n.

Proof. The union of φ-ideals is again a φ-ideal, so if A is the union of k ≥ 2 proper
φ-ideals then it can be expressed as the union I ∪ J of two proper φ-ideals. The
complements I′ := A\I and J′ := A\J are disjoint φ-irreducible sets. Any product
T := X1 × · · · × Xn, with Xi = I′ or J′ for all i, is a φ-irreducible subset of An. Each such
set must contain at least one element of any generating set, since the φ-irreducibility
of T implies that An\T is a subuniverse of An. Since there are 2n products of the form
X1 × · · · × Xn with Xi = I′ or J′, and they are pairwise disjoint, any generating set for
An must contain at least 2n elements. �

Example 5.18. In this example, 2 is the two-element Boolean algebra and 2◦ = 〈{0, 1};
→〉 is the reduct of 2 to the operation x→ y = x′ ∨ y. The varietyV generated by 2◦ is
called the variety of implication algebras. This variety is congruence distributive and
has 2◦ as its unique subdirectly irreducible member. Each finite algebra in V may be
viewed as an order filter in a finite Boolean algebra: if A ∈ Vfin, then an irredundant
subdirect representation A ≤ (2◦)k may be viewed as a representation of A as a subset
of 2k closed under→; such subsets of 2k are order filters.

Considering an algebra A ∈ Vfin to be an order filter in 2k, each order filter contained
within A is a left ideal in A with respect to the operation→. By Theorem 5.17, if A is
the union of its proper order filters, its growth rate is exponential. This case must occur
unless A itself is a principal order filter in 2k. Since we represented A irredundantly,
A is a principal order filter in 2k only when it is the improper filter, that is, A = (2◦)k.
In this situation, A is polynomially equivalent to the Boolean algebra 2k. It follows
from Theorem 2.1(1) and the fact that 2 is primal that 2k has logarithmic growth rate.
In summary, a finite implication algebra has logarithmic growth rate if it has a least
element and has exponential growth rate otherwise.

Now it is easy to produce a chain of implication algebras A1 ≤ A2 ≤ · · · , each one a
subalgebra of the next, where Ai has logarithmic growth when i is odd and exponential
growth when i is even. One simply chooses larger and larger Boolean order filters
which are principal only when i is odd. Figure 1 below shows how the chain might
begin.
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Figure 1. A chain of implication algebras.

6. Problems

In this paper, we have filled in one gap in knowledge about the spectrum of
possible growth rates of finite algebras by producing examples with superlinear
polynomial growth rates. There is an interesting gap in knowledge that remains
between logarithmic and linear growth rates.

Problem 6.1. Is there a finite algebra A where dA(n) < Ω(n) and dA(n) < O(log(n))?

A special case that might be tractable is the following question.

Problem 6.2. Is there a two-element partial algebra A where dA(n) < Ω(n) and dA(n) <
O(log(n))?

We know that no finite algebra with a 0-pointed cube term can have growth rate
between logarithmic and linear, but do not know the situation for pointed cube terms.
The following seems to be the most interesting special case.

Problem 6.3. Is it true that a finite algebra with a two-sided unit for some binary term
has logarithmic or linear growth?

There is also a possible gap near the exponential end of the spectrum.

Problem 6.4. Is there a finite algebra A where dA(n) < 2Ω(n) and dA(n) < O(nk) for any
k?
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[20] K. Kearnes, E. Kiss and Á. Szendrei, ‘Growth rates of algebras, III: finite solvable algebras’,

Algebra Universalis, to appear.
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