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GENERALISATION OF A CORRECTED SIMPSON'S FORMULA
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Abstract

The results obtained by A. J. Roberts and N. Ujevic in a recent paper are generalised.
A number of inequalities for functions whose derivatives are either functions of bounded
variation or Lipschitzian functions or /f-integrable functions are derived. Also, some error
estimates for the derived formulae are obtained.
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1. Introduction

In [7], N. Ujevic and A. J. Roberts derived a three-point quadrature formula of closed
type that improves on Simpson's rule. Their results are encapsulated in the following
theorem.

THEOREM 1.1. For f e C°°[a, b], we have

jf f(x) dx = ̂  \lf{a) + 16/

( 1 - 1 )

where the error term is, to a leading order estimate,

(i^f(5)(b)-f(5)(a)]- (L2)
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368 J. Pe£aric and I. Franjid [2]

In [3], the following two identities, named the extended Euler formulae, have been
proved. Forn > 1,

fix) = I fit)dr + Tn(x) + R*(x) (1.3)
Jo

and

fix) = f fiOdt + Tn_tix) + R2
nix), (1.4)

Jo
where

k=\ '

for 1 < m < n, Toix) = 0 and

i ! Jo
and

1 /"'
= / [B'n(x - 0 - Bn(x)] df(

11 • Jo

Here, as in the rest of the paper, we write f0 g(t)d<p(t) to denote the Riemann-
Stieltjes integral with respect to a function <p : [0, 1] —• OS of bounded variation, and
/o gV)dt for the Riemann integral. The identities (1.3) and (1.4) extend the well-
known formula for the expansion of an arbitrary function in Bernoulli polynomials
[5, page 17]. They hold for every function / : [0, 1] ->• K such that f(n~]) is a
continuous function of bounded variation on [0, 1], for some n > 1 and for every
x € [0, 1]. The functions Bk(t) are the Bernoulli polynomials, Bk = Bk(0) are the
Bernoulli numbers, and B^(t), k > 0, are periodic functions of period 1, related to the
Bernoulli polynomials by

Bk'(t) = B k ( t ) , 0 < r < l , and Bk(t + 1) = B*(t), t e R.

The Bernoulli polynomials Bk(t), k > 0, are uniquely determined by the following
identities:

B'k(t) = *flt_,(/), k > 1; BQ(t) = 1 (1.6)

and

Bk(t + 1) - Bk(t) = ktk~\ k>0. (1.7)

For some further details on the Bernoulli polynomials and the Bernoulli numbers see,
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for example, [1] or [2]. We have

B0(t) = 1, B2(t) = t2 - t + \ , B4(t) = t4- 2t3 + t2-^-,
6 30 n os

1 3 1 5 5 1 l '
B() B() ' 2 + B() 5 4 + '
Bl(t) = t - - , B,(j) = t t + t, B5(t) = t t + t t ,

2 2 2 2 3 6

so that B^(t) = 1 and B*(t) is a discontinuous function with a jump of —1 at each
integer. From (1.7) it follows that Bk(l) = Bk(0) = Bk for k > 2, so that B*(t) are
continuous functions for k > 2. Moreover, using (1.6) we get

B*k'(t) = kB*k_i(t), (1.9)

for every / € K when k > 3, and for every f € (R \ Z when k = 1,2.
The aim of this paper is to establish generalisations of formula (1.1) and other

results from [7] together with various error estimates for the quadrature rules based
on such generalisations.

We will use the extended Euler formulae (1.3) and (1.4) to obtain two new integral
identities, and then prove a number of inequalities related to those formulae for
functions whose derivatives are either functions of bounded variation, Lipschitzian
functions or /?-integrable functions.

2. Main results

For k > 1, we define functions Gk(t) and Fk(t) such that

G*(0 = 7fl;(0 -t) + 16S;O/2 - t) + lB*k{\ - t)

= \AB*k{\ - O + 16fl;U/2-O, ' e K

and

Fk(t) = Gk(t) -Bk, t € K, k > 1,

where Bk = 7B*(0) + 16^(1/2) + 7fi*(l), k > 1.
Using (1.8) we get B, = fi3 = fi4 = 55 = 0 and B2 = 1. Also, for it > 2, we have

Bk = Gt(0), that is,

Fk(t) = Gk(t) - Gk(0), k>2, and Fl(t) = Gi(t), t e IE.

