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Abstract

We analyze a periodically inspected system with hidden failures in which the rate of wear
is modulated by a continuous-time Markov chain and additional damage is induced by a
Poisson shock process. We explicitly derive the system’s lifetime distribution and mean
time to failure, as well as the limiting average availability. The main results are illustrated
in two numerical examples.
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1. Introduction

In this paper, we consider reliability and availability measures for a single-unit system
that suffers degradation due to its operating environment and the impact of shocks of random
magnitude occurring at random time intervals. The system is said to experience a soft failure
when its cumulative level of degradation exceeds a fixed threshold value, for example the
component’s nominal service life. However, it is possible that failures remain hidden until a
routine (planned) inspection of the unit reveals the failure. Using a periodic inspection policy,
if the unit is found to have suffered an intolerable level of degradation, it is instantaneously
replaced with a new and identical unit. On the other hand, if the level of degradation observed
upon inspection is acceptable (i.e. below the specified threshold value), no action is taken until
the subsequent scheduled inspection. One example of a system maintained using this type
of inspection policy is that of cutting equipment in manufacturing environments. Though the
equipment may be operational, its cutting tool may have suffered sufficient degradation to render
it ineffective in achieving engineering specifications. However, its condition may not be known
until an actual measurement of the accumulated degradation is obtained. Hidden failures are
also prevalent in the antennae of satellite tracking stations. In such systems the stations, situated
in remote locations around the globe, may be difficult to access and inspect. Hence, periodic
inspection policies are needed to ensure proper communication links with orbital satellites, to
maintain such critical functions as surveillance, communications, navigation, and warning.

The impact of a random environment on reliability and availability measures has been
examined extensively in the applied probability literature. Models including degradation
due only to wear or only to random shocks are especially prevalent. The seminal work of
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Esary et al. [3] has been extended in numerous directions by several authors. For instance,
Çinlar [2] generalized most of the models of [3] by demonstrating that the joint process of the
unit’s wear level and the state of its ambient environment may be considered to be a Markov
additive process, and gave several such examples. The first example considered the case when
the random environment is a general Markov process with a finite state space and the wear is
assumed to increase according to a Lévy process. Additionally, random shocks were assumed
to occur only at environment transition epochs. The second example (see [2]) is similar to
the problem discussed here, where the cumulative wear is a continuous additive functional of
the operating environment, and the first time to failure is a type of first passage time for the
degradation process. Although Råde [10], Shanthikumar and Sumita [11], and Nakagawa [9]
provided extensions of [3], they did not incorporate the effect of the unit’s operating environment
on reliability measures. Igaki et al. [4], Skoulakis [12], and Kharoufeh [5] presented degradation
models that explicitly incorporate the influence of the unit’s operating environment but do not
consider the maintenance of such systems.

More recently, other researchers have placed an emphasis on studying maintained systems.
For example, Klutke et al. [8] examined the availability of an inspected system whose inter-
inspection times and wear rates are random. Subsequently, Klutke and Yang [7] derived an
availability result for a system subject to constant degradation, shocks, and a deterministic
inspection policy. In a model similar to the one presented in [5] and in this paper, Kiessler
et al. [6] studied the limiting average availability of a system for which the wear rate depends on
a continuous-time Markov chain. Their model considers an independent, identically distributed
sequence of nominal lifetimes that determine the failure criterion, rather than the deterministic
threshold value we consider. However, unlike our model, that of [6] does not explicitly provide
reliability measures and does not include the degradation due to random shocks.

This paper extends the results of [5] and [6] by providing both reliability and availability
measures for a system subject to Markovian wear and degradation due to random shocks.
Additionally, we demonstrate that the results may be implemented numerically in a straightfor-
ward manner by employing standard Laplace transform inversion algorithms. We specifically
provide, in closed form, the Laplace–Stieltjes transform of the unconditional and conditional
lifetime distribution functions as well as the unconditional and conditional mean system life-
times. Using our main results, and exploiting the Markov regenerative nature of the system,
we compute the limiting average availability of the system under a periodic inspection policy
using the results of [6]. Moreover, we illustrate the computational ease with which the results
may be obtained numerically, in two example problems.

