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1. Introduction

The definitions of finite dimensional baric, train, and special train algebras, and of
genetic algebras in the senses of Schafer and Gonshor (which coincide when the ground
field is algebraically closed, and which I call special triangular) are given in Worz-
Busekros's monograph [8]. In [6] I introduced applications requiring infinite dimen-
sional generalisations. The elements of these algebras were infinite linear forms Y^xiai m

basis elements a0, au... and complex coefficients such that £™=01*; | < °o. In this paper I
consider only algebras whose elements are forms Y,xiai f° r which only a finite number
of the x, are non zero. An algebra 91, finite or infinite dimensional, not necessarily
associative, but for the purpose of this article commutative, is said to be baric if it
admits a homomorphism w into its ground field. For g e 91, w(g) is called the weight of
g. The kernel of w, which has codimension 1 in 91 is denoted by ft. The principal
powers of g are defined by g1=g, gi + 1=g'g- If, for all g with w(g) = l, they satisfy a
rank equation

f
.7 = 1

for some fixed set of constants 0l,...,9n + i, 91 will be called a strong principal train
algebra. The roots of the auxiliary scalar equation £ j i i fyx J '~ 1 = O are called the
principal train roots of 91. It follows from the properties of the homomorphism that for
all ge9l , £0 J w" + 1 ~j(g)gJ = 0. If for an infinite dimensional 91, every finite dimensional
homomorphic image is a strong principal train algebra, 91 itself will be called a weak
principal train algebra. If there is a strictly decreasing sequence of ideals {ft,-}, j = 0,1,2,...
in 91 such that

fto = 9f,ft1 = ft,«J. + l C f t J . , f t 1 f t J cf t . + 1, , = 1,2,3,... (2)

then 91 is said to be weakly special triangular. When such a sequence exists it is possible
to find a sequence of ideals satisfying (2), and such that for all j , ft,- +1 has codimension
1 in ft,. Thus 91 admits a canonical basis co,cu... such that co,c,eftj while for l ^ i ^ ; ,
c,Cy6ftJ + 1. The numbers XoJJ such that coc,-— A0JJc,-e ftj-+ j are called the train roots
of 91. They are the common eigenvalues of multiplications by a e 91, w(a) = 1). Note that the
ordering of the canonical basis implies a corresponding ordering of the train roots. If for
every sequence of ideals satisfying (2), we have (~)j°=o ftj = 0, 91 is said to be strongly
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314 P. HOLGATE

special triangular. Finally, if the principal powers 5V of R form a sequence of ideals with
the above property, 91 is said to be a weak or strong special train algebra respectively.

For finite dimensions, the special train property implies special triangularity which
implies the principal train property. The train roots of special triangular algebras occur
as their principal train roots, possibly with reduced multiplicities, except that ^ may be a
train root without arising as a principal train root [8, Theorems 3.10, 3.29]. Special
triangular algebras that are not special train are easy to construct, and arise in
applications [8, Theorem 3.30], but the existence of commutative train algebras over
fields of characteristic not 2, which are not special triangular, was only settled by
Abraham's examples [1].

If, in a baric algebra 91, the plenary powers of every element ge'H with w(g) = l,
defined by gli]=g,gu + i^ = (g[n)2, satisfy a linear recurrence relation

t Pjg[il=0, for fixed Pu...Jt, (3)

then 91 is said to satisfy the plenary train condition. It follows that for all ge9I,

The relations between the classes of algebras defined above, and the conditions under
which the plenary train, and similar conditions are satisfied, have been studied in a
number of papers in the finite dimensional case, for which the following results hold (for
references see [8]).

In [3] I showed that all special triangular algebras that contain idempotents satisfy
the plenary train condition, although the theorem was stated for special train algebras.
The requirement of an idempotent is however superfluous and can easily be removed
from the proof. Recently, McHale and Ringwood [7] have shown that an equation (3)
can be constructed by a particular technique which they call Haldane linearisation, if
and only if 9l[sl is special triangular for some integer s.

