UNIFORM AND EQUICONTINUOUS SCHAUDER BASES OF SUBSPACES

CHARLES W. MCARTHUR AND JAMES R. RETHERFORD

1. Introduction. A sequence $\{M_i\}$ of non-trivial subspaces of a linear topological space X is a *basis of subspaces* for X if and only if corresponding to each $x \in X$ there is a unique sequence $\{x_i\}, x_i \in M_i$, such that

$$x = \lim_{n \to \infty} \sum_{1}^{n} x_{i}.$$

Corresponding to a basis of subspaces $\{M_i\}$ for X is a sequence of orthogonal projections $\{E_i\}$ $(E_i^2 = E_i \text{ and } E_i E_j = 0 \text{ if } i \neq j)$ defined by $E_i(x) = x_i$ if

$$x = \sum_{j=1}^{\infty} x_j, \qquad x_j \in M_j.$$

If each E_i is continuous, the basis of subspaces is a Schauder basis of subspaces (SBOS). A SBOS $\{M_i, E_i\}$ for X is an e-Schauder basis of subspaces if and only if O is a point of equicontinuity of the sequence of projections $\{S_n\}$, where

$$S_n(x) = \sum_{i=1}^n E_i(s)$$
 for each $x \in X$.

Every SBOS of a barrelled $(tonnel\hat{e})$ space is an e-SBOS. The class of secondcategory linear topological spaces is a proper subclass of the class of barrelled spaces. We show, on the other hand, that no Schauder basis of vectors with respect to the weak or weak* topology of a Banach space is an e-Schauder basis. Theorem 1 gives a necessary and sufficient condition for a subset of a linear topological space with an e-SBOS to be totally bounded. It is essentially a generalization of a theorem of Mazur (1, p. 237) stated by Banach, without proof, for Banach spaces.

By a *norm-SBOS*, a *w-SBOS*, or a *w*-SBOS* we mean a SBOS for a Banach space relative to its norm topology, its weak topology, or its weak* topology, respectively.

Let X be a Banach space which is also a linear topological space with a topology T, where T is not necessarily the norm topology. A SBOS $\{M_i, E_i\}$ of X is T-uniform if and only if

$$x = \lim_{n} \sum_{1}^{n} E_{i}(x)$$

uniformly for $||x|| \leq 1$, where the limit is relative to the topology *T*. Karlin (2, Theorem 4) has shown that an infinite-dimensional Banach space does not

Received July 11, 1963. This research was supported by the Air Force Office of Scientific Research and by National Science Foundation Grant No. NSF GP-2179.

admit a norm-uniform norm-Schauder basis. More generally, we observe that a Banach space does not admit a norm-uniform norm-SBOS. In contrast, we show that every w*-SBOS for a Banach space is w*-uniform. On the other hand, the existence of non-w-uniform w-SBOS is a consequence of Theorem 3, which gives a necessary and sufficient condition for a w-SBOS to be w-uniform. For Schauder bases of vectors this condition reduces to the familiar "shrinking" property enjoyed by numerous bases.

Indeed, if X is a space with a Schauder basis $\{x_i, f_i\}$ ($\{f_i\}$ the biorthogonal coefficient functionals) and M_i is the linear span of x_i , $E_i(x) = f_i(x)x_i$, then clearly $\{M_i, E_i\}$ is a SBOS for X. Thus all of the results of this paper are valid for bases of vectors.

2. Total boundedness and e-Schauder bases.

REMARK 1. No w*-Schauder basis of vectors for the conjugate of a Banach space is an e-Schauder basis.

Proof. Let X be a Banach space, X^* its conjugate, and $\{f_i\}$ a w*-Schauder basis for X^* . Then (6, Theorem 1) there is a sequence $\{x_i\}$ which is a norm basis for X and $f_i(x_j) = \delta_{ij}$. Let

$$x_0 = \sum_{1}^{\infty} (1/2^i ||x_i||) x_i.$$

Then $f_i(x_0) = 1/2^i ||x_i||$. Consider the w*-neighbourhood $U(0; x_0; 1)$. Let $V(0; x^{(1)}, \ldots, x^{(m)}; \epsilon)$ be an arbitrary w*-neighbourhood of 0. Let L denote the linear span (in the norm topology) of the elements $x^{(1)}, \ldots, x^{(m)}$. Since $L \neq X$ there is an $f \in X^*$ such that f(x) = 0 for each $x \in L$ and $f \neq 0$. Thus f is the w*-limit of the series $\sum_{i=1}^{\infty} f(x_i)f_i$ in which not all of the coefficients $f(x_i)$ are zero. Let n_0 be the least positive integer for which $f(x_{n_0}) \neq 0$. Since f(L) = 0 it follows that for an arbitrary scalar $a, af \in V$. If $a \neq 0$,

$$|S_{n_0}(af)(x_0)| = \left| \sum_{1}^{n_0} af(x_i)f_i(x_0) \right| = |a| |f(x_{n_0})| |f_{n_0}(x_0)| \neq 0,$$

and the last expression is greater than 1 for |a| sufficiently large. For such an $a, S_{n_0}(af) \notin U$.