Obviously, Gt(r) and /^(f) are periodic functions of period 1 and continuous for
k >2.

Let / : [0, 1] -> K be such that fin~l) exists on [0, 1] for some n > 1. We
introduce the following notation:

£>(0, 1) = ^ [ 7 / ( 0 ) + 16/(1/2) + 7/(1)].
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Further, we define fo(O, 1) = 0 and, for 1 < m < n,

t ( 0 , 1) = ^[77^(0) + 167m(l/2) + 77m(l)],

where Tm(x) is given by (1.5). It is easy to see that f,(0, 1) = 0 and f2(0, 1) =
f3(0, 1) = f4(0, 1) = fs(0, 1) = [/'(I) - /'(0)]/60 and for m > 6,

rm(0, i) = - 2 ^ T 7
*=2

1 m D

-in i—l lr\ *-J

it=6

i i Im/21 «

= ^[/ '(D - /'(0)] + ^ E

where [m/2] is the greatest integer less than or equal to m/2.
In the next theorem we establish two formulae which play a key role in this paper.

THEOREM 2.1. Let f : [0, 1] -> K be such that f("~l) is a continuous function of
bounded variation on [0, I], for some n > 1. Then

i:fit) At = D(0, 1) - rB(0, 1) + R\{f) (2.2)
Jo

and
f f(t) At = D(0, 1) - fn_,(0, 1) + R2

nif), (2.3)
Jo

where

PROOF. Put J: = 0, 1/2, 1 in (1.3) to get three new formulae. Next, we multiply
these new formulae by 7/30, 16/30, 7/30, respectively, and add. The result is (2.2).
Formula (2.3) is obtained from (1.4) analogously. •

REMARK 1. The interval [0, 1] is used for simplicity and involves no loss in gener-
ality. In what follows, Theorem 2.1 and others will be applied, without comment, to
any interval that is convenient.

So, it is easy to prove that if / : [a, b] -*• 05 is such that / ( n~" is a continuous
function of bounded variation on [a, b], for some n > 1, then

f f(t)dt = D(a, b) - fn(a, b) + ( f c ~ f / Gn (f^-) df"~l\t) (2.4)
Ja 30«! Ja \b-aj
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and
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f«)dt = D(a, b) - fn.x{a, b) + ^—°-f- f Fn ('j—l) df^~x\t), (2.5)
30«! Ja \b-aj

where

and

D(a, b) = ^ \lf{a) + 16/ ( ^

Ua, b) = ^

REMARK 2. Suppose that / : [0, 1] ->• R is such that f(n) exists and is integrable
on [0, 1], for some n > 1. In this case (2.2) holds with

while (2.3) holds with

Direct calculation shows that

- 7 , / = 0,

-30; + 7, 0 < t < 1/2,

- 3 0 / + 23, l / 2 < / < l ,

[30r2 - 14/ + 1, 0 < r < 1/2,

| 3 0 / 2 - 4 6 / + 17, 1/2 < / < 1,

[30/ 2 -14/ , 0 < r < 1/2,

[30 / 2 -46 / +16, l / 2 < / < l ,

f - 3 0 / 3 + 2 1 / 2 - 3 / , 0 < r < 1/2,

and

= G4(t) =

F5(t) = G5(t) =

f4 - 28r3 + 6/2, 0 < r < 1/2,

30/4 - 92/3 + 102f2 - 48/+ 8, 1/2 < / < 1

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

0 < / < 1/2,

1/2 < / < 1.

(2.11)
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Applying (2.2) for n = 1 we get

/o J

and for n = 2, 3,4, 5

/ f{t) At - D(0, 1) + ^ - ^ — ^ - i - J -
Jo 60

The same identities are obtained from (2.3) for n = 1,3,4,5, since Fk(t) = Gk (t) for
k = 1, 3, 4, 5, while for n = 2 we obtain

f f(t)dt - D(0, 1) = 1 /" (G2(0 - Dd/(1)(0
Jo 60 Jo

since F2(0 = G2(f) — 1. For n = 6, (2.3) yields an identity

Next, we use formulae derived in Theorem 2.1 to prove a number of inequalities
for various classes of functions. First, we need some properties of the functions Gk(t)
and Fk(t) defined earlier (see, for example, [5]).