The remainder of the paper is organized as follows. In Section 2, we provide the formal
mathematical model description and notation used throughout the paper. In Section 3, we
analyze the model and explicitly derive the lifetime distribution functions and the mean lifetimes
as Laplace–Stieltjes transforms. In Section 4, we provide all the components needed to compute
the limiting average availability of the system, and in Section 5 we provide the two illustrative
numerical examples.

2. Mathematical model

In this section, we describe the mathematical model and notation for the maintained system
with hidden failures. A single-unit system is placed into service at time 0 in perfect working
order. The system accumulates degradation until a deterministic degradation threshold value,
x, is exceeded, at which time the system is said to have failed. We denote the random
time to achieve the threshold by Tx . The degradation suffered by the system is attributed to
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environment-induced wear and to shocks that occur at random time intervals. The wear- and
shock-inducing mechanisms are assumed to behave independently of one another. We further
describe the stochastic evolution of the system in what follows. All random variables are
assumed to be defined on a complete probability space (�,A,P).

The random environment is characterized by an irreducible, continuous-time Markov chain
Z := {Zt : t ≥ 0} on a finite state space S := {1, 2, . . . , l} with infinitesimal generator matrix
Q, transition probability functions πi,j (t), i, j ∈ S, and initial distribution (row) vector α.
Whenever Zt = i, the system accumulates wear at a rate r(i) > 0, i = 1, 2, . . . , l. Define
RD := diag(r(1), r(2), . . . , r(l)), the l × l diagonal matrix containing the state-dependent
wear rates. The total accumulated wear up to time t , denoted Wt , is

Wt =
∫ t

0
r(Zu) du.

The cumulative stochastic process W := {Wt : t ≥ 0}, commonly known as the state-
dependent wear process, has been studied extensively in the literature (cf. [3], [2], and [5]),
independent of a shock-inducing mechanism.

In addition to environment-induced wear, the system is damaged by shocks occurring at
random time intervals. The damage caused by an individual shock is assumed to be relatively
small; however, the cumulative effect of small shocks may be significant, as in the case of
fatigue deterioration resulting from mechanical vibrations. Denote byNt the number of shocks
occurring up to time t . The corresponding counting process {Nt : t ≥ 0} is assumed to be a
temporally homogeneous Poisson process with rate parameter λ. The damage caused by the
nth shock is a (nonnegative) random variable Yn and {Yn}∞n=1 is an independent, identically
distributed sequence with nondefective distribution function FY (y) := P{Y ≤ y}. The total
cumulative damage attributed to shocks up to time t is the random variable

βt =
Nt∑
n=0

Yn.

Therefore, the total degradation accrued by the system up to time t is the sum of the degradation
due to wear and that due to shocks, and is thus given by

Xt := Wt + βt , t ≥ 0. (1)

The monotonicity of X := {Xt : t ≥ 0} and the positivity of the degradation rates, r(1),
r(2), . . . , r(l), ensure the equivalence of the events {Xt ≤ x} and {Tx > t}. Thus, the system’s
random lifetime is given by

Tx = inf{t > 0 : Xt ≥ x}, (2)

namely the first time the degradation process X crosses level x. Let G(x, t) := P{Tx ≤ t}
denote the unconditional distribution function of the unit’s lifetime and let its first moment be
denoted by E[Tx]. Note that (2) implies

G(x, t) = 1 − P{Xt ≤ x}.
In the remainder of the paper, we shall adopt the following notation. We let Ei[·] = E[· |Z0 = i]
and Pi{·} = P{· | Z0 = i}. Thus, in an obvious notation, the conditional distribution of the
(first) lifetime is given by

Gi(x, t) = 1 − Pi{Xt ≤ x}.
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The unconditional mean lifetime shall be denoted by E[Tx], and the conditional mean first
lifetime by Ei[Tx]. For the purpose of computing the limiting average availability of the main-
tained system, we obtain each of these quantities in the form of Laplace–Stieltjes transforms,
in Section 3.