2. Free non-associative algebras

The commutative, non-associative powers of a, of degree i, will be denoted by {au},
i = l,2,.. .; j=l,2,...bi where i is the degree of the power, and bt the number of such
powers, of degree i. They may be ordered, beginning with atl=a, a2l = a2, a3l=a3,
a^^a*, a42=(fl2)2> 1° general, au precedes ars if i<r. If i = r, consider the unique
decompositions of atJ, ais into pairs of factors of lower degree, already placed in
sequence. Then a(j precedes ais if it gives rise to the earliest of the four factors, or if
each power gives rise to one of a pair of jointly earliest factors, and the remaining factor
of the au precedes that of ais. (A similar procedure is followed to order the non-
commutative, non-associative powers, except that ordering within a degree is by the first
factor, then by the second). Note that a^ = a\ the ith principal power. The free
commutative, non-associative algebra without identity, with one generator, consists of
finite forms Y,xija<j> w ' t n coefficients in some field, which will be taken to be the
complex numbers, with the natural multiplication. It will be denoted by <S1. The
corresponding algebra 5k, with k generators a,b,c... consists of finite linear forms in
non-associative products of these symbols.
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Theorem 1. The algebra 3 k is baric for every k. It is strongly special triangular when
/c=l, but not weakly special train. For k^.2 it is weakly but not strongly special
triangular.

Proof. For k = \, w(a) = 6 generates a weight function. If 0^1 we take a* = 6~ia as
generator, so the weight function is essentially unique. For k ̂  2 there are 2k — 1 different
weight functions obtained by assigning weight 1 to subsets of the generating symbols.

For /c = l, we construct a sequence of ideals satisfying the requirements of special
triangularity. Write

Cn=an-ai-1,1 = ai-ai~1, for i > l

ciJ = aiJ-ail=aij-a
i, for i > l , ; > l ,

and order the ctj as the corresponding a(J. Then

(i) cllcil = a{ai-ai-1) = ai + 1-ai=ci + l<1

(ii) cllcij=a(aij— ai)=aaii — a' + 1 = ci + l s , when7>l , for some s > l , since aau is
not a principal power.

(iii) c l l c j 1 = (a ' - a ' - 1 ) ( a>-a ' - 1 )

where i, j>l, for some u, v, w, p > 1.

(iv) Cjlc,jk = ( f l ' - a ' - 1 ) (a 7 i -a ' )

= (a'a,* -ai+i)- (a'V - a '+ ') - (a;" ^ ^ - a1 +J"J)

= Ci +j, u ~ Ci +j, » ~ Ci +j - 1, w + Ci +j - 1, p

where i,_/,k> 1, for some M,U,W,p> 1.

Cj,cit = («(, - a ' X a ^ - a 1 ' )

= {analk-et +j)-(ana
J-a' +J)-(aiajk-a

i +J)+(a'aJ-a'

— Ci +j, u ~ ci +j, v ~ ci +j,w + ci +j,p

where i,j,k,l> 1, for some u, v, w,p> 1.
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Now take Ru to be the subspace spanned by cu and succeeding cst's. (In this notation
5 i = ^ n > ^ 2 i is the kernel of the weight function.) The above calculations show that
with the assigned ordering of the cfj, the $ttJ form- a sequence of ideals satisfying (2).
Since every element is a finite linear combination of the ati, nft f j=0. Moreover, w and
hence its kernel are unique. Any sequence {R',} of ideals satisfying (2) must satisfy
ft;s(£th member of {5*o}), and hence n5i; = 0.

To obtain a basis for gk, each atj is replaced by k' terms formed by substituting for
each factor "a", each of the k generators. To order them we return to the non-
commutative, non-associative powers. These are first ordered as described above, and
then the different products corresponding to each power are ordered lexicographically,
and any term equal to a preceding term by commutativity is deleted. These terms are
denoted by tul. We form cni = t n i - al~ l = ai-a

i-1;cin = tin-tin = aii-a
i,j^\;ci]l =

tijh l=fcl. Denote by RiJt the subspace spanned by ciJt and succeeding elements. Then
{R-iji} satisfies (2). However although nft j ; ,=0, consider the ideals 2«, spanned by tijt,
I ± 1, i.e. all basis elements containing a factor other than a, and 2U spanned by these
together with all terms in powers of a alone from ctJ onwards. Then {£,;} is a sequence
of ideals satisfying (2), with n2iJ = 2a>=fc0.