The Bernoulli polynomials are symmetric with respect to 1/2, that is,

flt(l-r) = (-l)*B*(0. V f e R , * > 1 . (2.12)

Also, we have Bk(\) = Bk(0) = Bk, k > 2, B,(l) = -fi,(0) = 1/2 and fi2,_, = 0,
j > 2. Using fin(l/2) = - ( 1 - 2l-")Bn, j > 1, we get

B 2 , - i = 0 , ; > 1 (2.13)

and

B2J = HB2j + 16fl2y(l/2) = - ( 2 - 16 • 2l-2J)B2J, j > 1. (2.14)

Now, (2.13) implies that

F 2 j - i ( t ) = G y - i i t ) , j > l , (2.15)
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and (2.14) implies

F2j(t) = G 2 j ( t ) - B v = G 2 j « ) + ( 2 - 1 6 - 2 l - 2 i ) B 2 j , j > l . ( 2 . 1 6 )

Further, the points 0 and 1 are zeros of Fk(t) = Gt(t) - G*(0), k > 2, that is,
Fk(0) = Ft(l) = 0, k > 2. As we shall see below, 0 and 1 are the only zeros of F2j(t)
for ; > 3. Next, setting t = 1/2 in (2.12) we get

= (-l)*fl t(l/2), k > 1,

which implies that

Using the above formulae, we get F2,_t(l/2) = G2,_,(l/2) = 0, j > 1. We shall see
that 0, 1/2 and 1 are the only zeros of F2j_i(r) = G2j-i(t), for j > 3. Also, note that

G2,(l/2) = 14B2,(l/2) + 16fl2,- = (2 + 14 • 2'-

and

F2j(l/2) = G2;(l/2) - B2j = (4 - 22-2J)B2J, j > 1. (2.17)

LEMMA 2.2. For k > 2 we have

and

PROOF. AS we noted in the introduction, the functions B^(t) are periodic with
period 1 and continuous for k > 2. Therefore, for k > 2 and 0 < t < 1 we have

G*(l - 1 ) = UB*k{t) + \6B*k(t - 1/2)

j 14B*(0 + 16fl*(f + 1/2), 0 < f < 1/2,

\ l6Bk(t-l/2), l/2<t<l

l6Bk(3/2-t), 1/2 < / <

which proves the first identity. Further, we have Fk(t) = Gk(t) — Gk(0) and
(-l)*G*(0) = Gk(0), since G2>+1(0) = 0, so that we have

Fk(l -t) = G*(l - 0 - G*(0) = (-l)*[Gt(r) - Gt(0)] = (-l)kFk(t),

which proves the second identity. D
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Note that the identities established in Lemma 2.2 are valid for k = 1, too, except at
the points 0, 1/2, 1 of discontinuity of Ft(t) = Gx(t).

LEMMA 2.3. For k > 3 the JUnction G2t_i(O has no zeros in the interval (0, 1/2).
The sign of this function is determined by

(- l)*G2,_i(O>0, 0 < f < 1/2.

PROOF. For k = 3, G5(t) is given by (2.11) and it is easy to see that

G5(0 < 0, 0 < / < 1/2.

Thus our assertion is true for k = 3. Now, assume k > 4 so 2k — 1 > 7. G2*_i(0 is
continuous and an at least twice differentiable function. Using (1.9) we get

and

Let us suppose that G2*_3 has no zeros in the interval (0, 1/2). We know that 0 and
1/2 are zeros ofG2t_i(0 but let us suppose that some a, 0 < a < 1/2, is also a zero of
G2*_i(0. Then inside each of the intervals (0, a) and (a, 1/2) the derivative G'2jt_,(0
must have at least one zero, say /}j, 0 < ft < a and /J2, a < fi2 < 1/2. Therefore
the second derivative G^. , (0 must have at least one zero inside the interval (yS,, &).
Thus from the assumption that G2k-i(0 has a zero inside the interval (0, 1/2), it
follows that (2k — l)(2k — 2)G2t_3(r) also has a zero inside this interval which is not
true. Therefore, G2t_i (r) cannot have a zero inside the interval (0, 1/2). To determine
the sign of G2*_i(O, note that G2t_i(l/4) = 2£2*_,(l/4). We have (see, for example,
[1])

(-l)kB2k_l(t)>0, 0<t<l/2,

which implies

(-l)*Ga_,(l/4) = 2 • (-l)*fla-i(l/4) > 0.