3. Lifetime distribution and mean lifetime

In this section, we provide analytical expressions for the system’s lifetime distribution
function and the mean system lifetime, in the form of Laplace–Stieltjes transforms (LSTs).
To that end, we introduce the following definitions and notation. The complement of the
lifetime distribution is

R(x, t) := Ḡ(x, t) = P{Xt ≤ x}, (3)

which holds due to the dual relationship Tx = inf{t > 0 : Xt ≥ x}. Also define the joint
probability distribution

Ri,j (x, t) = P{Xt ≤ x, Zt = j | Z0 = i}, i, j ∈ S.
Our first main result characterizes the joint distribution of the process (X,Z).

Theorem 1. The distribution function Ri,j (x, t), i, j ∈ S, satisfies the partial differential
equation

∂Ri,j (x, t)

∂t
+ ∂Ri,j (x, t)

∂x
r(j) = λ{[Ri,j (·, t) ∗FY ](x)−Ri,j (x, t)} +

l∑
k=1

qk,jRi,k(x, t) (4)

for x > 0 and t ≥ 0, where ‘∗’ denotes the convolution operator and qk,j are the entries ofQ.

Proof. We begin by considering only the environment-induced wear of the system, and
then incorporate shocks. To this end, let Vi,j (x, t) := P{Wt ≤ x, Zt = j | Z0 = i} and let
ε > 0 denote a small time increment. Because Z possesses the Markov property, is temporally
homogeneous, and is independent of the degradation process X, we may write (see [5])

Vi,j (x, t + ε) =
l∑

k=1

P{Wt+ε ≤ x, Zt+ε = j | Zt = k, Z0 = i} P{Zt = k}

=
l∑

k=1

P{Zt+ε = j | Zt = k} P{Wt+ε ≤ x, Zt = k | Z0 = i}

=
l∑

k=1

πk,j (ε)Vi,k(x − r(k)ε, t). (5)

Now we incorporate the impact of Poisson shocks occurring at homogeneous rate λ. The
probability mass function of the number of shocks occurring up to time ε is

pn(ε) := P{Nε = n}, n ≥ 0.

The magnitude of cumulative damage caused by n independent shocks is given by

βn =
n∑
i=1

Yi.
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Since shock magnitudes form an independent, identically distributed sequence with distribution
function FY , we note that

P{βn ≤ y} =: F (n)Y (y),

the n-fold convolution of FY . By conditioning on the number of shocks in the interval (t, t+ε)
and the magnitude of damage due to those shocks, (5) may be replaced by

Ri,j (x, t + ε) =
l∑

k=1

∞∑
n=0

∫ ∞

0
πk,j (ε)Ri,k(x − r(k)ε − y, t)pn(ε)F

(n)
Y (dy). (6)

By substituting the appropriate expressions for p0(ε) and p1(ε) into (6) and noting that, for
small ε, P{Nε = n} = o(ε), n ≥ 2, we may write

Ri,j (x, t + ε)

=
l∑

k=1

πk,j (ε)

(
Ri,k(x − r(k)ε, t)(1 − λε)+ λε

∫ ∞

0
Ri,k(x − r(k)ε − y, t)FY (dy)

)
+ o(ε). (7)

The transition probability functions for the Z process, πi,j (ε), i, j ∈ S, can be written as

πi,j (ε) = δi,j + εqi,j + o(ε), (8)

where δi,j assumes the value 1 when i = j and the value 0 when i �= j . Substituting (8) into
(7) and simplifying gives

Ri,j (x, t + ε) = (1 − λε)Ri,j (x − r(j)ε, t)+ ε(1 − λε)

l∑
k=1

qk,jRi,k(x − r(k)ε, t)

+ λε

∫ ∞

0
Ri,j (x − r(j)ε − y, t)FY (dy)

+ λε2
l∑
k

qk,j

∫ ∞

0
Ri,k(x − r(k)ε − y, t)FY (dy)+ o(ε). (9)

Rearranging and simplifying the terms of (9), dividing through by the time increment ε, and
taking ε → 0, shows that

∂Ri,j (x, t)

∂t
+ ∂Ri,j (x, t)

∂x
r(j)

= −λRi,j (x, t)+
l∑

k=1

qk,jRi,k(x, t)+ λ

∫ ∞

0
Ri,j (x − y, t)FY (dy), (10)

where the right-most term of (10) is the convolution of the distributions Ri,j and FY .