The algebra &i fails at the first test for the special train property, since ft^ is not an
ideal. To prove this consider the quotient algebra gi/ft6i. If the cosets of ft61 are
represented by elements cl l5 c21, c31, c41, c42, csl, c52, c53, the multiplication table is
found by direct computation to be

Cll

C21

C31

Cll

C114

c2i

•c2i c 3 1

C41 + C42-C31

C31

C41

-C 4 1 -C 4 2 + (

C42~C51 ~'

:51 +C53

-C53

C41

C51

~c 5 1 — c52

0

C42

C52

-C52

0

and all other products zero. This is baric with ft2i/^6i the kernel of the weight function.
Its square (JW^ei)2 is spanned by c31-c41-c42, c4 1+c4 2-c53, c4 2-2c5 3, c51, c52.
Now C11(cl1) = c1 1(c4 1-c42-c3 1) = c 5 1 -c 5 2 -c 4 2 ^(« 2 1 /« 6 1 ) 2 . Thus («21/«6i)2 is not
an ideal in Stn/ft61, and hence ft|x cannot be an ideal in ftn.

3. Free train algebras

Now let *Rk n = '3ik n(6l,...,0n + l) be the ideal in g* generated by elements r(g) =
YjtlejW" + 1-^g)gJ, geFk. The quotient &/<R4,n, denoted by &,B(0i , . . . ,0n + 1) will
be called the free commutative non-associative principal train algebra without identity,
corresponding to the principal train equation (1). By routine calculation, its elements
can be seen to satisfy (1), while every commutative, non-associative principal train
algebra without identity, with principle train equation (1), is a homomorphic image of

Lemma. The strong special triangular property is preserved under homomorphism.

Proof. Let RO=>R1=>R2=> ...be a sequence of ideals in 91 satisfying (2) and n ft, =
and let 5R be the kernel of the homomorphism from 91 to 91*. If Sif is the image of ft
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so that fif^ftiP.-niH), we have ft*2tt*2ft*2 . . . , ft*ft*£ftf+1, and nf t* = 0. Now
delete all but the first of any segments of equal members of {ft*}. The remaining
sequence shows that 91* is strongly special triangular.

Corollary to Theorem 1. Let 5R be any ideal of gx. Then gi/5R is strongly special
triangular. Hence any algebra with a single generator is special triangular.

Theorem 2. For k = l, H = 1,2, g^ „ is finite dimensional. For fe = l, n ^ 3 , 5 4 „ may be
infinite dimensional.

Proof. For n = \ the principal train equation must be g—g2 = 0. In particular a2 = a
and hence all a i j =a (mod9l l i l ) . Thus «5i/^i,I is homomorphic to the ground field.

For n = 2 consider the principal train equation g3—(1 — k)g2 — kg = 0. Let b,c,d be
three of the au, not necessarily distinct. If we set g={9b + <j>c + ̂ /d)l{d + (f) + \j/) and after
multiplying by (0 + <f> + ij/)3, equate to zero the term in d4>\jj, we have {(bc)d + (db)c +
(cd) b} — (1 - X) (cd + be + db) - X{b + c + d) = 0. On substituting (b, c, d) = {a, a, a2) and working
m o d « 2 , we obtain (a2)2 + 2 a 4 - 2 ( l - / t ) a 3 - a 2 - 2 A a = 0. Now a3 = Aa+( l -A)a 2

which implies a4 = Aa2+(l —A)a3, and the above relation leads to (a2)2 = 2Aa + (l—2A)a2.
Thus all 4th powers are congruent to forms of strictly lower degree, and in fact of
degree 2. The multiplication table of 5i/9*i,2 m this case is mod5R12.

a

a

a2

a2 Xa + (1-X)a2

By straightforward calculation we find that the plenary powers of a are given by

a[s] = {2ka + a2 + ( - 21) s" ' (a - a2)}/(l + Ik).

Finally, consider the principal train equation g—g4 = 0, w(g) = l, and the corresponding
algebra Si/Wj 3. We show that its dimension d is infinite. First, d must exceed 3. The
elements a, a2, a3 are linearly independent, and if d = 3 we would have (a2)2 = (1 — 6 — 4>)a +
0a2 + 4>a2(mod5Rli3) for some 6,4>. That is,

((a2)2 - a) - 0(a2 - a) - <p(a3 - a) e tou 3.

But SRt j consists of finite sums of terms, each of which contains a factor (gf—g(). For
such expressions, if the leading term is of degree 4, it must be a principal product of 4
factors, and hence the element displayed above does not belong to 5R1>3. The principal
train roots of S^/SRi.s are 1, co, co2 and are simple. If 3<d<co there must be train roots
(that is, common eigenvalues of the operation of multiplication by g, w(g) = 1) other than
these. Each of these additional train roots involves an eigenrelationship that is not
implied by 9?l i3, and hence the algebra is not a free principal train algebra. Thus
d cannot exceed 3. The contradiction shows that d is infinite.
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4. The plenary train condition

Theorem 3. Every finite dimensional principal train algebra satisfies the plenary train
condition.