Consequently, we have (-1)*G2*_,(O > 0, for 0 < t < 1/2. •

COROLLARY 2.4. For k > 3, the functions (-1)*"1 F2k(t) and (-\)k~xG2k(t) are
strictly increasing on the interval (0, 1/2) and strictly decreasing on the interval
(1/2, 1). Further, fork > 3, we have

max|F2t(OI=4(l-2-2i)|B2t|
(£[0,1]

and

https://doi.org/10.1017/S1446181100009895 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009895


[9] Generalisation of a corrected Simpson's formula 375

PROOF. Using (1.9) we get

[ ( - D ' - ' ^ a ) ] ' = [(- l )*- 'Ga(O] ' = ( - 0 * • 2k • G a - i (0-

From Lemma 2.3 we conclude that [(- l )*~'fa(0] ' > 0 for 0 < t < 1/2. Thus
(-1 )*"lF2k(t) and (-1)*~'G2*(O are strictly increasing on the interval (0, 1/2). Also,
by Lemma 2.2, we have Flk{\ - t) = F2k{t) and G2*(l - t) = Gu(t) for 0 < / < 1,
which implies that (— l)k~[F2k(t) and (—l)*~'G2t(/) are strictly decreasing on the
interval (1/2, 1). Further, F2t(0) = F2*(l) = 0, which implies that |F2*(0| achieves
its maximum at / = 1/2, that is,

Also,

max |F2*(/)I = |F a ( l /2) | = (4 - 22-2*)|fi2*|.
'£(0.1]

max |Ga(OI = max{|G2t(0)|, |G a

which completes the proof. D

COROLLARY 2.5. Fork > 3, we have

[ | F a _ , ( 0 | d / = f | G 2 , _ , ( O | d ? = 7 2 *
Jo Jo k

Also, we have

[2k)\B2k\f | f a (Old / = \B2k\ = (2 - 16 • 2[~2k

Jo

I |G2t(O|d/<
Jo

and

PROOF. Using (1.9) it is easy to see that

G^(0 = -/wGm_,(0, ««>3. (2.18)

Now, using Lemmas 2.2-2.3 and (2.18) we get

/ | G a - . ( 0 | d / = 2 / Ga-.(Odr
Jo Jo
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which proves the first assertion. Since F2k(0) = F2k(l) = 0, from Corollary 2.4
we conclude that F2k(t) does not change sign on (0, 1). Therefore, using (2.16) and
(2.18), we get

/ '
Jo

\F2k(D\dt = f F2k(t)dt = f (G2t(t)-B2k)dt
Jo Jo v '

1

2k + 1
Ga+i(O -B2k = \B2k\,

which proves the second assertion. Finally, we use (2.16) together with the triangle
inequality to obtain

f |G2*(
Jo

F2k(t) + B
2k

dt < I |Fa(0|d/
Jo

which proves the third assertion. •
THEOREM 2.6. Let f : [0, 1] - • WL be such that f{n~" is an L-Lipschitzian function

on [0, 1 ] for some n > 1. 77ie/i

and

f fO)dt-
Jo

i:

£>(0, l) + fn_,(0, F
n(O|d/ (2.19)

f(t)dt - D(0, 1) + fn(0, 7H(t)\dt. (2.20)

PROOF. For any integrable function <t> : [0, 1] -» K we have

(2.21)

since / ' " " is an L-Lipschitzian function. If we take <t>(/) = Fn(t), we'll get

- / Fn(t)dfl"-U(t) < / \Fn(t)\dt.
i! Jo 30«! y030/i!

Inequality (2.19) is obtained from identity (2.3) after applying the above inequality.
Similarly, we apply (2.21) for <!>(/) = Gn(t) and then use (2.2) to obtain inequality
(2.20). •

COROLLARY 2.7. Let f : [0, 1 ] -> K. / / / is L-Lipschitzian on [0, 1], then

f(t)dt - D(0, 1)
113 ,

< L.
~ 900
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If f is L-Lipschitzian on [0, 1], then

697

377

f(t)dt - D(0, 1)

PROOF. From (2.6) and (2.8) we get

40500
L.

/•' 113 fl 697
/ |F,(0|d/ = — and / \F2(t)\dt = — .

Jo 3U JO o/5

Applying (2.19) for/i = 1, 2, we get the above inequalities.