We next set out to solve the partial differential equation (4) by the method of Laplace
transforms. To this end, define the l × l matrix R(x, t) = [Rij (x, t)]. Using matrix notation,
(4) may be written as

∂R(x, t)

∂t
+ ∂R(x, t)

∂x
RD = λ{[R(·, t) ∗ FY ](x)−R(x, t)} +R(x, t)Q, (11)

https://doi.org/10.1239/jap/1152413724 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1152413724


308 J. P. KHAROUFEH ET AL.

where [R(·, t) ∗ FY ](x) denotes the convolution of each element of R(x, t) with FY . We
next provide an LST solution, with respect to the spatial variable x, for the partial differential
equation (11). Define the matrix LST of R(x, t) with respect to x as

R̃(u, t) =
∫ ∞

0
e−uxR(dx, t)

and the l × l diagonal matrix with each element identically equal to

F̃Y (u) =
∫ ∞

0
e−uyFY (dy),

the LST of FY with respect to y, as F̃D(u).

Theorem 2. The LST of the matrix R(x, t) with respect to the spatial variable x is

R̃(u, t) = exp[(Q+ λ(F̃D(u)− I )− uRD)t],
where I denotes the identity matrix.

Proof. Taking the LST of both sides of (11) with respect to x yields the following first-order
ordinary differential equation in t :

dR̃(u, t)

dt
+ R̃(u, t)(uRD + λI −Q− λF̃D(u)) = 0.

The general solution to this ordinary differential equation is obtained via the use of an integrating
factor; we obtain

R̃(u, t) exp[(uRD + λI −Q− λF̃D(u))t] = ψ,

where ψ is a matrix of constants of integration. The final result is obtained by applying the
initial condition R̃(u, 0) = I and rearranging terms.

The initial probability vector of the environment process Z is α = [αi], with αi :=
P{Z0 = i}, i ∈ S. Let e denote a column vector of 1s and denote by ei a column vector whose
ith element is unity and other elements are all 0. An explicit expression for the unconditional
distribution function of the system’s lifetime is

G(x, t) = P{Tx ≤ t} = 1 − αR(x, t)e

and the conditional distribution is

Gi(x, t) = Pi{Tx ≤ t} = 1 − e�i R(x, t)e,

where e�i denotes the transpose of ei .
Define the LSTs of G(x, t) and Gi(x, t) with respect to x as

G̃(u, t) =
∫ ∞

0
e−uxG(dx, t)

and

G̃i(u, t) =
∫ ∞

0
e−uxGi(dx, t),

respectively.
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Theorem 3. The LSTs of the unconditional and conditional first lifetime distributions,G(x, t)
and Gi(x, t), with respect to x are respectively

G̃(u, t) = 1 − α exp((Q+ λ(F̃D(u)− I )− uRD)t)e (12)

and
G̃i(u, t) = 1 − e�i exp((Q+ λ(F̃D(u)− I )− uRD)t)e, (13)

with Re(u) > 0.

Next we examine the unconditional and conditional mean system lifetimes, respectively
E[Tx] and Ei[Tx], for a single-unit system subject to Markovian wear and a Poisson shock
process. The LSTs of E[Tx] and Ei[Tx] with respect to x are respectively

Ẽ[Tu] =
∫ ∞

0
e−ux d E[Tx]

and

Ẽi[Tu] =
∫ ∞

0
e−ux d Ei[Tx].

These are obtained in the following theorem.

Theorem 4. The LST of the unconditional mean lifetime with respect to x is

Ẽ[Tu] = α(uRD −Q− λ(F̃D(u)− I ))−1e,

and that of the conditional mean lifetime is

Ẽi[Tu] = e�i (uRD −Q− λ(F̃D(u)− I ))−1e, (14)

with Re(u) > 0.