Since the intersection of the null spaces of a finite number of non-trivial linear functionals on a Banach space X contains a non-zero element, an argument similar to the preceding proves the following:

REMARK 2. An infinite-dimensional Banach space X does not admit an e-Schauder basis of vectors relative to its weak topology.

REMARK 3. Every SBOS $\{M_i, E_i\}$ for a barrelled space X is an e-SBOS.

Since each of the projections

$$S_n(x) = \sum_{1}^{n} E_i(x)$$

208

is continuous and since the sequence $\{S_n\}$ is pointwise bounded, it follows (3, Theorem 12.3, p. 104) that O is a point of equicontinuity of S_n .

LEMMA 1. If X is a linear topological space with a SBOS $\{M_i, E_i\}$, and if A is a subset of X such that

- (i) $E_i(A)$ is totally bounded for each i and
- (ii) $\lim_{n} \sum_{1}^{n} E_{i}(x) = x$ uniformly for $x \in A$,

then A is totally bounded.

Proof. Let U be a neighbourhood of O. Then there is a symmetric neighbourhood V of O such that $V + V \subset U$. Also there exists n_0 such that

$$\sum_{i=n_0+1}^{\infty} E_i(a) \in V$$
 for all $a \in A$.

Now

$$B \equiv E_1(A) + \ldots + E_{n_0}(A)$$

is totally bounded. Thus there exists x_1, x_2, \ldots, x_p in X such that

$$B \subset \bigcup_{i=1}^{p} (x_i + V)$$

Then

$$A \subset B + V \subset \left[\bigcup_{i=1}^{p} (x_i + V) \right] + V \subset \bigcup_{i=1}^{p} (x_i + U).$$

Thus A is totally bounded.

THEOREM 1. If X is a linear topological space with an e-SBOS $\{M_i, E_i\}$, then $A \subset X$ is totally bounded if and only if

- (i) $E_i(A)$ is totally bounded for each i and
- (ii) $\lim_{n} \sum_{1}^{n} E_{i}(x) = x$ uniformly for $x \in A$.

Proof. The sufficiency of (i) and (ii) is given by the lemma. It remains to demonstrate their necessity. We assume that A is totally bounded. Then $E_i(A)$ is totally bounded for each i. By hypothesis O is a point of equicontinuity of the sequence

$$S_n(x) = \sum_{1}^{n} E_i(x).$$

Let U be a neighbourhood of O. There exists a symmetric neighbourhood V of O such that $V + V + V \subset U$ and, because of the equicontinuity, there is a neighbourhood W of O such that $W \subset V$ and if $x \in W$ then $S_n(x) \in V$ for all n. Also there exists $a_1, \ldots, a_p \in A$ such that

$$A \subset \bigcup_{i=1}^{\nu} (a_i + W).$$

Because of the convergence of $S_n(a_i)$ to a_i , there is an n_0 such that $n \ge n_0$ implies $S_n(a_i) - a_i \in V$, i = 1, ..., p. Suppose $a \in A$. Then for some i, $a \in a_i + W$. Thus if $n \ge n_0$ we have

$$S_n(a) - a = S_n(a - a_i) + [S_n(a_i) - a_i] + [a_i - a],$$

where the first term on the right is in V because of equicontinuity, the second is in V because of convergence, and the third is in $W \subset V$. Thus

 $S_n(a) - a \in V + V + V \subset U$ if $n \ge n_0$.

In a complete linear topological space a closed set is compact if and only if it is totally bounded. This, together with Remark 3 and Theorem 1, yields the following corollary.

COROLLARY 1. If X is a complete barrelled space with a SBOS $\{M_i, E_i\}$, then a closed set $A \subset X$ is compact if and only if $E_i(A)$ is compact for each i and

$$\lim_n \sum_{1}^n E_i(x) = x$$

uniformly for $x \in A$.

3. Uniform bases of subspaces.

REMARK 4. A Banach space X does not admit a norm-uniform norm-SBOS.

Proof. It is impossible to have

$$\left\|x - \sum_{i=1}^{n} x_{i}\right\| < \frac{1}{2}$$

whenever

$$x = \sum_{i=1}^{\infty} x_i, \quad x_i \in M_i, \quad \text{and } ||x|| \leq 1,$$

since this is not satisfied if ||x|| = 1 and $x \in M_k$ with k > n.

Throughout the remainder of the paper we adopt the following notation: R(E) denotes the range of a projection E of a Banach space X, E^* denotes the adjoint of E, and J denotes the canonical embedding of X into X^{**} .

The following lemma is proved in (4, Theorem 3.1).

LEMMA 2. If $\{M_i, E_i\}$ is a SBOS for a Banach space X, then $\{R(E_i^*), E_i^*\}$ is a w*-SBOS for X*. Conversely, if $\{N_i, P_i\}$ is a w*-SBOS for X*, then $\{R(E_i), E_i\}$, where $E_i = J^{-1}P_i^*J$ is a SBOS for X.