Using (2.13) and (2.14), for m > 6 from (2.1) we get

D

t(0, 1) = - [/'(I) - /'(0)]
DU

1 | m / 2 ) B

30 f^
- 2) (2.22)

COROLLARY 2.8. Let f : [0, 1] -*• R be such that / ( n~" is an L-Lipschitzian
function on [0, I] for some n > 5. For any integer r such that 1 < r < n/2 define

Dr(f) •= ^ L23)

/ /n = 2Jt — 1, Jk > 3,

/( /)dr-D(O, 1) + D,_,(/)
15(2*)!

Ifn = 2k,k> 3, then

/ (Od/ -D(0 , 1) + Dt_,(/)

a/ic?

I/' - D(0, Dk(f)

30(2*)!

15(2*)!

( 2 - 16 J2*l

(2-16-2|-2*)|B2*l

PROOF. For n = 2k - 1, by (2.22) we have fn_,(0, 1) = Dt_,(/) . Thus the
first inequality follows from Corollary 2.5 and (2.19). For n = 2k, by (2.22) we
have fn_,(0, 1) = Dt_,(/) and 7n(0, 1) = Dt(f). Now, the second inequality
follows from Corollary 2.5 and (2.19), while the third follows from Corollary 2.5
and (2.20). D
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REMARK 3. Suppose that / : [0, 1] -» OS is such that / ( n ) exists and is bounded
on [0, 1], for some n > 1. Therefore the inequalities established in Theorem 2.6 hold
with L = H/^Hoo.

THEOREM 2.9. Let / : [0, 1] -»• R be such that fl"-]) is a continuous function of
bounded variation on [0, 1] for some n > 1. Then

i: 1

and

f
Jo

/(Od/-D(0, l) + fB(0,

30«!

1

30n\

,\( Wn-I)\ (2.24)max|Fn(O|Vo'(/
('

max|Gn(O|Vo
I(/(n-1)), (2.25)

where Vo'(/'""") is the total variation of' f(n~l) on [0, 1].

/„'
PROOF. If * : [0, 1] is bounded on [0, 1] and the Riemann-Stieltjes integral

exists, then

i: (€[0.1]
(2.26)

Now, (2.24) is obtained from identity (2.3) after applying the above inequality
for 0 ( 0 = Fn(t). Analogously, we derive inequality (2.25) from identity (2.2) by
applying (2.26) to <J>(/) = Gn(t). D

COROLLARY 2.10. Let f : [0,1]

variation on [0, 1 ], then
i. If f is a continuous function of bounded

f
Jn

f(t)dt-D(O,l)

If f is a continuous function of bounded variation on [0, 1], then

i:f(t)dt-D(O,\)
49

T800
vj(f').

PROOF. From the explicit expressions (2.6) and (2.8), we get

/1 \ / 7 \ 49
max |F,(01 = - F , - = 8 and max |F2(/)| = F2 — = — .
'€|o.n \2/ '£io.i| \ 3 0 / 30

We get the above inequalities from (2.24) for n = 1 and n = 2. D
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COROLLARY 2.11. Let f : [0, 1] -*• Rbe such that /<"-') is a continuous function of
bounded variation on [0, 1] forsome n > 5. Define Dr(f), r > 1 as in Corollary 2.8.
Ifn = 2* - 1, * > 3, then

r
Ifn = 2k,k> 3, then

f f(t) dt - £>((
Jo

1

30(2* - 1)! relO.ll
max\F2k_dt)W0\f (2*-2K

and

f
Jo

f(t)dt-D(0,l)

15(2*)!

1

15(2*)!(l+l-2l-2k)\B2k\V0\f
l2k-i>).

PROOF. The argument is similar to that used in the proof of Corollary 2.8. We
apply Theorem 2.9 and use the formulae established in Corollary 2.4. •

REMARK 4. Suppose that / ( n ) : [0, 1] -> R is an /?-integrable function for some
n > 1. In this case f(n~l) is a continuous function of bounded variation on [0, 1] and we
have Vo

l ( / ( ' - l ) ) = /„' \fM(t)\dt = | | / ( n ) | | | . Therefore the inequalities established in
Theorem 2.9 hold with | | / ( n ) | | i in place of V^ /*"" " ) . A similar observation can be
made for the results of Corollaries 2.10 and 2.11.