Proof. By (12), the distribution function of the system lifetime is

G̃(u, t) = 1 − α exp[(Q+ λ(F̃D(u)− I )− uRD)t]e.
For brevity we write A = Q + λ(F̃D(u) − I ) − uRD , to obtain the following expression for
the LST of G̃(u, t) with respect to t :

G̃(u, s) =
∫ ∞

0
e−st G̃(u, dt) = 1 − αA(sI −A)−1e.

In the usual way, the mean system lifetime is obtained by evaluating the first partial derivative
of G̃(u, s) with respect to s at s = 0. That is,

Ẽ[Tu] = −∂G̃(u, s)
∂s

∣∣∣∣
s=0

= −α(−A)−1e

= α(uRD −Q− λ(F̃D(u)− I ))−1e.

The conditional mean lifetime is obtained analogously, by simply replacing G̃(u, t) by
G̃i(u, t).
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4. Limiting average availability

In this section, we study the asymptotic behavior of the average availability of the maintained
system with hidden failures. The main result for the limiting average availability (Theorem 5)
is contained in Kiessler et al. [6]; however, we review this result within the framework of our
model, which differs from that of [6] in a few important ways. In our model, a failure occurs
when the cumulative degradation (due to wear and shocks) reaches or exceeds a deterministic
threshold. The model in [6] does not consider shocks. Moreover, the numerical approach
we use for computing the limiting average availability is significantly simpler. Specifically,
we apply the LSTs of Section 3 and numerical inversion to simplify the computation of the
required components.

The system is inspected periodically at times in the set I = {kτ : k = 1, 2, . . . }, for some
τ > 0. If, upon inspection, the system is found to have failed (i.e. the cumulative degradation
of the system is at least as large as the tolerable level, x), then it is instantaneously replaced
with a new and identical unit; however, if the system is found not to have failed, then no
action is taken. Failures occurring between inspection epochs cannot be detected or repaired;
thus, failures remain hidden until the next inspection epoch, and the process X remains at the
failed level until the subsequent inspection epoch. We further assume that inspections correctly
diagnose the level of degradation. Define 
 := {ψ(t) : t ≥ 0}, the right-continuous stochastic
process describing the system state by

ψ(t) = 1(Xt < x),

where 1(E) denotes the indicator function of the event E. As defined in [6], the system’s
limiting average availability is given by

Ā = lim
t→∞ t

−1
∫ t

0
E[ψ(w)] dw.

Let Ln denote the lifetime of the nth system and let Rn denote the nth replacement epoch
(with R0 ≡ 0). We further define ξn = ZRn , the state of the environment at the time of the nth
replacement, and Fn, the nth failure epoch. The process {ξn : n ≥ 0} is an irreducible, discrete-
time Markov chain with one-step transition probability matrix P and stationary distribution
p = [pi], i = 1, 2, . . . , l. It is important to note that, by its nature, 
 = {ψ(t) : t ≥ 0} is
not regenerative with respect to the sequence of failure or replacement epochs. This is due
to the fact that successive unit lifetimes do not form an independent, identically distributed
sequence of random variables unless the successive units are placed into service in identical
environment states. Kiessler et al. [6] showed that the bivariate process {(ξn, Rn) : n ≥ 0}
is a Markov renewal process, and that {ψ(t) : t ≥ 0} is Markov regenerative with respect to
{(ξn, Rn) : n ≥ 0}. Consequently, the limiting average availability is obtained by Theorem 5
(see [6, p. 704]).

Theorem 5. The limiting average availability is given by

Ā = lim
t→∞ t

−1
∫ t

0
E[ψ(w)] dw =

∑l
i=1 pi Ei[F1]∑l
i=1 pi Ei[R1]

.

In order to compute the limiting average availability, we will obtain the transition prob-
ability matrix, P , as the limit of the semi-Markov kernel of the process {(ξn, Rn) : n ≥ 0}.
Subsequently, we obtain the stationary distribution, p. We additionally require the conditional
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expectations Ei[R1] and Ei[F1]. Fortunately, the LST of Ei[F1] may be obtained using (14),
and the conditional distribution of F1 is given by (13). Thus, our next objective is to provide
an expression for Ei[R1]. However, we first need to establish that F1 is a bounded random
variable. Let us re-order the wear rates so that r1 < r2 < · · · < rl . That is, r1 corresponds
to the minimum attainable wear rate. The following lemma holds for both the conditional and
unconditional first unit lifetimes.