THEOREM 2. Every w^* -SBOS of the conjugate space of a Banach space is w^* -uniform.

Proof. Let X be a Banach space and $\{N_i, P_i\}$ a w*-SBOS of X*. By Lemma 2, $\{R(E_i), E_i\}$ where $E_i = J^{-1}P_i^*J$ is a norm SBOS for X. It is easily shown that for arbitrary $f \in X^*$ and $x \in X$,

$$\sum_{1}^{\infty} [P_{i}(f)](x) = \sum_{1}^{\infty} f(E_{i}(x)).$$

Given a w* neighbourhood of O, $U(0; x^{(1)}, \ldots, x^{(m)}; \epsilon)$ there is an N such that if $n \ge N$, then

$$\left\|\sum_{n+1}^{\infty} E_i(x^{(j)})\right\| < \epsilon, \qquad j = 1, 2, \ldots, m.$$

Thus if $||f|| \leq 1$ and $n \geq N$,

$$\left| \left[f - \sum_{1}^{n} P_{i}(f) \right] x^{(j)} \right| = \left| \sum_{n+1}^{\infty} \left[P_{i}(f) \right] x^{(j)} \right|$$
$$= \left| \sum_{n+1}^{\infty} f(E_{i}(x^{(j)})) \right| \leq \left| |f| \right| \left\| \sum_{n+1}^{\infty} E_{i}(x^{(j)}) \right\| < \epsilon$$

for $j = 1, 2, \ldots, m$. Thus $\{N_i, P_i\}$ is w*-uniform.

We say that a SBOS $\{M_i, E_i\}$ for a Banach space X is *shrinking* if and only if $\lim_n ||f||_n = 0$ for each $f \in X^*$, where $||f||_n$ is the norm of f on the closed linear span of

$$\bigcup_{i=n+1}^{\infty} M_i.$$

It is readily seen that a SBOS $\{M_i, E_i\}$ is shrinking if and only if $\{R(E_i^*), E_i^*\}$ is a SBOS for X^* .

THEOREM 3. A w-SBOS $\{M_i, E_i\}$ for a Banach space X is w-uniform if and only if $\{M_i, E_i\}$ is shrinking.

Proof. Let $\{M_i, E_i\}$ denote a w-uniform w-SBOS for a Banach space X. Karlin (2, Theorem 1) has shown that a weak basis for a Banach space is a norm basis. Ruckle (5, Theorem I.20) has recently observed that a w-SBOS is a norm-SBOS, which we use below. Let $f \in X^*$ and consider the weak neighbourhood $U(0; f; \epsilon/2)$ where $\epsilon > 0$ is arbitrary. The uniformity of the basis implies the existence of N such that if $n \ge N$ and $||x|| \le 1$, then

$$\left|f(x) - f\sum_{1}^{n} E_{i}(x)\right| < \epsilon/2.$$

Thus

$$\left\| f - \sum_{i=1}^{n} E_{i}^{*}(f) \right\| \leqslant \epsilon$$

if $n \ge N$ and therefore

$$f = \sum_{i=1}^{\infty} E_i^*(f)$$

The uniqueness of this expression follows from the continuity and orthogonality of $\{E_i^*\}$. Conversely, suppose that $\{R(E_i^*), E_i^*\}$ is a norm-SBOS of X^* . Then given a weak neighbourhood of $O, U(0; f^{(1)}, \ldots, f^{(m)}; \epsilon)$, there is an N such that $n \ge N$ implies

$$\left\|\sum_{n+1}^{\infty} E_i^*(f^{(j)})\right\| < \epsilon \quad \text{for } j = 1, 2, \dots, m.$$

Thus if $||x|| \leq 1$ and $n \geq N$, then

$$\left| f^{(j)} \left(x - \sum_{1}^{n} E_{i}(x) \right) \right| = \left| \left[\sum_{n+1}^{\infty} E_{i}^{*}(f^{(j)}) \right] x \right|$$
$$\leq \left| \left| \sum_{n+1}^{\infty} E_{i}^{*}(f^{(j)}) \right| \right| ||x|| < \epsilon;$$

so $\{M_i, E_i\}$ is w-uniform.

References

- 1. S. Banach, Théorie des opérations linéaires (Warsaw, 1932).
- 2. S. Karlin, Bases in Banach spaces, Duke Math. J., 15 (1948), 971-985.
- 3. J. L. Kelley and I. Namioka, Linear topological spaces (New York, 1963).
- 4. J. R. Retherford, w*-bases and bw*-bases in Banach spaces, to appear in Studia Math.
- 5. W. H. Ruckle, The infinite direct sum of closed spaces of an F space, Duke Math. J., 31 (1964), 543-554.
- 6. I. Singer, w* bases in conjugate Banach spaces, Studia Math., 21 (1961), 75-81.

Florida State University