THEOREM 2.12. Assume (p, q) is a pair of conjugate exponents, that is, 1 <p, q <oo,
1/P + 1/q = I or p = oo, q = 1. Let \f(n)\p : [0, 1] ->• OS be an R-integrable

function for some n > 1. Then we have

/( /)df-D(O, <K(n,p)\\fin)\ (2.27)

and

where

and

f
Jo

f(t)dt-D(0, l) + fn(0, <K*(n,p)\\fM\\p, (2.28)

Vq
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PROOF. Applying the Holder inequality we have

1

[14]

— I30/2! Jo
Fn{t)fn\t)dt

[/q

Bearing Remark 2 in mind, from the above inequality and (2.3), we get estimate (2.27).
Similarly, from (2.2) we obtain estimate (2.28). •

REMARK 5. For p = oo we have

Ar(n ,oo)=- j - f \Fn(t)\dt and K*(n, oo) = - j - / \Gn(t)\dt.
30«! Jo 30n! Jo

The results established in Theorem 2.12 for p = oo coincide with the results of
Theorem 2.6 with L = ||/(n)|loo- Moreover, by Remark 3 and Corollary 2.7, we have

/ '
Jo

f(t)dt-D(O,l) 11 = 1,2,

where

and

REMARK 6. Let us define for p = 1

1

30/i!
max|Fn(0| and K*(n, 1) =

30n!
max |Gn(OI-

Then, using Remark 4 and Theorem 2.9, we can extend the results established in
Theorem 2.12 to the pair p = 1, q = oo. Also, by Remark 4 and Corollary 2.10, we
have

/(Od/-D(0, < K{n,

where K(l , 1) = 4/15 and K(2, 1) = 49/1800.

REMARK 7. Note that /C*(l, p) = K(\, p), for 1 < p < oo, since d ( 0 =
Also, for 1 < p < oo, we can easily calculate K(\, p):

l/<7
l < p s e ° -

In the limit case when p —> 1, that is, when q —> oo, we have

'/9 4

75
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Now we use (2.2) to obtain a Griiss-type inequality related to the formulae derived
in Theorem 2.1. To do this we need the following two technical lemmas. The first
one was proved in [4] and the second one is the key result from [6].

LEMMA 2.13. Let k > 1 and y € K. Then /„' B{(y - t) At = 0.

LEMMA 2.14. Let F, G : [0, 1] -*• D& be two integrable functions. If

m < F(t) < M, 0 < I < 1,

and-f^G(t)dt = 0, then

f
Jo

F(t)G(t)dt
M — mf

Jo

(2.29)

THEOREM 2.15. Let f : [0, 1] -* R be such that f(n) exists and is integrable on
[0, I], for some n > 1. Suppose mn < f{n)(t) < Mn, 0 < / < 1, for some constants
mn and Mn. Then

i:f(t)dt-D(0, l) + fn(0, 1)

-w,) /1800

- m2)/20250

253(M3 - m3)/720000

(M4-m4)/29160
1 * 2 * 1

15(2*)!
- 1 * 2 * 1

-m2k): 30(2*)!

PROOF. By Remark 2 we can rewrite Rl
n(f) as

for n = 1,

forn = 2 ,

for n = 3,

for n = 4, (2.30)

forn = 2k - 1, k > 3,

for n = 2k, k > 3.

where F(t) = /""(/) and G(t) = Gn(t), 0 < / < 1. Using Lemma 2.13 we get

/ G(t)dt = 0 .
Jo

Also, using Corollary 2.5 for n > 5 we get

[ \Gn(t)\dt
Jo

fo r« = 2A: - 1.

< (4-16-22-2*)|fi2 t | for/i = 2*.
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For n = 1, 2, 3, 4 we have

[16]

" IS - - / „ '<«'> '* = 675 •
_ 4

4(r)l ' = 8~T"

We apply inequality (2.29) to obtain the estimate

— m,)/1800

= 19x/l9(M2 - m2)/20250

= 253(M3 - /w3)/720000

= (M, - w4)/29160

15 (2K)!

< (2 - 16 • 2'"2*)(M2, - mlk)

for n = 1,

for n = 2,

forn = 3,

for n = 4,

forn = 2/: — 1, & > 3 ,

for n = 2k, k>3,30(2A:)!

which proves our assertion. •

REMARK 8. Results from Theorem 2.15 for n = 2, ..., 6 were obtained in [7].