Lemma 1. The random variable F1 is bounded above by xr−1
1 .

Proof. Let D := {r(i) : i = 1, 2, . . . , l} and let r := (r1, r2, . . . , rl)
� denote the column

vector of ordered wear rates. Furthermore, define the set

A := {a ∈ R
1×l+ : ae = xr−1

1 },

where R
1×l+ denotes the set of l-dimensional row vectors with strictly positive entries. We first

note that
inf{ar + b : a ∈ A, b ≥ 0} ≤ x, (15)

since for a = xr−1
1 e1 and b = 0 we have ar + b = x. Moreover,

inf{ar + b : a ∈ A, b ≥ 0} = inf{ar : a ∈ A}
≥ inf{a(r1e) : a ∈ A}
= x. (16)

From (15) and (16) we see that

x = min{ar + b : a ∈ A, b ≥ 0}. (17)

Let ω ∈ � and define the quantity

wn(ω) :=
∫ x/r1

0
1(r(Zt (ω)) = rn) dt.

By summing over all possible environment states, we see that

l∑
n=1

wn(ω) =
l∑

n=1

∫ x/r1

0
1(r(Zt (ω)) = rn) dt

=
∫ x/r1

0

l∑
n=1

1(r(Zt (ω)) = rn) dt

=
∫ x/r1

0
1(r(Zt (ω)) ∈ D) dt

=
∫ x/r1

0
dt

= xr−1
1 ,

since r(Zt (ω)) ∈ D for almost every t ≥ 0. It follows that the row vector w(ω) := (w1(ω),

. . . , wl(ω)) is a member of A.
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Recall that the total damage due to shocks on the interval [0, x/r1) is given by βx/r1(ω).
Using (1), we may write

Xx/r1(ω) = Wx/r1(ω)+ βx/r1(ω)

=
∫ x/r1

0
r(Zt (ω)) dt + βx/r1(ω)

=
∫ x/r1

0

l∑
n=1

rn1(r(Zt (ω) = rn)) dt + βx/r1(ω)

=
l∑

n=1

∫ x/r1

0
rn1(r(Zt (ω) = rn)) dt + βx/r1(ω)

=
l∑

n=1

wn(ω)rn + βx/r1(ω)

= w(ω)r + βx/r1(ω).

From (17) we conclude that

x = min{Xx/r1(ω) : ω ∈ �}.

Since Xx/r1(ω) ≥ x, it is clear that

|F1(ω)| = F1(ω) = inf{t > 0 : Xt(ω) ≥ x} ≤ xr−1
1 ,

i.e. that the nonnegative random variable F1 is bounded above by xr−1
1 .

Lemma 1 implies thatGi(x, t) = 1 for all t ≥ xr−1
1 . Equipped with this result, we are now

prepared to establish the mean of the first replacement epoch and, subsequently, the limiting
average availability.

Lemma 2. The conditional expectation of the first replacement epoch is given by

Ei[R1] = τ

(
γ −

γ−1∑
n=0

Gi(x, nτ)

)
, (18)

where γ := min{n ≥ 1 : nτ ≥ xr−1
1 } and r1 := min{r(i) : i = 1, 2, . . . , l}.

Proof. The first replacement time, R1, depends explicitly on F1 according to

R1 = inf{w ∈ I : w > F1}.

By construction,F1 corresponds to the lifetime of the first unit and, as such, has the (conditional)
distribution function Gi(x, t), i ∈ S. By conditioning on F1, we obtain

Ei[R1] =
∫ ∞

0
Ei[R1 | F1 = t]Gi(x, dt). (19)
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Because a failure remains hidden until the first inspection following the failure, the integrand
of (19) is

Ei[R1 | F1 = t] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

τ, 0 ≤ t < τ,

2τ, τ ≤ t < 2τ,
...

nτ, (n− 1)τ ≤ t < nτ,

...