Proof. Let 21 be a principal train algebra of finite dimension n, and principal train
roots XU...,XS. Denote by 2I9 the algebra generated by ge91, w(g) = l. By the Corollary
to Theorem 1 it is special triangular, and as a subalgebra its principal train roots must
lie among XU...,XS. Hence its train roots must have values among j,X1,...,Xs. A special
triangular algebra with an ordered set of train roots filt fi2,..., nn (repetitions included
separately) satisfies the plenary train condition (see end of Section 1), with plenary train
roots lying among the values nY...[/„", where ^ 2 ' " 1 r j ^ 2 " ~ 1 (see [2], Proposition 1, p.
356, where the plenary roots belong to the monomials listed). Since we know neither the
multiplicities nor the ordering of the train roots of 2Ig, we can only assert that its
plenary train roots lie among the set of values %"°,X\l,...,X's', with rJgw2I>~1. Denote
this set of values by vu...,vm, with repetitions. The plenary train equation of 2I9 is a
factor of {Y[?=i(E — vi)}g=Q> w(£) = l> where Eg=g2. Similarly, every geUI, w(g) — l
satisfies this equation. Thus 21 satisfies the plenary train condition and its plenary train
equation is also a factor of it.

Consider the second example given by Abraham [1] of a principal train algebra that
is not special triangular. It has basis co,cu...,c5 with multiplication table

Co

c0

ci

icx
0

c2 c
2C2 2C

c3 c

0 c

3 c4

3 ic4

4 0

c.

C5

2C5

-c3

0

and all other products zero. On squaring a general element of weight 1 we find

The sub-algebra generated by this element intersects the sub-space spanned by co,cuc2

in multiples of co+xlc1 + x2c2. Thus the algebra has no single generator and in fact
requires three. The algebra satisfies 9I2 = 21 and thus by McHale and Ringwood's result
[8], the construction of a plenary train equation by Haldane linearisation of the
operator E, which generates the plenary powers by gE=g2, is impossible. Let us
nevertheless attempt to linearise E, by the methods introduced in [3], studied further in
[2] and exploited in [4,5]. The above equation exhibits the effect of E on coordinates:

= x4 + 2xtx3, xsE = x5 + 2x2x3.
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We adjoin further "coordinates" set equal to x1x3,x2x3,x1x2-x1x3 + x2x4. ( = u, say).
The effect of E on these is

(xlx3)E = xlx3 + 2xlu> (x2x3)E = x2x3 + 2x2u, uE — u,

the last relation appearing after some cancellation. At the next stage we add in further
"coordinates" xlu,x2u for which (xlu)E = xlu,(x2u)E = x2u. In the terminology of [7] we
project points (1,X! x5) of 21 into (I,x1,...,x5, XjX3, x2x3, u, xyu, x2u) in a space
$L The operator E on 91 is now represented by a linear operator E on $t. In this case E
has l's on its main diagonal, and 2's in positions corresponding to (x3,M), (X^,XXX3),
(xs,x2x3), (x^^x^u) and (x2x3,x2«). It has minimal polynomial (E—1)3=0, which is
equivalent to the plenary train equation gl*1 — 3g[31 + 3gl2]—g=0. It would seem that if
the process of Haldane linearisation studied by McHale and Ringwood had been carried
through, we would have had to include at the first stage, coordinates equal to xxx2 and
x2x4. Since (x2x4)£=x2x4 + 2x1x2x3, a coordinate xtx2x3 would be needed at the next
stage, and this would lead to an infinite sequence of additional coordinates.

In response to the question left open by McHale and Ringwood [7] in their last
sentence, Theorem 3 and Abraham's example show that there is a class of algebras
where E can be linearised, by following informally the methods used by Haldane, but
not by the precisely defined technique of "Haldane linearisation" with which they work,
and for which they establish necessary and sufficient conditions.

This work has benefited greatly from discussions with David McHale and Graem
Ringwood, and in particular from Graem Ringwood's critical reading of an earlier draft.
Their respective studentship and Research Assistantship were financed by the SERC.
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