In the following discussion we assume that / : [0, 1] —*• K has a continuous
derivative of order n, for some n > 1. In this case we can use (2.3) and the second
formula from Remark 2 to obtain, for n = Ik,

*L(/)= 1 F2k(s)fak)(s) ds. (2.31)

THEOREM 2.16. If f : [0, 1] -> 0& is such that fak) is a continuous function on
[0, 1 ], for some k > 3, then there exists a point rj € [0, 1] such that

R\k(f) = ~ 16 • (2.32)

PROOF. Using (2.31) we can rewrite R\k{f) as
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where

f
Jo

= f (-\)k-lF2lc(s)f{n\s)ds. (2.34)
J

From Corollary 2.4 it follows that (-1)*"' F2k(s) > 0, for 0 < s < 1, and the claim
follows from the mean value theorem for integrals and Corollary 2.5. D

REMARK 9. For k = 3, formula (2.32) reduces to

604^00 ' ^

The same approximation was obtained in [7].

COROLLARY 2.17. Let f € C°°[0, 1] and k e R be such that 0 < X < 2n and
\f(2k)U)\ < X2kfort G [0, 1] andk > k0 for some k0 > 3. Then

Io / ( , ) , / , = D ( O , 1 ) - - > , ^ ( 1 6 - 2 1 - 2 ' - 2 )

(2.35)

PROOF. From Theorem 2.16, when k > kQ\t follows that

2 ^
15(2*)! (2;r)«A 15

so (2.35) follows. •

THEOREM 2.18. If f : [0, 1] -> K w JMC/I r/jof / ( 2 i ) w a continuous function on
[0, 1 ], /or sowe A: > 3, anc? does not change its sign on [0, 1 ], then there exists a point
6 e [0, 1] such that

R2
2k(f) = °4-^§^^ [fm-l)W ~ fm-l)(0)]. (2.36)

PROOF. Suppose that fak)(t) > 0, 0 < / < 1. From Corollary 2.4 it follows that

0 < (-l)k~lFuls) < (-l)*-'F2A.(l/2), 0 < s < 1.

Therefore, if Jk is given by (2.34), then 0 < Jt < {-\)k^Flk{\/2) j ^ fak){s)ds.
Using (2.17), we get

0 < Jk < ( - l ) * - | ( 4 - 2 2 -
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which means that there must exist a point 0 € [0, 1] such that

Jk = 0(- l)*- ' (4 - 22-

Combining this with (2.33) we get (2.36). The argument is the same when fak)(t) < 0,
0 < t < 1, since in that case we get

(-l)*-'(4 - 22-2*)fl2* [f(2k-l)(l) - fi2k-]\0)] <Jk<0. D

REMARK 10. The same series expansion of /0' / ( / ) dt as in Corollary 2.17 can be
obtained from the previous theorem under the assumption

for every k > k0 for some k0 > 3 where 0 < k < 2n.

REMARK 11. If we approximate /0' f{t)dt by

I2k(f) = i
60 "

1 6 - 2 ' - 2 ; - 2 ) |

then the next approximation will be hk+iif)- The difference

Aa(/) = hk+i(f) ~ hk(f)

is equal to the last term in /2t+2(/), that is,

^ 2 - 16 • 2'-2*) [/«»-»(l) -

We see that, under the assumptions of Theorem 2.18, R\k(f) and A2;(/) are of the
same sign. Moreover, we have

THEOREM 2.19. Suppose that f : [0, 1] - • R /j 5«c/i / / J ^ /(2*+2) j5 a continuous
function on [0, \\ for some k > 3. If

fak)(x) > 0 a«J faM\x) > 0, x G [0, 1], (2.37)

or
fak)(x) < 0 o«rf fm+2)(x) < 0, * € [0, 1], (2.38)

then the remainder Rjk(f) has the same sign as the first neglected term A2 t ( / ) and

\R2
2k(f)\ <
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PROOF. We have A a ( / ) + R2
2k+2(f) = £**(/), that is,

A a ( / ) = Rlif) - R2
2k+2(f). (2.39)

By (2.31) we have

and

30(2*+ 2)! A

From Corollary 2.4 it follows that for all s e [0, 1]

( - l ) t - ' F a ( s ) > 0 and (-l)k-l[-F2k+2(s)] > 0.

We conclude that Rlk(f) has the same sign as —R\k+2{f)- Therefore, because of
(2.39), A2k{f) must have the same sign as R\k{f) and —R2

k+2(f)- Moreover, it
follows that \R2

2k(f)\ < \A2k(f)\ and \R2
2k+2(f)\ < \A2k(f)\. D
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