(20)

By substituting (20) into (19), we may write

Ei[R1] = τ

∫ τ

0
Gi(x, dt)+ 2τ

∫ 2τ

τ

Gi(x, dt)+ 3τ
∫ 3τ

2τ
Gi(x, dt)+ · · ·

= −τ
∞∑
n=0

Gi(x, nτ), (21)

and by applying Lemma 1 it can be shown that the infinite series −∑∞
n=0Gi(x, nτ) is conver-

gent, with sum
∞∑
n=0

−Gi(x, nτ) = γ −
γ−1∑
n=0

Gi(x, nτ),

where γ = min{n ≥ 1 : nτ ≥ xr−1
1 }. Therefore,

Ei[R1] = τ

(
γ −

γ−1∑
n=0

Gi(x, nτ)

)
.

Finally, we turn our attention to the transition probability matrix, P , for the discrete-time
Markov chain {ξn : n ≥ 0}. Before deriving an expression for the elements of P , we need to
establish the conditional distribution of R1 given the initial environment state.

Lemma 3. Assuming that the initial environment state is i ∈ S, the probability mass function
of R1 is given by

Pi{R1 = nτ } = �i(x, nτ), n ≥ 1,

where �i(x, nτ) := Gi(x, nτ)−Gi(x, (n− 1)τ ) for i ∈ S and n ≥ 1.

Proof. Recall that R1 = inf{w ∈ I : w > F1}. Thus, we obtain the probability distribution
of R1 by conditioning on the first failure epoch given the initial state of Z. For n ≥ 1,

Pi{R1 = nτ } =
∫ ∞

0
Pi{R1 = nτ | F1 = t}Gi(x, dt)

=
∫ ∞

0
1(t ∈ [(n− 1)τ, nτ ])Gi(x, dt)

=
∫ nτ

(n−1)τ
Gi(x, dt)

= Gi(x, nτ)−Gi(x, (n− 1)τ ).
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Finally, we obtain the one-step transition probability matrix for {ξn : n ≥ 0} by computing
the limit of the semi-Markov kernel matrix of the Markov renewal process {(ξn, Rn) : n ≥ 0}.
Theorem 6. The (i, k)th element of the transition probability matrix P = [pi,k], i, k ∈ S, is
given by

pi,k =
γ∑
n=1

πi,k(nτ)�i(x, nτ), (22)

where �i(x, nτ) is obtained from

�i(x, nτ) = L−1{u−1[G̃i(u, nτ)− G̃i(u, (n− 1)τ )]},
L−1 denoting the inverse Laplace transform operator. The integer γ is as defined in Lemma 2.

Proof. Let Ki,k(t) := P{ξ1 = k, R1 ≤ t | ξ0 = i} denote the (i, k)th element of the semi-
Markov kernel, K(t), of the Markov renewal process {(ξn, Rn) : n ≥ 0}. Let us further define

K̃i,k(s) = Ei[e−sR1 1(ZR1 = k)],
with Re(s) > 0. By conditioning on R1, we may write

Ei[e−sR1 1(ZR1 = k)] =
∞∑
n=1

Ei[e−sR1 1(ZR1 = k) | R1 = nτ ] Pi{R1 = nτ }

=
∞∑
n=1

e−snτ Ei[1(Znτ = k)]�i(x, nτ)

=
∞∑
n=1

e−snτ Pi{Znτ = k}�i(x, nτ)

=
∞∑
n=1

e−snτπi,k(nτ)�i(x, nτ).

By the final value theorem of Laplace transforms, we may obtain pi,k as

pi,k = lim
t→∞Ki,k(t) = lim

s→0
K̃i,k(s) = lim

s→0

∞∑
n=1

e−snτπi,k(nτ)�i(x, nτ).

Recall from Lemma 1 that �i(x, nτ) = 0 for all n ≥ γ + 1; we thus have

pi,k = lim
s→0

∞∑
n=1

e−snτπi,k(nτ)�i(x, nτ)

= lim
s→0

γ∑
n=1

e−snτπi,k(nτ)�i(x, nτ)

=
γ∑
n=1

lim
s→0

e−snτπi,k(nτ)�i(x, nτ)

=
γ∑
n=1

πi,k(nτ)�i(x, nτ).
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In comparing (22) with Corollary 1 of [6], we note that our expression requires the evaluation
of only a finite sum and (numerical) Laplace transform inversion to obtain �i(x, nτ), Ei[F1],
and Ei[R1]. Fortunately, numerical inversion algorithms abound for this task, and the truncation
point γ is well defined by the parameters τ and r1. By contrast, the results of [6] require
evaluation of an infinite Fourier series to compute pi,k and the conditional expectations.

