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Abstract. We describe the technique of Principal Components Analysis 
(PCA) as applied to the analysis of variable star data. It is shown that 
PCA is an efficient way of describing light curve structure. 

1. Introduction 

Recent microlensing surveys have produced a vast quantity of variable star data. 
While Fourier decomposition is an effective way to analyse the nonlinear struc­
ture of variable star light and velocity curves, we seek a way of analysing an 
entire family of light or velocity curves simultaneously. One approach is to use 
Principal Components Analysis (PCA). PCA seeks to explain variance in data 
by projecting it onto a set of orthogonal axes so as to maximise the variance of 
the projections. Let X;J be the j observed point on the light curve of the ith 

star, 1 < j < P, 1 < i < TV. Then we can form the correlation matrix 

i=N 

sjk = J2 x^xki • (i) 
! = 1 

This measures the correlation between the j th and fcth point on the light curve, 
averaged over all TV stars in the sample. It can be shown that in order to 
maximise the variance between a set of new orthogonal axes «' it is necessary 
to solve the eigenvalue equation, 

Su = Aw . (2) 

This equation results in a set of vectors it', the eigenvectors, which are the new 
axes we seek, and their corresponding eigenvalues, A*. We can project each 
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Figure 1. The first four principal components plotted against period, 

observed light curve onto a given axis by forming the dot product, 

PCt(start) = J2 Xn nu j ' (3) 
J=I 

In equation (3), we refer to the left hand side as the t principal component. 
This is a number for each star. The observed light curves can be reproduced by 
the formula 

t=p 
^(PCt(star«))Mf . (4) 
t=\ 

Equation (4) shows that an observed light curve is expressed as a linear combi­
nation of "basis light curves", which are the eigenvectors w* of the correlation 
matrix S. The quantity A'2, after suitable normalisation, shows the percentage 
variance in the sample explained by the ttil principal component. A plot of 
PCt(stari) against period indicates how that particular coefficient in equation 
(4) changes with period. 

Data and Results 

Using data from the Galaxy (Moffett & Barnes 1984) and the Clouds (Berdnikov 
& Turner 1995), we can perform the PCA analysis described in equations (1) to 
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Figure 2. Reproduction of light curves using PCA, solid lines are 
data and dashed lines are reproductions using PCA. 
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Figure 3. Error estimates for the first principal component. 

(4). In our case the X matrix actually consisted of the Fourier coefficients a,b 
in the following decomposition of the observed light curves, 

3=N 

}] (a; cos(kut) + bi s'm(ku;t)) (5) 
i = i 

so that X,i = eii, Xi2 = 6i, and so on. Fig. 1 shows plots of PCi(stari) 
against period. We see clearly the presence of the P2/P0 = 0.5 resonance at 
Po = 10 days. Further, there is an indication of resonances at longer period and 
intriguing features, for example, at logP = 1.6. Its interesting to note that the 
first four principal components explain about 80-90% of the total variance. 

Fig. 2 shows how the PCA coefficients in Fig. 1 can be used to reconstruct 
light curves. The middle and bottom panels show a bump Cepheid where we 
reconstruct the light curve with 4 and 6 parameters in equation (4), respectively. 
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Note that bump Cepheid curves can be reproduced with as few as 6 parame­
ters in contrast to a Fourier decomposition where an order 6 fit or greater (12 
parameters) is often required. 

Fig. 3 shows our estimate of the error on the first PCA coefficient. We use 
the formulae derived by Petersen (1986) to estimate the error on the coefficients 
in equation (5). Then we use a. convenient attribute of PCA: if the data noise 
is normally distributed then so is the noise on the principal components, 

o-(PCAcoefficients) = a(Xij). 

Fig. 3 uses this expression to plot error bars on the first principal component, 
and indicates that the progressions with period seen in Fig. 1 are real. Similar 
figures exist for the other PCA components shown in Fig. 1. 

3. Conclusions 

The technique of Principal Components Analysis offers an efficient way to de­
scribe the structure of variable star light curves and is particularly appropriate 
for large homogeneous datasets (e.g. MACHO, EROS). 
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Discussion 

Ivan Andronov: 1. Orthogonal vectors (functions, components) are mostly used 
to make the error estimates smaller and uncorrelated. Are the principal light 
curves orthogonal? 
2. How is the number of parameters determined, because the total number of 
principal components should be equal to the number of data? 
3. Are the errors of the coefficients estimated? 

Shashi Kanbur: 1. The principal light curves are orthogonal. 
2. The number of parameters is determined by the solution of Su = Xu. 
3. Yes, the errors are estimated as shown in the diagram. 

Geza Kovdcs: In the figures you showed, none of the light curves exhibited 
bumps. How does your method of principal components analysis work if you 
have bump(s) on the light curve? 

Shashi Kanbur: The first two eigenvectors have bumps on either side of the 
maximum. So the coefficient multiplying these eigenvectors changes to reflect 
bumps passing from one side to the other. The higher order eigenvectors also 
have bumps on them which could explain other bumps on observed light curves.. 
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