5. Numerical examples

In this section, we illustrate the computation of the limiting average availability by means of
two examples. In each example, we compute the conditional expectations Ei[F1] and Ei[R1],
the matrix P , the stationary distribution, p, and the limiting average availability, Ā. The results
were obtained via numerical Laplace transform inversion using the robust technique of [1].
The algorithm was coded and executed in the MATLAB® computing environment. In each of
the two cases, Z is an irreducible, continuous-time Markov chain on finite state space S with
generator matrix Q.

Example 1. (l = 2.) The first case is a simple environment which toggles between two distinct
states (S = {1, 2}) according to the generator matrix

Q =
[
− 25

3
25
3

25
3 − 25

3

]
.

The diagonal matrix of state-dependent wear rates is

RD = diag( 13
12 ,

1
4 ),

while the LST of the shock magnitude distribution function is

F̃Y (u) = 4

4 + u
.

Shocks occur according to a Poisson process with rate parameter λ = 0.5. The threshold
degradation level for failure, in units of degradation, is x = 1. Inspections occur every τ = 0.1
time units. By applying equations (14) and (18), we compute

E1[F1] = 1.2976, E2[F1] = 1.3609

and
E1[R1] = 1.3475, E2[R1] = 1.4109.

By selecting the truncation point γ using Theorem 6, the transition probability matrix is found
to be

P =
[

0.5002 0.4998
0.4998 0.5002

]
with the obvious stationary distribution

p = [
0.5000 0.5000

]
.

Subsequently, the limiting average availability is found to be

Ā =
∑2
i=1 pi Ei[F1]∑2
i=1 pi Ei[R1]

= 0.9638.
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Table 1: Stationary probabilities and conditional means (Example 2).

Measure i = 1 i = 2 i = 3 i = 4 i = 5

pi 0.1160 0.0277 0.5308 0.3135 0.0120
Ei [R1] 11.6861 11.4400 11.4752 11.2014 11.3457
Ei [F1] 9.1931 8.9485 8.9836 8.7116 8.8542

Example 2. (l = 5.) In this case, the environment process is a five-state, continuous-time
Markov chain with state space S = {1, 2, 3, 4, 5}. The generator matrix for the process is

Q =

⎡⎢⎢⎢⎢⎣
−0.500 0.125 0.125 0.125 0.125

0.400 −2.000 0.400 0.600 0.600
0.025 0.025 −0.100 0.025 0.025
0.050 0.050 0.050 −0.200 0.050
1.500 1.000 1.000 1.500 −5.000

⎤⎥⎥⎥⎥⎦ .
The diagonal matrix of state-dependent wear rates is

RD = diag(1, 2, 3, 4, 10),

while the LST of the shock magnitude distribution function is

F̃Y (u) =
(

0.2

0.2 + u

)8

.

Shocks occur according to a Poisson process with parameter λ = 0.25. The threshold
degradation level for failure of the system, in units of degradation, is x = 100. Inspections
occur every τ = 5 time units. Applying (22) gives

P =

⎡⎢⎢⎢⎢⎣
0.1393 0.0300 0.4810 0.3368 0.0129
0.1262 0.0291 0.4868 0.3454 0.0126
0.1045 0.0258 0.6115 0.2471 0.0112
0.1255 0.0301 0.4181 0.4133 0.0130
0.1268 0.0291 0.4876 0.3439 0.0126

⎤⎥⎥⎥⎥⎦ .
Table 1 summarizes the stationary probabilities and the conditional expectations for this case.

From these values, we compute the limiting average availability to be

Ā =
∑5
i=1 pi Ei[F1]∑5
i=1 pi Ei[R1]

= 0.7817.
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